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Roadmap for Today

Today: regression discontinuity

- The goal will be to outline the simplest version of this approach, and how it works

We will then discuss estimation in straightforward settings

Next class we will touch on more complicated settings and extensions
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Regression Discontinuitiy

- Regression discontinuity has exploded B: Regression Discontinuity
onto the scene for empirical designs
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- A rare case of a research design with
random variation that is typically caused
by real world constraints (and hence
much more believable)
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- Also the constraint is typically of interest “ v ws w0 s e s w@e  w@
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directly -

- The reduced form is interesting on its
own, unlike some traditional IV papers

- Also allows for graphical presentation, a
la binscatter, which creates transparency
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Examples

- The intellectual history of RD begins with
Thistlewaite and Campbell (1960)

- But modern empirical examples begin with three
notable examples:
- Van Der Klaauw (2002)
- Black (1999)
- Angrist and Lavy (1999)

- All on very different topics, but focused on
discontinuous changes in some policy variables as
a function of some smooth forcing variable:
- Educational scores
- Distance to border
- Class size
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FINANCIAL AID OFFERS—FILERS. RAW DATA AND SPLINE SMOOTH (SOLID CURVE)
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- But modern empirical examples begin with three
notable examples:

- Van Der Klaauw (2002)
- Black (1999)
- Angrist and Lavy (1999)

Enrollment rate Pr(EN

- All on very different topics, but focused on om0 0 3“’( : oo e
. . . . . Ability index (S
discontinuous changes in some policy variables as o y7
a function of some smooth forcing variable:

ENROLLMENT PROBABILITY—FILERS, PIECEWISE CUBIC REGRESSION (DASHED CURVE) AND NONPARAMETRIC
SPLINE SMOOTH (SOLID CURVE)
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- Distance to border
- Class size
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Class Size in 1991 by Initial Enrollment Count, Actual Average Size and as
Predicted by Maimonides’ Rule
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Notation for RD

- Setup notation first with traditional potential outcomes framework
- Yi(0), Yi(1), D; = {0,1}, eg. Y; = D;Yi(1) + (1 — D;) Yi(0)
- Running variable: Z; (e.g. test score, distance or class size) -
normalize Z; = 0 as the cutoff where the treatment D; is affected

- Key parameter to focus on is the conditional mean
uy(z) = E(YilZ = z)
- Can think about more parts of distribution, but stronger requirement
and will come to this later

- Need to distinguish between two cases:

- Sharp RD: at the cutoff, D; =1vs. D; =0
- Fuzzy RD: at the cutoff, E(D;|Z; = 0) changes discontinuously

- Fuzzy RD is just IV! We can consider a scaled version of our estimate
that adjusts for the compliers shifted by the design
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What's the estimand? What's the goal?
- Note that since D; discontinuously changes at Z; = 0, if E(Y;|Z)) is sufficiently
smooth, we can estimate the impact of D; on Y; at exactly Z; = 0
- Key assumption: E(Y;(0)|Z; = z) and E(Y;(1)|Z; = z) are continuous in z

- Under this assumption,
Teare = E(Yi(1) = Yi(0)|Z; = 0) = limzy E(Yj|Z; = z) — limz10 E(VYi|Z = Z)
- Note, this is a very particular subgroup of indiviudals, right at the cutoff
- Measure zero!

- Next class, we'll discuss a design-based approach for thinking about this:
- More in line with our intuition that those around the cutoff are effectively “randomly”
assigned

- Note that this is no different than any non-parametric estimation problem that we've
studied. Consider the ATE: t4r7 = E(Y;(1) — Y;(0))
- This estimand was estimated by needing an empirical analog for an unknowable E(Y;(1)
and E(Y;(0))
- With random assignment, we could estimate these.

- The complexity of RD arrives in estimation and inference
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Why is estimation harder for RD?

We need to estimate the counterfactual means at Z; = 0
- We may not observe that point well, or at all

If Z; affects Y] (e.g. the running variable affects the outcome), then we need to both
account for this running variable effect and extrapolate

Doing this in a flexible way asks substantially more of our data
- If we knew the parametric relationship between Y and Z, this would be easy

Concretely, we need to understand how to estimate () at our cutoff variable
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Aside on non-parametric estimation

- What is non-parametric estimation? Model free approach to estimating features of
the data

- In very simple cases, e.g. mean, variance, it is straightforward
-EY)=n'L Y

- However, you can consider non-parametric estimation for a wide range of problems

- The challenge becomes limitations in data
- Let's make this concrete
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Aside on non-parametric estimation

- Consider the non-parametric estimation problem that you have
likely tried and solved many times: density estimation

- This is the estimation of 7(x) for a random variable X;
- Note that in almost all cases when looking at densities, you consider

scalar X variable

- Consider the case with a discrete variable X;. In this case,
estimation for f(x) is very straightforward:

f(x)=n"1 21 (X; = x)
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Aside on non-parametric estimation

- What if X; is continuous? The probability of

X; = x is measure zero, so cannot just discretely
bin

- The standard approach we learn is the histogram: _

f(x) = (ne/n) x b, n =Y _1(X; € kinterval)

and b is the bin-width scaled by the range of the
outcome

- Example from Lee (2008) running variable
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Aside on non-parametric estimation

- We can do better by using weights at each point
in our dataset

- the histogram is bad because it is only “right” for
certain points within the bin

- (e.g. the approximation gets better and better as i

our bin size gets smaller)

- Clearly, the bandiwdth matters! What is the
tradoeff?

- Bias vs. Variance! The larger the bandiwdth, the
more precisely estimated, but more bias
- This issue comes up for RD as well
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Aside on non-parametric estimation

- Formally, the density is estimated using kernel estimation M

as: ) 1 X o |
f(x):NhZi:K< - ) |

where K denotes our kernel weighting function

- Lots of things to know about kernels, but the key idea is
that they sum to one.
- A histogram is just a uniform kernel weighting around a
given point!

- his our choice of bandwidth / smoothing parameter. The
bigger the bandwidth, the wider your window

- Next class, we will discuss data-driven approaches for this

- However, limiting asymptotic argument requires that h — 0
12/16



Aside on non-parametric estimation

- Formally, the density is estimated using kernel estimation
as: A

ooy 1 Xi—c
o)
where K denotes our kernel weighting function n }

1% W
- Lots of things to know about kernels, but the key idea is M MMWW‘M
that they sum to one. I

- A histogram is just a uniform kernel weighting around a
given point!

- his our choice of bandwidth / smoothing parameter. The
bigger the bandwidth, the wider your window

- Next class, we will discuss data-driven approaches for this

- However, limiting asymptotic argument requires that h — 0
12/16



Challenges with non-parametric estimation

- Consider the problem of kernel estimation with two variables (or more)

- The number of datapoints necessary grows exponentially with the dimension of the
problem

- This downside to non-parametrics becomes particularly clear once you consider
non-parametric regression
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Non-parametric regression
Remember what we cared about what we started was u(z) = E(Y|Z; = z)

Note what the expectation is:

nz) = [y fylz)dy

If Z were discrete, this is a straightforward problem. However, once Z is continuous,
we need to smoothly draw on data from nearby points

This is the local regression approach (we will focus on the linear case)
- This exploits the fact that the function y(z) is locally approximable by a linear function
(as we get closer and closer - the same logic of a Taylor approximation)

- Hence, consider fitting the local regression around point z with bandwidth h with
uniform kernel:

min ) (Yi—a—B(Z—2))? (1)

B iz hezi<z
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Aside on non-parametric estimation

- More generally, consider the following general kernel problem:

p(z)y=min Y (Yi—a—B(Z—2)Kn(z—Z) (2)

ap ilz—h<Zi<z

where K,(u) = h="K(u/h) is our kernel weight. Three examples worth knowing:

- Uniform: K(u) = 0.5 (u runs from -1 to 1)
- Triangular: K(u) = (1 — |u]) (u runs from -1 to 1)
- Epanechnikov: K(u) = 0.75(1 — u?) (u runs from -1 to 1)

- We now have all the tools we need to do RD!

- Recall that RD simply requires estimating > at z = 0, using only data on the left, and
only data on the right
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Checklist for estimation in RD

- Choose kernel

- Uniform is really fine for RD - if kernel matters, you likely have sensitive estimates

- Choose bandwidth
- Can be done in a data-driven way

- Estimate on left and right:

- Tspp = limzyo p(2) — limzyo p(2)
- And hence: tggp = &, — &; where

&, Br=argmin Y. (Yi—a—B(Z —c))?Ku(c—Z)

“B jle—hez<c

&, Br=argmin Y (Yi—a—B(Z—c))?Kn(c—Z)

B jle<Zizcth
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