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Roadmap for Today

- Last time: how to write an RD paper if everything works out smoothly

- This time: what are issues to keep in mind?
- what can we do to account for hiccups?

- Also: what about Regression Kink design?
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The asymptotic distribution of the RD estimator

- So far, we haven’t discussed the asymptotic distribution of the RD estimator:

τSRD = lim
z↓0

µ̂(z)− lim
z↑0

µ̂(z)

- A key discussion, however, was regarding the tradeoff between a large and
small bandwidth on each side of z = 0

- Small bandwidth – low bias, but very noisy
- Big bandwidth – biased, but less noise
- All asymptotic arguments need to be made “as the bandwidth shrinks”

- So, how fast should the bandwidth shrink?
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The asymptotic distribution of the RD estimator

- A useful result from Cattaneo et al. (2020):

MSE(τ̂SRD) = Bias2(τ̂SRD) + Var(τ̂SRD) = (h2(p+1)B)2 +
1

nh
V

where p is the polynomial degree of the local linear estimator (p = 1 for
linear), B is the leading bias term of an expansion, and V is the leading
variance

- The choice of h that minimizes this MSE (conditional on p and the kernel) is

hMSE =

(
V

2(p + 1)B2

)1/(2p+3)

n−1/(2p+3)

e.g. for p = 1, o(hMSE ) = n−1/5
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The asymptotic distribution of the RD estimator

- But choosing hMSE ∝ n−1/5 does not lead to zero bias in our distribution

- Remember the leading term for bias was h2(p+1) → n−4/5, which is slower
than n. E.g. we don’t get the usual consistency necessary for our standard
asymptotics.

- Of course, this is all asymptotics... so it’s all an approximation. But the thought
experiment is important.

- One notable feature here: it is plausible the optimal bandwidth varies on
each side of the cutoff.

- If the variance of the outcome is higher on one side, it is plausible that the
bandwidth would be wider to minimize MSE

- This is easily accounted by allowing h+ and h−
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The asymptotic distribution of the RD estimator
- The Calonico, Cattaneo and Titiunik (2015) approach advocates for using a

plug-in estimator for bias over “undersmoothing”
- What does this mean in practice?

- Rather than pick “small” bandwidths that are not MSE-optimal, try to account
directly for bias by comparing a higher order estimate

- If you are using local linear regression, this means doing the following:
- Estimate local quadratic estimate
- Use the second derivative curvature to approximate the bias term for the local
linear estimate, B̂

- Use this estimator to adjust bias

- rdrobust does this automatically! Calonico, Cattaneo and Farrell (2018)
show that this approach leads to correct inference, and preferable to
undersmoothing
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Let’s look at it in practice

- BW Type: how is bandwidth chosen?
- Kernel: Choice of kernel (triangular is default, my

preference is uniform but triangle has nice
properties at edges)

- Effective # obs: how many obs within bandwidth?
- p: estimator polynomial order (p = 1 is linear)
- q: bias estimator polynomial order (must be at

least 1 more than p)
- h is the bandwidth estimate for main estimate – b

is the bandwidth for the bias estimator (needs
more data usually, MSE optimal)

- Unique = mass points
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Let’s look at it in practice
- Conventional: assumes zero bias in the inference

method.
- Coefficient and standard error are standard

variance estimates that you get from running OLS
with chosen h

- No bias adjustment is done
- Robust: accounts for bias in two ways, but only in

the inference
- Centers CI around the bias-adjusted estimate
- Also accounts for the additional noise from the

estimation of the bias term
- Can see the steps by using the all option

- Cattaneo et al. (2020) advocate for:
- Report τ̂SRD without bias adjustment (it is more

MSE efficient than the bias corrected estimator)
- Report the robust confidence interval
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What if we can’t shrink our bandwidth? Discrete Regression
Discontinuity

- Bias in the RD estimates comes from the
approximation of the conditional mean function

- The smaller the bandwidth, the better the local
approximation!

- What if the running variable is discrete? E.g., age

- Kolesar and Rothe (2018) discuss exactly this
scenario and propose an “Honest” RD estimation
approach which approximates the bias by
asssuming a maximum second derivative
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What if we can’t shrink our bandwidth? Discrete Regression
Discontinuity

- Kolesar and Rothe say – ignore the
bias-adjustment fact, and just assume
undersmoothing. If this is the case, you can just
use standard Eicker-Huber-White errors (e.g.
“robust” s.e.)

- But we know this argument only works if you can
get enough observations “close” to the cutoff

- With discrete variables, this fails

- Recall that we’re extrapolating the conditional
mean function to the cutoff

- If we are willing to put a bound on the 2nd
derivative function, and assume it is in a class of
Hölder functions (which is very general), we can
bound our maximum bias, and use this adjust our
confidence intervals
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What if we can’t shrink our bandwidth? Discrete Regression
Discontinuity

- This approach is valid even with continuous running variables, and is
a powerful and robust way to allow for misspecification bias

- My experience has been that this package (RDHonest) works much
better with discrete RV than rdrobust (which has adjustments for
discreteness)

- However, you need to choose your maximum bias, and it can be
challenging to do so ex ante.

- Armstrong and Kolesar discuss ways to do this in a data driven way
given additional assumptions.

- You should also show how your results change with this parameter
choice, similar to bandwidth!
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Comparing RDHonest and rdrobust
- First, let’s look at the

plot

- RDRobust estimate is
5.9 (2.5,8.5)

- RDHonest estimate
varies depending on
choice of second
derivative bound. For
M = 0.1: 5.9 (2.9, 8.8)

- What would you pick
for M?
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What if we can’t shrink our bandwidth? Discrete Regression
Discontinuity

- Another similar paper in this space is Imbens and
Wager (2019)

- The estimation approach also puts bound on the
second derivative, but uses a numerical approach
to do estimation

- Package in R: optrdd

- This approach potentially has slightly smaller
confidence intervals

- It also generalizes to multivariate RD settings (e.g.
spatial settings) quite easily

- See also rdmulti, which also allows for multiple
cutoffs
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Multiple Cutoffs

- Cattaneo, Titiunik, Vazquez-Bare and Keele
(2016) and Bertanha (2020) touch on what to do
when not every threshold is the same (See the
discussion in Cattaneo, Idrobo and Titiunik’s
extensions textbook for a very clean discussion)

- E.g. MultiThreshold contrast a political election
with 2 vs. 3 candidates – what is the “winning”
threshold?

- E.g. MultiCutoff Cutoff based on two test scores

- These have separate complications associated
with them
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Multiple Threshold - Cumulative vs. Not
- Do the treatment cutoffs vary based on unit, or

are there just many of them?

- An example non-cumulative case is when the
thresholds vary on geography: all units could
potentially be exposed to treatments defined at
different cutoffs

- An example cumulative case is where dosing is a
function of the score – those facing different
treatment cutoffs are not comparable (e.g. a
support problem in the running variable)
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Multiple Threshold - Non-cumulative pooling
- With non-cumulative treatments, can consider a

cutoff specific treatment and proceed identically
– each one identified separately

- To pool these estiamtes, you can normalize and
center at the same point

τpool
SRD = ∑

c
w(c)τSRD(c), w(c) =

fX |C(c|c)Pr (C = c)

∑c fX |C(c|c)Pr (C = c)
(1)
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Multiple Cutoffs

- With multiple scores, the limits are defined in a
multi-dimensional way.

- Integrating over these points has a similar logic to
multiple-threshold
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What about bunching? Bounds on Treatment effects

- Recall our Mcrary (2008) test for bunching in the
running variable

- Concern is maniuplated running variable

- For example, in Dee et al. (2019), there is clear
manipulation, and so using this RD directly would
be spurious

- This is a particularly egregious case – many are
less stark

- Moreover, you may also be underpowered to
detect the break if they do exist!
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What about bunching? Bounds on Treatment effects

- Gerard, Rokkanen and Rothe (2020) propose a partial identification approach to allow
for the possibility of bunching

- Think of this as a check on the robustness of the results – how sensitive are the
results to manipulation?

- Code is available for R and Stata: rdbounds
- The key result hinges on the idea that the manipulation goes in one direction, and that

these right-ward manipulated individuals “mask” the true underlying effect
- These individuals are always manipulated to the right side of the cutoff (they are the

“excess mass”)
- Derive sharp bounds for those individuals who can actually be affected by the

treatment
- Do this by identifying the share of the “masking” individuals: τ = 1 − fZ (0−)/fZ (0+).
- If Mcrary test holds, this number is zero!

- This is a very nice approach if you have bunching issues in your design
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An important question
- Imagine you have an RD that you ran, and you want to compare across estimates

across two groups (Wi ∈ (0,1))
- How would you do this?

- Note how you would do it in a simple OLS setting:

yi = α0 + Zi γ0 + Zi1(Zi > 0)δ0 + 1(Zi > 0)τSRD

+ Wi α1 + WiZi γ0 + WiZi1(Zi > 0)δ0 + Wi1(Zi > 0)τSRD,diff + ϵi

τSRD,diff would give you the difference – this approach is easy if you pick a bandwidth
and use a uniform kernel

- But now we have all these better tools (and we need them in a lot of places) – how
could still do this?

- Apply the delta method to the transformation we want to do!
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Comparing coefficients across setups

- Consider an RDRobust estimate for τ(W = 1) and τ(W = 0).
- The difference is f (τ1, τ0) = τ1 − τ0

- Recall that our variance estimate is (f ′)T Σf ′, where f ′ is the gradient vector and Σ is
our variance covariance matrix of τ1 and τ0.

- How do we get Σ? Well, recall that we estimated these separately from one another, so
the covariance terms are zero

- Hence, Σ is just the diag(Var (τ1),Var (τ0))

- In our simple example, Var (τ1 − τ0) = Var (τ1) + Var (τ0) and so Delta method is
exact

- However, can study more complicated functions as well!
- This approach also works with the RDHonest approach as well, just need to account for

the additional bias terms (see Appendix of Armstrong and Kolesar (2020))

21 / 22



Regression Kink Design

- Much of our discussion centered around a
discontinuous jump in the outcome (and
treatment variable)

- Nielsen et al. (2010) initially coin the concept
instead of a regression kink design (further
worked on by Card, Lee, Pei and Weber (2016)

- Key difference here exploits a difference in slope,
rather than a level difference

- Technically, could be both!

- This approach is very powerful because many
policy tools have linear shifts in incentives, rather
than jumps
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Regression Kink Design

- This is a deeply interesting approach, but requires
a lot of data

- Why? because slope changes are hard to see. Did
the slope change because of curvature, of
because of a kink?

- Ganong and Jäger (2018) discuss a test for this to
account for this fact

- This is a good approach to keep in mind! See, e.g.,
Indarte (2021)
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