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Roadmap for Today

- Key point from previous discussion is that the two stage least squares estimator (e.g.
GMM with a particular weight matrix) gets at a particular causal estimand

- Today, we'll pivot to estimation issues
- This will show up in two ways:

- Weak instruments
- Many (weak) instruments
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Weak instruments

Yi=Dip+ Wiy +¢€;
D; = Zimmy + Wima + u;

- Recall that one of the key assumptions for our estimation procedure was relevance
- 1y # 0, 0r Cov(Z;, Di|W;) # 0

- Why is this necessary? Consider the 2SLS estimator for §;, when W, just includes a

constant:
»  Cov(Yi, Z)
- Cov(Dj, Z))
- If Cov(D;, Z;) = 0, this estimate is obviously undefined! But what about if it's very
small?
- Small variations in it will move around B in a big way. That’s what statistical uncertainty
will do

- One easy way to see this: graphically
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Weak instruments

- Simple 2SLS simulation, with binary
instrument

- First stage coef = 0.5, true beta = 2

- Note that the estimation on the x-axis
comes from variation in the first stage

- The larger this is, the stronger the first
stage

- However, if the first stage is weak, this
interval is quite short, even if the
variation in D stays the same

Z=0-
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Weak instruments

- With a first stage coefficient of 0.1, it v
becomes hard to distinguish the points ‘

- Note: | hold fixed the overall variance
of D here to keep the correct
comparison!

- Given that the model is correctly
specified, with enough data it should 2
converge to the right 8

- But small shifts in the x-axis will . ° ' 2
massively swing the estimate!
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Weak instruments

- With a first stage coefficient of 0.01, the v
problem is even worse
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Weak instruments

- With a first stage coefficient of 0.01, the "
problem is even worse

0.02

- We see that the relevant variation being
exploited is tiny g

- A small change in the x-axis points
would even flip the sign!

- What does that do to our estimation
procedure?
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Weak instruments

- This graphical intuition should guide your understanding of the statistical
problem

- For simplicity, assume the following: variables are demeaned (mean zero) and
there are no additional controls (e.g. no constant). Hence,

Yi=Dip+ei
D; = Zit+ u;
= Yi=2Z np +uf+e;
1)

- The 2SLS etimator (for single endog. variable) can then be written as:

: Q=22
~—~
Single Instrument

| o

X _D’Z(Z’Z)iAIZIY_D/PZP/ZY_DIV_ ﬁ"@g
,BZSLS - D/Z(ZIZ)—‘IZ/D - D/PZPZD - D’D N ﬁ’@fl
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Weak instruments
- Intuitively, the 2SLS estimate is just the ratio of the
reduced form and the first stage
- This ratio can be highly non-linear with the denominator

- Notice that under traditional asymptotic approximations,

the small value for 7 is not a big deal.

- Given a large enough sample, & — 7, and you will
consistently estimate j

- That’s not really what we want to approximate though
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- In a finite sample, 7 is noisy, and if the s.e. of 7 is large
relative to 7, that can cause very weird behavior in 5



Weak instruments

- Imagine a marginally significant first
stage (se = 0.05, estimate = 0.1) "

- This estimator is normal, and reasonably
well-behaved

0
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Weak instruments

- Imagine a marginally significant first 1000
stage (se = 0.05, estimate = 0.1)

- This estimator is normal, and reasonably
well-behaved

Beta hat

- However, the relationship between #
and S is highly nonlinear near zero w0

0.0

0.1
Tau Hat

0.2

9/22



Weak instruments

- Imagine a marginally significant first
stage (se = 0.05, estimate = 0.1)

- This estimator is normal, and reasonably
well-behaved

- However, the relationship between #
and S is highly nonlinear near zero

- This makes the distribution for j very
non-normal
- Asymptotic normality is a bad
approximation!

750
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Weak instruments

- Interestingly, this is not the case if 7 is 50
sufficiently large!

- Then the relationship is quite linear ”

- Effectively, the delta method is a very
good approximation

Beta hat

0.08 0.10 0.12
Pi Hat
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Weak instruments

- Interestingly, this is not the case if 7T is
sufficiently large!

- Then the relationship is quite linear

- Effectively, the delta method is a very
good approximation

- This makes the distribution for j
reasonably good

- We have a problem about
differentiating between these regimes

30

20

Beta Hat

25

10/22



Weak instruments

- We want to account for this lack of normality. There are two ways to do this:

- Test for a sufficiently strong first stage so we can ignore the issue
- Use an approach that is robust to both

- To see these approaches, useful to have the following approximation for the bias in
our estimate (Bekker 1994 group asymptotics):

E(B2sts — B) =~ (E(D'PzD)) " E(u'Pze)
(E(n'ZZ'mt) + E(U'Pzu)) ' E(U' Pze)
(E(n'ZZ'7t) 4+ 02K) ' E(0yeK),

where the last step is a trick exploiting homoskedasticity in u and €.
- The trick: E(U'Pzu) = E(tr(U'Pzu)) = tr(PzE(U'u)) = tr(Pz03) = Koz, which exploits
that 1) trace of a scalar is equal to the scalar 2) trace of expectation is expectation of
trace 3) trace of idempotent matrix is the rank
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Weak instruments

—1

. 0, E(nZZr)/K
E(Basis — B) = f %+

u ou
~ | — —

OVB [ First Stage F statistic

1

In the end, you get a clear relationship between the bias in BQSLS and the first stage
F-statistic and the bias from OLS

The first stage F is just the share explained in the first stage, relative to the “noise” in
the first stage. As F increases, the bias decreases!

If there is zero power, F = 0 and IV is just the OLS estimate

Key point - when there are many instruments, the bias increases
- This is essentially coming from “overfitting” in the first stage (recall where the K pops out)
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Solution 1: Pretesting

- A natural solution to this is to just check
if the F-statistic is large enough that
these highlighted problems are not an
issue.

- This is the approach initially developed
by Staiger and Stock (1997) and Stock
and Yogo (2005).

- Typical rule of thumb: first-stage
F-statistic above 10 means that bias
won'’t be larger than 10% with size of ST Y Rastager 0”7
5%. Very popular!

Figure 1: Distribution of reported first-stage F-statistics (and their non-
homoskedastic generalizations) in 72 specifications with a single endogenous

. . H et regressor and first-stage F smaller than 50. Total number of single endoge-
- Key assumptlon' homOSkedaStlc' Th|$ IS nous regressor specifications reporting F-statistics isu108,
a strong assumption!
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Solution 1: Pretesting

- We can do better, however. Montiel
Olea and Pfluger( 2013) have a
heteroskedasticty-robust test, which
proposes a more appropriate F statistic
(allows for clustering, autocorrelation,
etc.)

- Cutoff is more like 23.1
- An arms race in F-statistics!

- Stata package weakivtest here:
https://www.stata-journal.com/
article.html?article=st0377

A robust test for weak instruments in Stata

Carolin E. Pflueger SuWang
University of British Columbia  London School of Economics
Vancouver, Canada London, UK
carolin. a ac.uk

Abstract. We introduce a routine, weakivtest, that implements the test for weak instruments by Montiel Olea and Pflueger (2013, Journal of
Business and Economic Statistics 31: 358-369). weakivtest allows for errors that are not and serially

It extends the Stock and Yogo (2005, Testing for weak instruments in linear IV regression. In Identification and Inference for Econometric
Models: Essays in Honor of Thomas Rothenberg, ed. D. W. K. Andrews and J. J. Stock, 80-108. [Cambridge University Press]) weak-instrument
tests available in ivreg2 and in the ivregress postestimation command estat firststage. weakivtest tests the null hypothesis that instruments
are weak or that the estimator's Nagar (1959, Econometrica 27: 575-595) bias is large relative to a benchmark for both two-stage least-
squares estimation and limited-information maximum likelihood with one endogenous regressor. The routine can accommodate Eicker—
Huber-White heteroskedasticity robust estimates, Newey and West (1987, E ca 55: 703-708) and

consistent estimates, and clustered variance estimates.

14/22


https://www.stata-journal.com/article.html?article=st0377
https://www.stata-journal.com/article.html?article=st0377

Solution 1: Pretesting

- The arms race continues. Lee et al.
(2020) point out that current practice Valid ¢-ratio Inference for IV
focuses on the g term, rather than on
the t-statistic

L. . L. David S. Lee? Marcelo J. Moreira*
- which is how we claim statistical Princeton University and NBER FGV EPGE
sign ificance Justin McCrary? Jack Porter’
Columbia University and NBER University of Wisconsin
- Need a much stronger first stage (F = October 15, 2020
104!) for this Abstract
In the single IV model, current practice relies on the first-stage F exceed-
ing some threshold (e.g., 10) as a criterion for trusting #-ratio inferences, even
_ H H H though this yields an anti-conservative test. We show that a true 5 percent
H Igh I Ights the Cha Ilenge Of usl ng test instead requires an F greater than 104.7. Maintaining 10 as a threshold
pre_testing requires replacing the critical value 1.96 with 3.43. We re-examine 57 AER
papers and find that corrected inference causes half of the initially presumed
- M oreover, p re_testi ng fo r |V m uch |ike statistically signi results to be insigni ‘We introduce a more power-
. ’ . . ! . ful test, the ¢F procedure, which provides F-dependent adjusted ¢-ratio critical
pre-testing in dind trends, cause distort values.
infe rence for you r pa ram ete rs Keywords: Instrumental Variables, Weak Instruments, ¢-ratio, First-stage
F statistic
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Solution 1: Pretesting

- The arms race continues (again!). Angirst
and Kolesar (2022) argue that Weak One Instrument to Rule Them All:
instruments are generally not a concern The Bias and Coverage of Just-ID IV*

in the jUSt identiﬁed case Joshua Angrist Michal Kolesar

January 28, 2022
- Why? How to reconcile with Lee?

Abstract
We argue that in micr ic applications, just-identified instrumental variables (IV)
estimators are virtually unbiased and the usual inference strategies are likely adequate. Confidence

interval undercoverage exceeds 5% only for endogeneity beyond that seen even when IV and OLS

estimates differ by an order of magnitude. Three widely-cited applications are used to explain
why endogeneity is likely low enough for IV estimates to be reliable. IV identification typically
implies a first-stage sign restriction; most analysts probably screen their estimates accordingly.
We show that screening on the estimated first stage sign halves median bias of conventional IV

without reducing coverage.
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Solution 1: Pretesting

ranel (a); UNCONQITtonal TEJECtlon Tate

- The arms race continues (again!). Angirst ~ *=1 | e
and Kolesar (2022) argue that weak d
instruments are generally not a concern N e
in the just identified case pae i
- Why? How to reconcile with Lee? T
- Punchline: endogeneity has to be T
extremely high for the bias to outweigh v T
the increase in noise <
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Weak IV sims (courtesy of Peter Hull)

Monte Carlo: Y; = ¢;, D; =11Z; + 7 Il = Var(ei) = Var(ni) =1

True Parameler | i Regression Coefficient
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Weak IV sims (courtesy of Peter Hull)

Monte Carlo: Y; = &;, D; = I1Z; + n;: I = 0.1 (Weaker)

o0 4 True Parameter i Regression Coefficient
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Weak IV sims (courtesy of Peter Hull)

Monte Carlo: Y; = g;, D; = I1Z; + n;: I1 = 0.01 (Very Weak)
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Solution 2: Robust confidence intervals

- With a just-identified single
endogeneous regressor, Anderson-Rubin
confidence intervals are valid,
irrespective of the weakness of the first
stage

- This is the easiest way to deal with this
inference problem! These results are
robust regardless of your first stage

- Chernozhukov and Hansen (2008)
discuss a very easy and simple way to
implement these confidence intervals

- Stata and R packages are also available

Available online at www.sciencedirect.com e
. " economics
ScienceDirect letters

ELSEVIER Bconomics Leties 100 (2008) 6871

winw.elsevier.comlocatefeconbase

The reduced form: A simple approach to inference with weak instruments

Victor Chernozhukov *, Christian Hansen *

® University of Chicago, Graduate Sch sodlawn Ave., Chicago, IL 60637, United States

Received 30 July 2007; 19 October 2007; accepied 14 November 2007
Available online 28 November 2007
Abstract

In this paper, we show that conventional y and robust inference procedures based on the reduced form provide

© 2008 Published by El BN.

Keywords: Heteroskedastiity; Autocorrclation; Weak identification

JEL classification: C12C30
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- With a just-identified single
endogeneous regressor, Anderson-Rubin
confidence intervals are valid,
irrespective of the weakness of the first
stage

- This is the easiest way to deal with this
inference problem! These results are
robust regardless of your first stage
- Chernozhukov and Hansen (2008)
discuss a very easy and simple way to
implement these confidence intervals
- Stata and R packages are also available

Solution 2: Robust confidence intervals

Repeating the testing procedure mentioned above for
multiple values of fy allows the construction of confidence
intervals which are robust to weak instruments and hetero-
skedasticity or autocorrelation through a series of conventional
least squares regressions. The procedure for conmstructing a
confidence interval is as follows:

1. Select a set, B, of potential values for S.

2. For each hE B3, construct ¥=Y—Xb and regress ¥ on Z to
obtain @ Use d and the corresponding estimated covariance
matrix of 4 Var(d), to construct, the Wald statistic for
testing a=0, Ws(b) =&’ [Var(&)| &. The use of a robust
covariance matrix estimator in forming Far(&) will result in
tests and confidence intervals robust to both weak
instruments and heteroskedasticity and/or autocorrelation.

3. Construct the 1—p level confidence region as the set of b such
that Wy(b) < ¢(1—p) where ¢(1—p) is the (1-p)™ percentile of
a x? distribution.
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Many instruments

- Recall from our discussion above that even many instruments
creates bias:

—1

owe | E(MZ'Z7)/K
o5 g

~ | N——
OVB | First Stage F statistic

E(Basis — B) = +1

- This is due to “overfitting” in the projection of 2SLS

- This is very solveable. Use of jackknife IV (which leaves out the own
observation) will address this issue
- See Angrist, Imbens and Krueger (1999) for details
- Inference methods in this setting are a little less well-developed,
however

We will revisit this issue when considering Judge IV settings 22/22



