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Roadmap for Today

- Today: regression discontinuity

- The goal will be to outline the simplest version of this approach, and how it works

- We will then discuss estimation in straightforward settings

- Next class we will touch on more complicated settings and extensions
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Regression Discontinuitiy

- Regression discontinuity has exploded
onto the scene for empirical designs

- A rare case of a research design with
random variation that is typically caused
by real world constraints (and hence
much more believable)

- Also the constraint is typically of interest
directly

- The reduced form is interesting on its
own, unlike some traditional IV papers

- Also allows for graphical presentation, a
la binscatter, which creates transparency
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Examples

- The intellectual history of RD begins with
Thistlewaite and Campbell (1960)

- But modern empirical examples begin with three
notable examples:

- Van Der Klaauw (2002)
- Black (1999)
- Angrist and Lavy (1999)

- All on very different topics, but focused on
discontinuous changes in some policy variables as
a function of some smooth forcing variable:

- Educational scores
- Distance to border
- Class size
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Notation for RD

- Setup notation first with traditional potential outcomes framework
- Yi (0), Yi (1), Di = {0,1}, e.g. Yi = DiYi (1) + (1 − Di )Yi (0)
- Running variable: Zi (e.g. test score, distance or class size) –

normalize Zi = 0 as the cutoff where the treatment Di is affected

- Key parameter to focus on is the conditional mean
µY (z) = E(Yi |Zi = z)

- Can think about more parts of distribution, but stronger requirement
and will come to this later

- Need to distinguish between two cases:
- Sharp RD: at the cutoff, Di = 1 vs. Di = 0
- Fuzzy RD: at the cutoff, E(Di |Zi = 0) changes discontinuously

- Fuzzy RD is just IV! We can consider a scaled version of our estimate
that adjusts for the compliers shifted by the design
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What’s the estimand? What’s the goal?
- Note that since Di discontinuously changes at Zi = 0, if E(Yi |Zi) is sufficiently

smooth, we can estimate the impact of Di on Yi at exactly Zi = 0
- Key assumption: E(Yi (0)|Zi = z) and E(Yi (1)|Zi = z) are continuous in z

- Under this assumption,
τCATE = E(Yi(1)− Yi(0)|Zi = 0) = limz↓0 E(Yi |Zi = z)− limz↑0 E(Yi |Zi = z)

- Note, this is a very particular subgroup of indiviudals, right at the cutoff
- Measure zero!

- Next class, we’ll discuss a design-based approach for thinking about this:
- More in line with our intuition that those around the cutoff are effectively “randomly”

assigned

- Note that this is no different than any non-parametric estimation problem that we’ve
studied. Consider the ATE: τATT = E(Yi(1)− Yi(0))

- This estimand was estimated by needing an empirical analog for an unknowable E(Yi (1)
and E(Yi (0))

- With random assignment, we could estimate these.
- The complexity of RD arrives in estimation and inference
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Why is estimation harder for RD?

- We need to estimate the counterfactual means at Zi = 0
- We may not observe that point well, or at all

- If Zi affects Yi (e.g. the running variable affects the outcome), then we need to both
account for this running variable effect and extrapolate

- Doing this in a flexible way asks substantially more of our data
- If we knew the parametric relationship between Y and Z , this would be easy

- Concretely, we need to understand how to estimate µ(z) at our cutoff variable

7 / 16



Aside on non-parametric estimation

- What is non-parametric estimation? Model free approach to estimating features of
the data

- In very simple cases, e.g. mean, variance, it is straightforward
- Ê(Y ) = n−1 ∑i Yi

- However, you can consider non-parametric estimation for a wide range of problems
- The challenge becomes limitations in data
- Let’s make this concrete
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Aside on non-parametric estimation

- Consider the non-parametric estimation problem that you have
likely tried and solved many times: density estimation

- This is the estimation of f̂ (x) for a random variable Xi
- Note that in almost all cases when looking at densities, you consider

scalar X variable

- Consider the case with a discrete variable Xi . In this case,
estimation for f̂ (x) is very straightforward:

f̂ (x) = n−1 ∑
i

1(Xi = x)
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Aside on non-parametric estimation

- What if Xi is continuous? The probability of
Xi = x is measure zero, so cannot just discretely
bin

- The standard approach we learn is the histogram:

f̂ (x) = (nk /n)× b, nk = ∑
i

1(Xi ∈ k interval)

and b is the bin-width scaled by the range of the
outcome

- Example from Lee (2008) running variable
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Aside on non-parametric estimation

- We can do better by using weights at each point
in our dataset

- the histogram is bad because it is only “right” for
certain points within the bin

- (e.g. the approximation gets better and better as
our bin size gets smaller)

- Clearly, the bandiwdth matters! What is the
tradoeff?

- Bias vs. Variance! The larger the bandiwdth, the
more precisely estimated, but more bias

- This issue comes up for RD as well
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Aside on non-parametric estimation
- Formally, the density is estimated using kernel estimation

as:
f̂ (x) =

1
Nh ∑

i
K
(

Xi − c
h

)
,

where K denotes our kernel weighting function

- Lots of things to know about kernels, but the key idea is
that they sum to one.

- A histogram is just a uniform kernel weighting around a
given point!

- h is our choice of bandwidth / smoothing parameter. The
bigger the bandwidth, the wider your window

- Next class, we will discuss data-driven approaches for this
- However, limiting asymptotic argument requires that h → 0
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Challenges with non-parametric estimation

- Consider the problem of kernel estimation with two variables (or more)

- The number of datapoints necessary grows exponentially with the dimension of the
problem

- This downside to non-parametrics becomes particularly clear once you consider
non-parametric regression
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Non-parametric regression
- Remember what we cared about what we started was µ(z) = E(Y |Zi = z)

- Note what the expectation is:

µ(z) =
∫

y f (y |z)dy

- If Z were discrete, this is a straightforward problem. However, once Z is continuous,
we need to smoothly draw on data from nearby points

- This is the local regression approach (we will focus on the linear case)
- This exploits the fact that the function µ(z) is locally approximable by a linear function

(as we get closer and closer – the same logic of a Taylor approximation)

- Hence, consider fitting the local regression around point z with bandwidth h with
uniform kernel:

min
α,β

∑
i |z−h<Zi<z

(Yi − α − β(Zi − z))2 (1)
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Aside on non-parametric estimation

- More generally, consider the following general kernel problem:

µ̂(z) = min
α,β

∑
i |z−h<Zi<z

(Yi − α − β(Zi − z))2Kh(z − Zi) (2)

where Kh(u) = h−1K (u/h) is our kernel weight. Three examples worth knowing:
- Uniform: K (u) = 0.5 (u runs from -1 to 1)
- Triangular: K (u) = (1 − |u|) (u runs from -1 to 1)
- Epanechnikov: K (u) = 0.75(1 − u2) (u runs from -1 to 1)

- We now have all the tools we need to do RD!
- Recall that RD simply requires estimating µz at z = 0, using only data on the left, and

only data on the right

15 / 16



Checklist for estimation in RD
- Choose kernel

- Uniform is really fine for RD – if kernel matters, you likely have sensitive estimates

- Choose bandwidth
- Can be done in a data-driven way

- Estimate on left and right:
- τSRD = limz↓0 µ(z)− limz↑0 µ(z)
- And hence: τ̂SRD = α̂r − α̂l where

α̂l , β̂l = argmin
α,β

∑
i |c−h<Zi<c

(Yi − α − β(Zi − c))2Kh(c − Zi )

α̂r , β̂r = argmin
α,β

∑
i |c<Zi<c+h

(Yi − α − β(Zi − c))2Kh(c − Zi )
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