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Roadmap for Today

1. Reiterating why it’s easy to screw up exclusion. Discuss two examples:
- lottery
- weather

2. Marginal treatment effects
3. Discuss why better LATE than never
4. How monotonicity can fail
5. Characterizing compliers
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Why is the exclusion restriction challenging?

- Recall the key (untestable) feature for IV:
exclusion restriction

- In the context of the DAG, the intuition is that Z
only affects Y through D

- Intuitively, it feels like something randomly
assigned or nearly random should satisfy this, so
long as it affects D

- This is not sufficient
- You need to think critically about the IV

D Y

U

Z
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Why is the exclusion restriction challenging?

- Consider two examples. First, using Vietnam war
lottery numbers as an IV for military service,
studying the impact on mortality.

- Y : death, D: vietnam vet, Z : lottery number

- Lottery number was randomly assigned as a
function of birthdate

- Well-defined design-based view of Z allocation!

- Does that necessarily satisfy exclusion
restriction? Seems like a pretty slam dunk IV

- Clearly affects veteran status
- Clearly random!
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Why is the exclusion restriction challenging?

- Does that necessarily satisfy exclusion
restriction?

- Not necessarily!

- Why? Consider one simple example: being
drafted induces you to change your behavior to
avoid the draft

- Stay in school
- Flee to Canada

- This would violate the exclusion restriction!
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Why is the exclusion restriction challenging?
- Second, consider rainfall as an instrument for

income in agriculture environments (many crops
are heavily dependent on it)

- This is not uncommon in development papers, as
Sarsons (2015) points out

- Y : conflict, D: income, Z : rainfall

- Exclusion restriction is that rainfall has no effect
on conflict beyond income

- While the logic seems reasonable, Sarsons (2015)
shows that places with dams (which protect
against the income shocks due to rain) have
similar conflict to those without dams

- Plausible that while rain is “random”, it might have
many channels
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Exclusion Restrictions
- Even with a variable that is near-random in its allocation, the exclusion

restriction is not always satisfied
- Worse yet, it’s a fundamentally untestable restriction

- Using an IV requires thinking carefully about justifying the exclusion
restriction

- It can also be useful to think about what violations in the restriction implies

- Yi = Yi(Zi ,Di(Zi)). Let Hi = Yi(1,d)− Yi(0,d), where d is 1 for an
always-taker, and d is 0 for a never-taker.

- Under monotonicity, (Angrist, Imbens, and Rubin (1996)):

E(Yi(1,Di(1))− Yi(0,Di(0)))
E(Di(1)− Di(0))

= E(Yi(1,Di(1))− Yi(0,Di(0))|i is a complier)

+ E(Hi |i is a noncomplier) · Pr(i is a noncomplier)
Pr (i is a complier)
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Knowable things about Exclusion Restriction violations

E(Yi(1,Di(1))− Yi(0,Di(0)))
E(Di(1)− Di(0))

= E(Yi(1,Di(1))− Yi(0,Di(0))|i is a complier)

+ E(Hi |i is a noncomplier) · Pr(i is a noncomplier)
Pr (i is a complier)

- Key point is that the larger the complier group is, the less the bias from violations in
the exclusion restriction

- If the effect of the exclusion is additive (Yi(1,0)− Yi(0,0) = Yi(1,1)− Yi(0,1)):

E(Yi(1,Di(1))− Yi(0,Di(0)))
E(Di(1)− Di(0))

= τIV ,LATE +
E(Hi |i is a noncomplier)

Pr (i is a complier)

- See Angrist, Imbens and Rubin (1996) for more details
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Modeling treatment choice

- Let’s now revisit the choice of treatment. (Heckman and Vytlacil (1999, PNAS))
- Let D∗

i = µD(Zi )− UDi , Di = 1(D∗
i ≥ 0)

- E.g. D∗
i is net utility gain from choosing Di

- Yi = Yi1Di + Yi0(1 − Di) = µ1(Xi ,Ui1)Di + µ0(Xi ,Ui0)(1 − Di)
- Hence if UDi is correlated with U1i ,U0i , this will cause sorting!
- Omitting characteristics Xi for simplicity

- Finally, let P(z) = Pr (D = 1|Z = z) = FUD (µD(z)) and ŨD = FUD (UD)

- This latent index model captures a nice way to think about IV
- We will assume exclusion restriction; the errors are absolutely continuous; and that

Z is independent
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Definition of parameters
- Under this setting, we can consider a number of estimands. Let ∆ = Yi1 − Yi0

1. ∆ATE = E(∆)
2. ∆ATT (D = 1) = E(∆|D = 1)
3. ∆LATE (P(z),P(z ′)) = E(Y |p(z))−E(Y |p(z ′))

p(z)−p(z ′)

- Consider E(Y |p(z)) = P(z)E(Y1|P(z),D = 1) + (1 − P(z))E(Y0|P(z),D = 0)
- This can be written as (by first fundamental theorem of calculus):

E(Y |p(z)) =
∫ P(z)

0
E(Y1|Ũ = u)du +

∫ 1

P(z)
E(Y0|Ũ = u)du

- Hence:

E(Y |p(z))− E(Y |p(z ′)) =
∫ P(z)

P(z ′)
E(Y1|Ũ = u)du −

∫ P(z)

P(z ′)
E(Y0|Ũ = u)du

∆LATE (P(z),P(z ′)) = E(∆|P(z ′) ≤ ŨD ≤ P(z))

4. ∆LIV (P(z)) = ∂E(Y |P(Z )=P(z))
∂P(z) = limP(z ′)→P(z) ∆LATE
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The marginal treatment effect (MTE) as a building block

- Each estimand can be constructed from
the underlying local effects (now
referred to as Marginal Treatment
Effects (MTE))

- These MTE identify the effect for an
individual who is shifted by the change
in the instrument on the margin

- Hence if Z increases the incentive of
participating in a program, the local
average treatment effect exploiting this
will integrate over the MTE of the
compliers

1. ∆LIV (P(z)) = E(∆|ŨD = P(z))

2. ∆ATE =
∫ 1

0 E(∆|ŨD = u)du

3. ∆ATT (D = 1,P(z)) =∫ P(z)
0 E(∆|ŨD = u)du

/
P(z)

4. ∆ATT (D = 1) =∫ 1
0 ∆ATT (D = 1,P(z))dFP(Z )|D=1

5. ∆LATE (P(z),P(z ′)) =∫ P(z)
P(z ′) E(∆|ŨD = u)du

/
(P(z)− P(z ′))
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The marginal treatment effect (MTE) as a building block

- Formally, the MTE can be estimated by fitting Y on
functions of p̂(Z ). Then take the derivative of that
function

- Crucially, needs a lot of values to this instrument!
- With only a binary instrument, or discrete instrument, can’t

really estimate a derivative

- Can use these MTE to try to reweight and construct
potentially more policy relevant treatment parameters

- This view is driven by the idea that LATE is just not a policy
relevant piece, b/c it reflects the self-selection choices of a
particular group
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Is LATE great? The criticism

- Correctly done, IV
gives a very internally
valid estimate

- But external validity is
worrisome

- Is the range
[P(z ′),P(z)]
special?

- Is it informative?

- Argument confounded
with poor IV usage
(exclusion restrictions)
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Better LATE than never
- A well-identified design gives us a real set of facts

- We can debate the merits of each design, but establishes a gold standard

- Concern is that IV for settings of interest is impossible
- Evidence suggests this is not true. Creative researchers have found many good

examples
- Innovations in structural methods have incorporated credible designs into

structural models (e.g. sufficient statistics)

- Even if there are not experiments design for the counterfactual of interest,
an internally valid estimate can give important grounding for a structural
model that attempts to extrapolate

- Key point: using poorly identified estimates is not better
- No clarity on what is causal
- The LATE literature is useful because it highlights what is knowable
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A visual for compliers / non-compliers
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How monotonicity can fail

- Three examples of possible failure (from de Chaisemartin
(2017)):

1. Examiner designs: Imagine you have two judges who
decide guilty/not guilty, and you randomly assign them. If
monotonicity means that one judge is always stricter (for
every person), then monotonicity holds. However, easy to
envision failures of this (e.g. strictness on different crimes,
different types of people)

2. Sibling-sex composition: Angrist Evan (1998) uses two
siblings of same sex as instrument for third child, b/c more
likely to have a third child. But, some families may want
two boys, vs. two girls. Same sex composition could
generate defiers

3. Encouragement designs may backfire if the nudge is too
heavy-handed (Duflo and Saez (2003))

P(z) > P(z ′)
vs.

Di(z) ≥ Di(z ′)∀i
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Avoiding monotonicity assumption

- There are a papers that attempt to characterize alternative assumptions (instead of
monotonicity)

- These may work better for your particular application! See, e.g.,
- de Chaisemartin “Tolerating defiers” (2017)
- Frandsen et al. “Judging Judge Fixed Effects” (2019)

- In the end, however, the problem is that defiers create a fundamental
mismeasurement problem

- Any solution will attempt to alleviate this by adding extra assumptions
- These solutions need to be situational!

18 / 24



IV is a useful tool for estimating causal effects in many settings
- Note that IV is simply a tool for evaluating a causal impact using an instrument

- An example: imagine we use diff-in-diff to induce random variation in a policy. This
can be combined with IV to construct a causal estimate:

Yi = αi + γt + Dit β + ϵit (1)
Dit = αi + γt + Zit β + ϵit (2)

(3)

- The same issues apply for both DinD and IV, but can be a powerful way to convert a
DinD evaluation of a policy into a structural parameter of interest

- Need exclusion to hold, and monotonicity as well, if there are heterogeneous effects
- See discussion in “Fuzzy difference-in-differences” by de Chaisemartin and

d’Haultfoeuille and “Interpreting Instrumented Difference-in-Differences” by Hudson,
Hull and Liebersohn

- The “fuzzy” label will come again with regression discontinuity
19 / 24



Understanding compliers
- Under the LATE assumptions, we can know a decent

amount about the compliers.

- First, if Di is binary, the difference in propensity scores
(first stage) is exactly the complier share:

Pr (Di(1) > Di(0)) = E(Di(1)−Di(0)) = E(Di |Zi = 1)−E(Di |Zi = 0)

- We can even know the share treated, using Bayes’ rule:

Pr (Di(1) > Di(0)|Di = 1) =
P(Di = 1|Di(1) > Di(0))× Pr (Di(1) > Di(0))

Pr (Di = 1)

=
P(Zi = 1)× Pr (Di(1) > Di(0))

Pr (Di = 1)

- This identifies the share of compliers
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Understanding compliers

- Second, we can actually know average characteristics of
compliers using the same logic, if the characteristic is
discrete.

- Consider Xi binary:

Pr (Xi |Di(1) > Di(0)) =
P(Di(1) > Di(0)|Xi)× Pr (Xi)

Pr (Di(1) > Di(0))

=
(E(Di |Zi = 1,Xi)− E(Di |Zi = 0,Xi))× Pr (Xi)

E(Di |Zi = 1)− E(Di |Zi = 0)

- Note that if we scale by Pr (Xi), we get the relative
probability of Xi compared to the overall pop

- Just the ratio of the first stages for each group!
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Understanding compliers
- Finally, Abadie (2002, JASA) shows how to construct the potential outcomes

for the compliers

- Let g(Y ) be any measurable function. Then,

E(g(Yi(1))|Di(1) > Di(0))) =
E(Dig(Yi)|Zi = 1)− E(Dig(Yi)|Zi = 0)

E(Di |Zi = 1)− E(Di |Zi = 0)

E(g(Yi(0))|Di(1) > Di(0))) =
E((1 − Di)g(Yi)|Zi = 1)− E((1 − Di)g(Yi)|Zi = 0)

E(1 − Di |Zi = 1)− E(1 − Di |Zi = 0)

- Simplest case of g(·) as the identity gives the means for the two marginals

- Can identify distributional effects by the dummy functions for compliers
- F1(y) = E(1(Yi (1) ≤ y |Di (1) > Di (0))
- F0(y) = E(1(Yi (0) ≤ y |Di (1) > Di (0))
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Abadie (2002) OLS distributions
- Good reason to think

veteran status
affected earnings

- We see negligible
differences in the OLS
data

- But veteran status is
not randomly assigned
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Abadie (2002) complier distributions
- In complier

distribution, we see
gap in lower part of
distribution – better
for non-vets than vets

- Tests in Abadie (2002)
fail to find evidence of
differences in the
distribution, however
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