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Roadmap for Today

- Last time: how to write an RD paper if everything works out smoothly

- This time: what are issues to keep in mind?
- what can we do to account for hiccups?

- Also: what about Regression Kink design?
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The asymptotic distribution of the RD estimator

- So far, we haven't discussed the asymptotic distribution of the RD estimator:

T =limfi(z) —limfi(z
SRD ZT(;V( ) lim i(z)
- A key discussion, however, was regarding the tradeoff between a large and
small bandwidth on each side of z=10
- Small bandwidth - low bias, but very noisy

- Big bandwidth - biased, but less noise
- All asymptotic arguments need to be made “as the bandwidth shrinks”

- So, how fast should the bandwidth shrink?
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The asymptotic distribution of the RD estimator

- A useful result from Cattaneo et al. (2020):

MSE(tsgp) = Bias®(tsrp) + Var(tspp) = (HPTB)2 + %V

where p is the polynomial degree of the local linear estimator (p = 1 for
linear), B is the leading bias term of an expansion, and V is the leading
variance

- The choice of h that minimizes this MSE (conditional on p and the kernel) is

_ ~1/(2p
e = (i) "

eg. forp=1,0(hyse) = n~1/°
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The asymptotic distribution of the RD estimator

- But choosing hyse o« n~ /% does not lead to zero bias in our distribution

- Remember the leading term for bias was h2(Pt1) — n=4/5 which is slower
than n. E.g. we don’t get the usual consistency necessary for our standard
asymptotics.

- Of course, this is all asymptotics... so it’s all an approximation. But the thought
experiment is important.

- One notable feature here: it is plausible the optimal bandwidth varies on
each side of the cutoff.
- If the variance of the outcome is higher on one side, it is plausible that the
bandwidth would be wider to minimize MSE
- This is easily accounted by allowing h* and A~
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The asymptotic distribution of the RD estimator

The Calonico, Cattaneo and Titiunik (2015) approach advocates for using a
plug-in estimator for bias over “undersmoothing”

- What does this mean in practice?

Rather than pick “small” bandwidths that are not MSE-optimal, try to account
directly for bias by comparing a higher order estimate

If you are using local linear regression, this means doing the following:

- Estimate local quadratic estimate

- Use the second derivative curvature to approximate the bias term for the local
linear estimate, B3

- Use this estimator to adjust bias

rdrobust does this automatically! Calonico, Cattaneo and Farrell (2018)
show that this approach leads to correct inference, and preferable to
undersmoothing
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Let’s look at it in practice

- BW Type: how is bandwidth chosen?

- Kernel: Choice of kernel (triangular is default, my
preference is uniform but triangle has nice
properties at edges)

- Effective # obs: how many obs within bandwidth?

p: estimator polynomial order (p = 1 is linear)

q: bias estimator polynomial order (must be at

least 1 more than p)

his the bandwidth estimate for main estimate - b

is the bandwidth for the bias estimator (needs

more data usually, MSE optimal)

- Unique = mass points

Call: rdrobust

Number of Obs.
BW type
Kernel

VCE method

Number of Obs.

Eff. Number of Obs.

Order est. (p)
Order bias (a)
BW est. (h)

BW bias (b)
rho (h/b)
Unique Obs.

2763
mserd
Triangular
NN

1376
490

1

2
8.422
13.99%0
0.602
1344

1387
548

8.422
13.990
0.602
1313

Method

Coef. Std. Err.

z P>zl [95% C.I. ]

Conventional
Robust

5.876 1.322

4444 0.000  [3.284 , 8.468]
3.606  0.000  [2.530 , 8.554]
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Let’s look at it in practice

Call: rdrobust

- Conventional: assumes zero bias in the inference . .

BW type

2763
mserd
Triangular

1376
490

1

2
8.422
13.990
0.602
1344

1387
548

8.422
13.990
0.602
1313

Coef. Std. Err.

P>zl [95% C.I. ]

N

method. .
- Coefficient and standard error are standard Mf e,
variance estimates that you get from running OLS §i§;r“§?€?’(3§)°’”
with chosen h o btg:g “
- No bias adjustment is done i 5.
- Robust: accounts for bias in two ways, but only in poeven
the inference Canventional

5.876 1.322

4.444 0.000 [3.284 , 8.468]
3.606 0.000 [2.530 , 8.554]

- Centers Cl around the bias-adjusted estimate

- Also accounts for the additional noise from the
estimation of the bias term

- Can see the steps by using the all option
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Let’s look at it in practice

- Conventional: assumes zero bias in the inference i
Number of Obs.

method. brone
- Coefficient and standard error are standard

variance estimates that you get from running OLS . w g

Order bias (q)

Number of Obs.

Eff. Number of Obs.

2763
mserd
Triangular
NN

1376

490

1

2

8.422

13.990

0.602
1344

1387
548

8.422
13.990
0.602
1313

Coef. Std. Err.

P>zl

[95% C.I. ]

with chosen h et @

- No bias adjustment is done e oo,
- Robust: accounts for bias in two ways, but only in __»
the inference e

5.876 1.322
5.542 1.322
5.542 1.537

4.444
4.191
3.606

0.000
0.000
0.000

[3.284 , 8.468)
[2.950 , 8.134]
[2.530 , 8.554]

- Centers Cl around the bias-adjusted estimate

- Also accounts for the additional noise from the
estimation of the bias term

- Can see the steps by using the all option

- Cattaneo et al. (2020) advocate for:

- Report tggpp without bias adjustment (it is more
MSE efficient than the bias corrected estimator)
- Report the robust confidence interval
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What if we can'’t shrink our bandwidth? Discrete Regression
Discontinuity

- Bias in the RD estimates comes from the
approximation of the conditional mean function
- The smaller the bandwidth, the better the local
approximation!

log annual eamnings (1998 UK pounds)
®

- What if the running variable is discrete? E.g., age

1940 1950 1960
Year aged 14

v YEAR AGED 14

- Kolesar and Rothe (2018) discuss exactly this
scenario and propose an “Honest” RD estimation
approach which approximates the bias by
asssuming a maximum second derivative

g age changed from 14 to 15.
nding age.
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What if we can'’t shrink our bandwidth? Discrete Regression
Discontinuity

- Kolesar and Rothe say - ignore the
bias-adjustment fact, and just assume
undersmoothing. If this is the case, you can just
use standard Eicker-Huber-White errors (e.g.

log annual eamings (1998 UK pounds)

“robust” s.e.) o
- But we know this argument only works if you can _
get enough observations “close” to the cutoff = Vo1 o
- With discrete variables, this fails Pcurs 2. Avesas o NaTuma. Locaseo or A Ennvs ik Aceo 14

Notes: Vertical line indicates the year 1947, in which the minimum sc g age changed from 14 to 15.
lume of dots is proportional to share of workers in the full data with the corresponding age.

- Recall that we're extrapolating the conditional
mean function to the cutoff

- If we are willing to put a bound on the 2nd
derivative function, and assume it is in a class of
Holder functions (which is very general), we can
bound our maximum bias, and use this adjust our
confidence intervals
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What if we can'’t shrink our bandwidth? Discrete Regression
Discontinuity

- This approach is valid even with continuous running variables, and is
a powerful and robust way to allow for misspecification bias

- My experience has been that this package (RDHonest) works much
better with discrete RV than rdrobust (which has adjustments for
discreteness)

- However, you need to choose your maximum bias, and it can be
challenging to do so ex ante.
- Armstrong and Kolesar discuss ways to do this in a data driven way
given additional assumptions.
- You should also show how your results change with this parameter
choice, similar to bandwidth!
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Comparing RDHonest and rdrobust

RD Plot

- First, let’s look at the
plot

- RDRobust estimate is
5.9 (2.5,8.5)

- RDHonest estimate
varies depending on
choice of second
derivative bound. For
M=0.1:59(2.9,8.8)

- What would you pick
for M?
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Comparing RDHonest and rdrobust

. ) = summary(est)
First, let's look at the (|| rqropuer

plot
Number of Obs. 2763
X BW type mserd
RDRobust estimate is kernel Triangular
VCE method NN
5.9 (2.5,8.5) fese
Number of Obs. 1376 1387
. Eff. Number of Obs. 490 548
RDHonest estimate (.4 est. () 1 1
varies depending on  Order bias (a) 2 2
. BW est. Ch) 8.422 8.422
choice of second BW bias (b) 13.990 13.990
derivative bound. For Eh*? ng @igfi Bi:i;
nigue Obs.
M=0.1:59(2.9,8.8)
. Method Coef. 5td. Err. z P=lz| [ 95% C.I. ]
What would you pick
for M? Conventional 5.876 1.322 4.444 2.000 [3.284 , B.468]
Robust - - 3.606 0.000 [2.530 , 8.554]
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Comparing RDHonest and rdrobust

- First, let’s look at the
plot

- RDRobust estimate is
5.9 (2.5,8.5)

- RDHonest estimate
varies depending on
choice of second
derivative bound. For
M=0.1:59(2.9,8.8)

- What would you pick
for M?

> est_rdhonest
Call:

RDHonest(formula = lee@83voteshare ~ lee@8$margin, cutoff = @,

Inference by se.method:
Estimate Maximum Bias Std. Error
nn 5.981389 @.7851139 1.3@9639

Confidence intervals:
nn (2.935053, 8.867566), (2.962031, Inf), (-Inf, 8.B4@588)

Bandwidth: 8.683387
Number of effective observations: Z@6.84

M= 0.1, opt.criterion = "MSE"}
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Comparing RDHonest and rdrobust

- First, let’s look at the mu 1b ub case bw
plot dbls <dbls> <dbl> <ch i
~ RDRobust estimate i 5.88 2.95 &8.13 RDRobust 8.42
5.9 (2.5,8.5) 7.51 5.55 9.47 RDHonest M=0.81 21.9

5.96 2.96 &.84 RDHonest M=.1 g.60
- RDHonest estimate 8.78 4.58 13.® RDHonest M=1 3.49

varies depending on
choice of second
derivative bound. For
M=0.1:59(2.9,8.8)

- What would you pick
for M?
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What if we can'’t shrink our bandwidth? Discrete Regression
Discontinuity

- Another similar paper in this space is Imbens and =
Wager (2019) 1
- The estimation approach also puts bound on the 2 1%
second derivative, but uses a numerical approach 1

to do estimation

- Package in R: optrdd

reading score

- This approach potentially has slightly smaller
confidence intervals

T T T
-1.0 -0.5 0.0 0.5

- It also generalizes to multivariate RD settings (e.g. math score
spatial settings) quite easily weighted CATE (7)

- See also rdmulti, which also allows for multiple
cutoffs
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Multiple Cutoffs

- Cattaneo, Titiunik, Vazquez-Bare and Keele —
(2016) and Bertanha (2020) touch on what to do |
when not every threshold is the same (See the
discussion in Cattaneo, Idrobo and Titiunik's
extensions textbook for a very clean discussion)

- E.g. MultiThreshold contrast a political election
with 2 vs. 3 candidates - what is the “winning”
threshold?

- E.g. MultiCutoff Cutoff based on two test scores " swew

Figure 5.2: Multi-Cutoff RD Design with Two Non-cumulative Cutoffs

tsroler)

Outcome

- These have separate complications associated
with them
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Multiple Cutoffs

- Cattaneo, Titiunik, Vazquez-Bare and Keele

(2016) and Bertanha (2020) touch on whattodo ~ ™* s
when not every threshold is the same (See the 06| ebrarmabes Gok huncaly_ RS
discussion in Cattaneo, Idrobo and Titiunik’s 2
extensions textbook for a very clean discussion) § 60 —
- E.g. MultiThreshold contrast a political election g " (qomdhres
with 2 vs. 3 candidates - what is the “winning” 2
threshold? %
- E.g. MultiCutoff Cutoff based on two test scores Language Cutot———>
’ 0 20 40 60 80 100
- These have separate complications associated Language Score (X;)
with them (a) Hard-threshold Assignment
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Multiple Threshold - Cumulative vs. Not

- Do the treatment cutoffs vary based on unit, or
are there just many of them?

Non-Cumulative Cutoffs

Panel |: Units exposed to cutoff c,

- An example non-cumulative case is when the s e
thresholds vary on geography: all units could | i
potentially be exposed to treatments defined at “ x
different cutoffs Panel Il: Units exposed to cutoff c,
Assigned o ! Assigned o
- An example cumulative case is where dosing is a - i |
function of the score - those facing different T C;
treatment cutoffs are not comparable (e.g. a
support problem in the running variable) Panel III: Units exposed to cutoff ¢,
Mo —> "SERE R
T f
X Ca
Score (X)

(a) Non-cumulative Cutoffs 15/22



Multiple Threshold - Cumulative vs. Not

- Do the treatment cutoffs vary based on unit, or Cumulative Cutoffs

support problem in the running variable) |

are there jUSt many Of them? Units exposed to cutoffs ¢,, c.. and ¢,
1 ] |
. . Units. ﬂlgﬂ*ﬂl.ﬂ : I.Inl!c.-n;‘pgz(-m o :'Mhéuﬂ:_upoic?dw : Unies nugm.ed o
- An example non-cumulative case is when the ] ' : !
thresholds vary on geography: all units could ! ! !
potentially be exposed to treatments defined at i i i
different cutoffs o ! et ! e ! et B
| | |
. . . . [} 1 |
- An example cumulative case is where dosing is a ! ! !
function of the score - those facing different i | |
1 ] |
treatment cutoffs are not comparable (e.g. a | . i i
] |
1
]

x C
Score (X)

(b) Cumulative Cutoffs 15/22



Multiple Threshold - Non-cumulative pooling

- With non-cumulative treatments, can consider a
cutoff specific treatment and proceed identically
- each one identified separately

Non-Cumulative Cutoffs

Panel |: Units exposed to cutoff c,

e i =il
- |
- To pool these estiamtes, you can normalize and | i
center at the same point “ x
Panel II: Units exposed to cutoff ¢
TPOOI ZW T ) W(C) _ fX‘C(Clc)Pr(C Assignesd ’ Lo gmrdz
sRD( = s L
SAD = e bo(elo)Pr -
|
) M

Panel |ll: Units exposed to cutoeff c;

A unid with X=x may hesignerto } Assigned to
face any cuiaff * | irealment

|
i
Ca

a x4 4-

Sco

x)

(a) Non-cumulative Cutoffs 16/22



Multiple Cutoffs

- With multiple scores, the limits are defined in a
multi-dimensional way. Tokted
Area

Mathematics Cutoff Boundary—3

@
o

- Integrating over these points has a similar logic to
multiple-threshold

|

Control Area

&
[=)

Mathematics Score (Xz)

20
Language Cutoff——>

60 80 100

0 20 40
Language Score (X)

(a) Hard-threshold Assignment
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What about bunching? Bounds on Treatment effects

Recall our Mcrary (2008) test for bunching in the _
running variable oou| emram
Concern is maniuplated running variable

In-range manipulation = 43,89 (0.13)

Fraction

For example, in Dee et al. (2019), there is clear
manipulation, and so using this RD directly would o
bespuﬁous Regents exam score

FIGURE 1. TEST SCORE DISTRIBUTIONS FoR CORE REGENTS ExAMS, 2004-2010

Notes: This figure shows the test score distribution around the 55 and 65 score cutoffs for New York City high

. . . . school test takers between 2004-2010. Core exams include English Language Arts, Global History, US History,
Th ISIS a pa rtl cu I a rly egreg |ousS case - ma ny are Math A/ Integrated Algebra, and Living Environment. We include the first test in cach subject for cach student in
our sample. Each point shows the fraction of test takers in a score bin with solid points indicating 2 manipulable

score. The dotted line beneath the empirical distribution is a subject-by-year specific sixth-degree polynomial

I ess st a rk fitted to the empirical distribution excluding the manipulable scores near each cutoff. The shaded area represents
cither the missing or excess mass for manipulable scores as we define based on the scoring guidelines described

in Section 1l and detailed in online Appendix Table A3. Total manipulation is the fraction of test takers with

‘manipulated scores. In-range manipulation is the fraction of test takers with manipulated scores normalized by

M oreover, yO um ay a I SO be un d e rpOWe red tO the average height of the counterfactual distribution o the left of cach cutoff. tandard errors are calculated using
. . the parametric bootstrap procedure described in the text. See the online Data Appendix for additional details on
detect the break if they do exist!

the sample and variable definitions.
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What about bunching? Bounds on Treatment effects

- Gerard, Rokkanen and Rothe (2020) propose a partial identification approach to allow
for the possibility of bunching

- Think of this as a check on the robustness of the results - how sensitive are the
results to manipulation?

- Code is available for R and Stata: rdbounds

- The key result hinges on the idea that the manipulation goes in one direction, and that
these right-ward manipulated individuals “mask” the true underlying effect

- These individuals are always manipulated to the right side of the cutoff (they are the
“excess mass”)

- Derive sharp bounds for those individuals who can actually be affected by the
treatment

- Do this by identifying the share of the “masking” individuals: T =1 — (07 ) /fz(0™).
- If Mcrary test holds, this number is zero!

- This is a very nice approach if you have bunching issues in your design
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An important question
- Imagine you have an RD that you ran, and you want to compare across estimates

across two groups (W; € (0, 1))
- How would you do this?

- Note how you would do it in a simple OLS setting:

Yi=wo+Zivo+2Z1(Z > 0)éo+ 1(Z > 0)Tsmp
+ Wiy + WiZiyo + WiZi1(Z; > 0)d0 + Wi1(Z; > 0)Tspp,diff + €i

Tshp,qifr Would give you the difference - this approach is easy if you pick a bandwidth
and use a uniform kernel

- But now we have all these better tools (and we need them in a lot of places) - how
could still do this?

- Apply the delta method to the transformation we want to do!
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Comparing coefficients across setups

- Consider an RDRobust estimate for 7(W = 1) and 7(W = 0).
- The difference is f(7y,79) = 71 — 1o

- Recall that our variance estimate is (f')T=f/, where f’ is the gradient vector and . is
our variance covariance matrix of 7 and 1.
- How do we get X.? Well, recall that we estimated these separately from one another, so

the covariance terms are zero
- Hence, X is just the diag( Var(tq), Var(t))

- In our simple example, Var(ty — 19) = Var(ty) + Var(t) and so Delta method is
exact

- However, can study more complicated functions as well!
- This approach also works with the RDHonest approach as well, just need to account for
the additional bias terms (see Appendix of Armstrong and Kolesar (2020))
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Regression Kink Design

- Much of our discussion centered around a
discontinuous jump in the outcome (and
treatment variable)

40

- Nielsen et al. (2010) initially coin the concept
instead of a regression kink design (further
worked on by Card, Lee, Pei and Weber (2016)

- Key difference here exploits a difference in slope,

Average Daily Ul Benefit
35

30

Figure 2b: Daily Ul Benefits
Top Kink Sample

.........

-14000

rather than a level difference
- Technically, could be both!

- This approach is very powerful because many
policy tools have linear shifts in incentives, rather
than jumps

-9000 -4000 1000
Base Year Earnings Relative to T-max

6000
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Regression Kink Design

- Much of our discussion centered around a
discontinuous jump in the outcome (and
treatment variable)

47

)
46

- Nielsen et al. (2010) initially coin the concept
instead of a regression kink design (further
worked on by Card, Lee, Pei and Weber (2016)

Log(Duration)

45

- Key difference here exploits a difference in slope, | .

Figure 3b: Log Time to Next Job
Top Kink Sample

rather than a level difference 14000
- Technically, could be both!

- This approach is very powerful because many
policy tools have linear shifts in incentives, rather
than jumps

-9000 4000 1000
Base Year Earnings Relative to T-max

6000
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Regression Kink Design

- This is a deeply interesting approach, but requires
a lot of data

47

- Why? because slope changes are hard to see. Did
the slope change because of curvature, of
because of a kink?

|
<

Log(Duration)

45

- Ganong and Jager (2018) discuss a test for thisto | =",

Figure 3b: Log Time to Next Job
Top Kink Sample

-14000

account for this fact

- This is a good approach to keep in mind! See, e.g.,
Indarte (2021)

-9000 -4000 1000
Base Year Eamings Relative to T-max

6000
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Regression Kink Design

This is a deeply interesting approach, but requires  Figure 2: The Effect of Seizable Equity on Bankruptey Filings
a lot of data o

- Ganong and Jager (2018) discuss a test for this to B % 4o
account for this fact

1

- Why? because slope changes are hard to see. Did
the slope change because of curvature, of
because of a kink?

Bankruptcy Rate (%)
8

6
L

4
f

20 0 20 40 60 80
Equity Distance ($000s)

- This is a good approach to keep in mind! See, e.g.,
Indarte (2021)
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