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Roadmap for Today

- Key point from previous discussion is that the two stage least squares estimator (e.g.
GMM with a particular weight matrix) gets at a particular causal estimand

- Today, we’ll pivot to estimation issues

- This will show up in two ways:
- Weak instruments
- Many (weak) instruments
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Weak instruments

Yi = Di β + Wi γ + ϵi

Di = Zi π1 + Wi π2 + ui

- Recall that one of the key assumptions for our estimation procedure was relevance
- π1 ̸= 0, or Cov(Zi ,Di |Wi ) ̸= 0

- Why is this necessary? Consider the 2SLS estimator for βIV when Wi just includes a
constant:

β̂ =
Cov(Yi ,Zi)

Cov(Di ,Zi)

- If Cov(Di ,Zi) = 0, this estimate is obviously undefined! But what about if it’s very
small?

- Small variations in it will move around β̂ in a big way. That’s what statistical uncertainty
will do

- One easy way to see this: graphically
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Weak instruments

- Simple 2SLS simulation, with binary
instrument

- First stage coef = 0.5, true beta = 2
- Note that the estimation on the x-axis

comes from variation in the first stage
- The larger this is, the stronger the first

stage
- However, if the first stage is weak, this

interval is quite short, even if the
variation in D stays the same
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Weak instruments

- With a first stage coefficient of 0.1, it
becomes hard to distinguish the points

- Note: I hold fixed the overall variance
of D here to keep the correct
comparison!

- Given that the model is correctly
specified, with enough data it should
converge to the right β

- But small shifts in the x-axis will
massively swing the estimate!
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Weak instruments

- With a first stage coefficient of 0.01, the
problem is even worse

- We see that the relevant variation being
exploited is tiny

- A small change in the x-axis points
would even flip the sign!

- What does that do to our estimation
procedure?
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Weak instruments
- This graphical intuition should guide your understanding of the statistical

problem

- For simplicity, assume the following: variables are demeaned (mean zero) and
there are no additional controls (e.g. no constant). Hence,

Yi = Di β + ϵi

Di = Zi π + ui

→ Yi = Zi πβ︸︷︷︸
δ

+ui β + ϵi

- The 2SLS etimator (for single endog. variable) can then be written as:

β̂2SLS =
D′Z (Z ′Z )−1Z ′Y
D′Z (Z ′Z )−1Z ′D

=
D′PZ P ′

Z Y
D′PZ PZ D

=
D̂′Ŷ
D̂′D̂

=
π̂′Q̂δ̂

π̂′Q̂π̂
=

δ̂

π̂
,︸︷︷︸

Single Instrument

Q̂ = Z ′Z

-

-
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Weak instruments

- Intuitively, the 2SLS estimate is just the ratio of the
reduced form and the first stage

- This ratio can be highly non-linear with the denominator

- Notice that under traditional asymptotic approximations,
the small value for π is not a big deal.

- Given a large enough sample, π̂ → π, and you will
consistently estimate β

- That’s not really what we want to approximate though
- In a finite sample, π̂ is noisy, and if the s.e. of π̂ is large

relative to π̂, that can cause very weird behavior in β̂

β̂2SLS =
δ̂

π̂
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Weak instruments

- Imagine a marginally significant first
stage (se = 0.05, estimate = 0.1)

- This estimator is normal, and reasonably
well-behaved

- However, the relationship between π̂
and β̂ is highly nonlinear near zero

- This makes the distribution for β̂ very
non-normal

- Asymptotic normality is a bad
approximation!
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Weak instruments

- Interestingly, this is not the case if π is
sufficiently large!

- Then the relationship is quite linear
- Effectively, the delta method is a very

good approximation

- This makes the distribution for β̂
reasonably good

- We have a problem about
differentiating between these regimes
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Weak instruments
- We want to account for this lack of normality. There are two ways to do this:

- Test for a sufficiently strong first stage so we can ignore the issue
- Use an approach that is robust to both

- To see these approaches, useful to have the following approximation for the bias in
our estimate (Bekker 1994 group asymptotics):

E(β̂2SLS − β) ≈ (E(D′PZ D))−1E(u′PZ ϵ)

= (E(π′ZZ ′π) + E(u′PZ u))−1E(u′PZ ϵ)

= (E(π′ZZ ′π) + σ2
u K )−1E(σuϵK ),

where the last step is a trick exploiting homoskedasticity in u and ϵ.
- The trick: E(u′PZ u) = E(tr (u′PZ u)) = tr (PZ E(u′u)) = tr (PZ σ2

u ) = K σ2
u , which exploits

that 1) trace of a scalar is equal to the scalar 2) trace of expectation is expectation of
trace 3) trace of idempotent matrix is the rank
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Weak instruments

E(β̂2SLS − β) ≈ σuϵ

σ2
u︸︷︷︸

OVB

E(π′Z ′Z π)/K
σ2

u︸ ︷︷ ︸
First Stage F statistic

+1


−1

- In the end, you get a clear relationship between the bias in β̂2SLS and the first stage
F-statistic and the bias from OLS

- The first stage F is just the share explained in the first stage, relative to the “noise” in
the first stage. As F increases, the bias decreases!

- If there is zero power, F = 0 and IV is just the OLS estimate

- Key point – when there are many instruments, the bias increases
- This is essentially coming from “overfitting” in the first stage (recall where the K pops out)
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Solution 1: Pretesting

- A natural solution to this is to just check
if the F-statistic is large enough that
these highlighted problems are not an
issue.

- This is the approach initially developed
by Staiger and Stock (1997) and Stock
and Yogo (2005).

- Typical rule of thumb: first-stage
F-statistic above 10 means that bias
won’t be larger than 10% with size of
5%. Very popular!

- Key assumption: homoskedastic. This is
a strong assumption!
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Solution 1: Pretesting

- We can do better, however. Montiel
Olea and Pfluger( 2013) have a
heteroskedasticty-robust test, which
proposes a more appropriate F statistic
(allows for clustering, autocorrelation,
etc.)

- Cutoff is more like 23.1
- An arms race in F-statistics!

- Stata package weakivtest here:
https://www.stata-journal.com/

article.html?article=st0377
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Solution 1: Pretesting
- The arms race continues. Lee et al.

(2020) point out that current practice
focuses on the β term, rather than on
the t-statistic

- which is how we claim statistical
significance

- Need a much stronger first stage (F =
104!) for this

- Highlights the challenge of using
pre-testing

- Moreover, pre-testing for IV, much like
pre-testing in dind trends, cause distort
inference for your parameters
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Solution 1: Pretesting

- The arms race continues (again!). Angirst
and Kolesar (2022) argue that weak
instruments are generally not a concern
in the just identified case

- Why? How to reconcile with Lee?

16 / 22



Solution 1: Pretesting

- The arms race continues (again!). Angirst
and Kolesar (2022) argue that weak
instruments are generally not a concern
in the just identified case

- Why? How to reconcile with Lee?

- Punchline: endogeneity has to be
extremely high for the bias to outweigh
the increase in noise
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Weak IV sims (courtesy of Peter Hull)
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Weak IV sims (courtesy of Peter Hull)
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Weak IV sims (courtesy of Peter Hull)
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Solution 2: Robust confidence intervals

- With a just-identified single
endogeneous regressor, Anderson-Rubin
confidence intervals are valid,
irrespective of the weakness of the first
stage

- This is the easiest way to deal with this
inference problem! These results are
robust regardless of your first stage

- Chernozhukov and Hansen (2008)
discuss a very easy and simple way to
implement these confidence intervals

- Stata and R packages are also available

21 / 22



Solution 2: Robust confidence intervals

- With a just-identified single
endogeneous regressor, Anderson-Rubin
confidence intervals are valid,
irrespective of the weakness of the first
stage

- This is the easiest way to deal with this
inference problem! These results are
robust regardless of your first stage

- Chernozhukov and Hansen (2008)
discuss a very easy and simple way to
implement these confidence intervals

- Stata and R packages are also available

21 / 22



Many instruments
- Recall from our discussion above that even many instruments

creates bias:

E(β̂2SLS − β) ≈ σuϵ

σ2
u︸︷︷︸

OVB

E(π′Z ′Z π)/K
σ2

u︸ ︷︷ ︸
First Stage F statistic

+1


−1

- This is due to “overfitting” in the projection of 2SLS

- This is very solveable. Use of jackknife IV (which leaves out the own
observation) will address this issue

- See Angrist, Imbens and Krueger (1999) for details
- Inference methods in this setting are a little less well-developed,

however

- We will revisit this issue when considering Judge IV settings 22 / 22


