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Seeking Identification

For our questions, we need to describe an estimand of interest
- This may be a causal object, or purely a statistical one

Remember that we need to know whether this object is knowable given the data
generating process
- This is not a question of any given sample, but rather a question of our underlying
assumptions and the data generating process

Two examples:

- When were only observe a subsample of outcomes for individuals, we assume the data is
missing (completely) at random to identify the full population’s average

- To identify the average treatment effect, we assumed strict ignorability (and a few other
things) to identify the effect of the treatment

- Can we assume less?
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Start with a simple example

The housing market is extremely hot and you want to know what the probability that
a house sells (Y; = 1) vs doesn’t sell (Y; = 0)

- In particular, you want to know if houses with backyards (X; = 1) are selling more quickly
than those without (X; = 0).

- However, we only observe a sale for the set of homes that chose to go on the market
Z; = 1 and do not observe Y, for Z; =0

- Can we know the probability of sale E(Y;|X;) for all houses?

Formally, assume that we will have a dataset of nindependent triplets (Y}, X;, Z;)
- E(Yj|X;, Z = 1) is identified but E(Y;|X;) is not without more assumptions

But E(Y]| X)) is partially identified
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Simple parital identification example

- Consider the law of total probability:

E(Yi|X;) = Pr(Yi =1[X;) = Pr(Y; =1[X;, Z, = 1) x Pr(Z; = 1]X))
+Pr(Y;=1]X, Z = 0) x Pr(Z = 0|X;)

The problem is we cannot observe Pr(Y; = 1|X;, Z; = 0), by definition
- But, we know that it cannot be greater than one, nor less than zero

As a result, it must be that

E(Yi|Xi) €lPr(Yi = 11X, Zi = 1) x Pr(Z; = 1]Xi),
Pr(Y; = 11X, Z = 1) x Pr(Z = 11X;) + Pr(Z, = 0|X)]

This is intuitive! For all the houses we don't see go for sale, at the extreme, they could
either all not sell (the lower bound) or all sell (the upper bound).

4/21



Simple partial identification example

- This is quite powerful - we've made no assumptions on the correlation between the
choice to sell and sale probability.
- The width of this interval is important - it speaks to the informativeness of the bound
(and in this case is equal to Pr(Z; = 0|X;)
- The more likely properties are to sell, the tighter these bounds become (since the missing
piece gets smaller)

- What does a missing-at-random assumption imply?
- Pr(Y;=1|X;,Z;) = Pr(Y; = 1|X;), which means that you can ignore the missing data
and the set interval becomes a single point
- Hence, point identification!

5/21



Simple partial identification example

A few things worth noting from this simple example

First, what if Y; wasn't binary, but was real valued? E.g. sale price?
- If the value of Y; is unbounded, the upper bound of the set would be infinity

- However, even with unbounded Y;, you can always bound the CDF of Y; at different
points: F(Y; < t) is always between O and 1
- This means we can set identify quantiles of the distribution!
- Recall that this came up when discussing censored data

So long as there is sufficient observed data, Manski (1994) shows that the « quantile is
bounded by:
- Below: [« — P(Z; = 0|X)]/P(Z; = 1| X)-quantile of the observed distribution
Pr(Y;i|X;, Zi = 1) (if Pr(Z; = 0|X;) < &, and the min of Y; otherwise)
- Above: a/P(Z; = 1]|X)-quantile of the observed distribution Pr(Y;|X;, Z; = 1) (if
Pr(Z; = 0|X;) <1 — a, and the max of Y; otherwise)
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Back to generality: partial identification

Bounds are extremely powerful - we can make substantially fewer assumptions and
still potentially learn quite a bit

However, it's worth noting that these are quite limited in practice
- Today, | will walk through two examples where | think they are quite valuable

Then we'll discuss why these might have had limited adoption

We will ignore inference, although it is quite important (and has a big econometrics
field associated with it)
- See Imbens and Manski (2004) and Chernozhukov, Hong and Tamer (2007) for initial
primers
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Selection into employment

- Consider the problem of estimating the effect of a treatment (job training) on
wages

- Remember that the decision to work is a sample selection problem, even
when you have an RCT!

- E.g., we only observe the wages of those who choose to work - there may
be endogeneous decisions to not work due to the treatment

- As a result, we have both the potential wage outcomes due to D:
(Y*(0), Y*(1)) but also the decision to work S(0), S(1). Note that we don’t
observe Y* = D;Y*(1)+ (1 —D;)Y*(0)if S=0.

- This is a serious issue that plagues almost all research designs
- Many papers get around this by looking at “total earnings” to avoid wages

8/21



Lee Bounds (Lee 2009)

Review of Economic Studies (2009) 76, 1071-1102
(© 2009 The Review of Economic Studies Limited

proposes sharp bounds

- The problem boils down to the following
issue: when you treat someone, do you
change their employment status?

- If no, the S;(1) = S;(0) and there is no
selection problem

- If yes, the S;(1) # Sj(0) and the
question is where do the marginal
“shifters” come from and end up in the
outcome distribution?

- E.g. if those who are induced to not
work because they go to school b/c they
get high returns from schooling, then
this is negatively selecting away from
the top part of the Y*(1) distribution

Training, Wages, and Sample
Selection: Estimating Sharp
Bounds on Treatment Effects

DAVID S. LEE
Princeton University and NBER

First version received October 2005; final version accepted August 2008 (Eds.)

This paper empirically assesses the wage effects of the Job Corps program, one of the largest
federally funded job training programs in the U.S. Even with the aid of a randomized experiment, the
impact of a training program on wages is difficult to study because of sample selection, a pervasive prob-
lem in applied microeconometric research. Wage rates are only observed for those who are employed,
and employment status itself may be affected by the training program. This paper develops an intuitive
trimming procedure for bounding average treatment effects in the presence of sample selection. In con-
trast (0 existing methods, the procedure requires neither exclusion restrictions nor a bounded support
for the outcome of interest. ification results, estimators, and their p ion are pre-
sented. The bounds suggest that the program raised wages, consistent with the notion that the Job Corps
raises carnings by increasing human capital, rather than solely through encouraging work. The estima-
tor is generally applicable to typical treatment evaluation problems in which there is nonrandom sample
selection/attrition.

0034-6527/09/00000000$02.00
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Lee Bounds (Lee 2009)

Hopefully the problem sounds familiar (IV + LATE)
- The solution is similar too

Under monotonicity of selection ( S;(1) > S;(0), it is possible to provide
sharper bounds on the treatment effect

Lett = E(Y*(1) — Y*(0)|S(0) =1,S(1) = 1), our estimand of interest,
Pr(S=1|D=1)—Pr(5=1/D=0
and po = &1 ‘F’r(SiﬂE;(:ﬂ o=

- Then, we can bound 7 € [AjB, AJE]
- AP =E(Y|D=1,8=1,Y<y_p)—E(Y|D=0,S=1)
- AYB = E(YID=1,S=1,Y > yy) - Y|D 0,S=1)
- where yp, is the ppth quantile
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Lee Bounds

- We can bound 7 € [A5B, AYB]
- ASB=E(YID=1,8=1,Y <y p)—E(Y|D=0,S=1)
- AP =E(Y|D=1,S=1,Y > yp)—E(Y|D=0,S=1)
- where yp, is the ppth quantile

- This has a number of cool properties:

1.

If pg — 0, under monotonicity that means no sample selection. It also provides a test of
mononicity: if covariates shift between treated and control with py = 0 and S = 1, then
monotonicity likely fails if the selection is predictable based on covariates

. This is very similar to the always-take and complier analogy

- The bounds are exploiting the “worst case” scenarios - if the group of “shifters” are the “best”
Y (1), then trimming the top provides a lower bound.
- If the “shifters” are the worst, then trimming the bottom provides the upper bound

Using covariates can be used to narrow these bounds by shrinking the size of pg
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Lee Bounds (Lee 2009)

- Why is this approach great?
- No additional instrument or model needed
- Just monotonicity
- Can also work in broader sample selection questions - not just wage
selection, but sample attrition and other problems (recall the RD
bunching approach!)

- This approach is tighter than the general Horowitz-Manski bounds
(analogous to what we discussed at start of today’s class)
- Why? Monoticity restriction gets you a lot of power
- Without that assumption, bounds are extremely wide (because the
outcome is unbounded)

- Implemented in Stata (Leebounds) and R (1eebounds)
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Follow-up: Better Lee Bounds (Semenova 2020)

- Makes covariate usage easier and
relaxes monotonicity condition to be
conditional on covariates (potentially
high dimensional)

- Lee bounds require a positive number
of treated and control outcomes for
each covariate value

- Challenging with continuous values, or
many

- Asymptotically sharp under “many”
covariates

- Code: https:
//github.com/vsemenova/leebounds

Better Lee Bounds

Vira Semenova*

August 31, 2020

Abstract

This paper develops methods for tightening Lee (2009) bounds on average
causal effects when the number of pre-randomization covariates is large, poten-
tially exceeding the sample size. These Better Lee Bounds are guaranteed to be
sharp when few of the covariates affect selection and the outcome. If this spar-
sity assumption fails, the bounds remain valid. I propose inference methods that
enable hypothesis testing in either case. My results rely on a weakened monotonic-
ity assumption that only needs to hold conditional on covariates. I show that the
unconditional monotonicity assumption that motivates traditional Lee bounds fails
for the JobCorps training program. After imposing only conditional monotonic-

ity, Better Lee Bounds are found to be much more informative than standard Lee
13/21
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Manski and Tamer (2002)

- In many survey settings, data is not
reported exactly, but instead in bounds
_ H INFERENCE ON REGRESSIONS WITH INTERVAL DATA
Wealth may be‘rgpor'ted in ranges to ON A REGRESSOR OR OUTCOME
encourage participation
- Or, data may be supressed into bins to
preserve anonymity (eg County This paper ines i on ions when interval data are available on
Busin ess Patt erns d ata on empl Oym ent) one variable, the other variables being measured precisely. Let a population be charac-

terized by a distribution P(y, x, v, v, v,), where y € R', x € R*, and the real variables
(v, vy, v;) satisfy vy < v < v,. Let a random sample be drawn from P and the realiza-
tions of (y, x,v,, v,) be observed, but not those of v. The problem of interest may be

Econometrica, Vol. 70, No. 2 (March, 2002), 519-546

BY CHARLES F. MANSKI AND ELIE TAMER'

_ H P to infer E(y|x,v) or E(v|x). This analysis maintains Interval (I), icity (M), and
By deﬁ nltlon! thels Inte rVaI data Shou I d Mean Independence (MI) assumptions: (I) P(v, < v <v,) =1; (M) E(y|x, v) is monotone

_1 H in v; (MI) E(y|x, v, vy, v;) = E(y|x, v). No restrictions are imposed on the distribution

Iead to Set Identlﬁed parameters of the unobserved values of v within the observed intervals [v, v,]. It is found that the

. . IMMI Assumptions alone imply simple nonparametric bounds on E(y|x,v) and E(v|x).

- Ma nSkI and Ta mer (2002) IS eXaCtIy These assumptions invoked when y is binary and combined with a semiparametric binary

d . h h- . regression model yield an identification region for the parameters that may be estimated

concerne W|t t IS q ueSt|on consistently by a modified maximum score (MMS) method. The IMMI assumptions com-

bined with a parametric model for E(y|x,v) or E(v|x) yield an identification region that
may be estimated consistently by a modified minimum-distance (MMD) method. Monte
Carlo methods are used to characterize the finite-sample performance of these estimators.
Empirical case studies are performed using interval wealth data in the Health and Retire-
ment Study and interval income data in the Current Population Survey.

KEYWORDSs: Identification, interval data, regression.
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Manski and Tamer (2002)

Consider the data (y, v, vy, v1, X), where v is the true measure you'd like,
which is reported with intervals [vy, v4].

Manski and Tamer (2002) assume:

1. E(Y]v, x) is weakly monotonic in v
2. E(Y|v,x, v, vy) = E(Y]|V,X)

In these settings, it is possible to put sharp bounds on the coefficients of a
linear model

- Important to note - in a multivariate regression, the set interval data on the
right-hand side will also affect the coefficients for non-set interval data

Can also be adopted to study E(v|x) for covariates x
- There are many data sources with type of set interval nature!
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Excellent application considering interval data: Novosad, Rafkin and

Asher (2022)

- Mortality rates among non-Hispanic
Whites without college degrees have
increased substantially over time

- Why?

- Three possible reasons:

- an artifact of shifts in the education
distribution

- mortality could be rising uniformly
among individuals in the bottom half of
the education dist

- mortality could be rising substantially
at the very bottom of the education
distribution

Mortality Change among Less Educated Americans'

By PauL Novosap, CHARLIE RAFKIN, AND SAM ASHER™

Measurements of mortality change among less educated Americans
can be biased because the least educated groups (e.g., dropouts)
become smaller and more negatively selected over time. We show that
mortality changes at constant education pemenu]es can be bounded
with minimal a Middle-age morality increases among
non-Hispanic Whues Sfrom 1992 10 2018 are driven almost entirely by
the bottom 10 percent of the education distribution. Drivers of mor-
tality change differ substantially across groups. Deaths of despair
explain most of the mortality change among young non-Hispanic
Whites, but less among older Whites and non-Hispanic Blacks. Our
bounds are applicable in many other contexts. (JELT12, 126, J15)
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Excellent application considering interval data: Novosad, Rafkin and

Asher (2022)

- Mortality rates among non-Hispanic
Whites without college degrees have
increased substantially over time

- Why?

- Three possible reasons:

- an artifact of shifts in the education
distribution

- mortality could be rising uniformly
among individuals in the bottom half of
the education dist

- mortality could be rising substantially
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Excellent application considering interval data: Novosad, Rafkin and

Asher (2022)

- This paper uses Manski and Tamer with
two additional assumptions:

1. there exists a latent education rank,
which is only coarsely observed in the
education data

2. mortality rate is weakly decreasing in
the latent education rank

- Effectively, put bounds on
E(y|x € [a b])
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Excellent application considering interval data: Novosad, Rafkin and
Asher (2022)

- This paper uses Manski and Tamer with 2000
two additional assumptions:

1. there exists a latent education rank,
which is only coarsely observed in the
education data

2. mortality rate is weakly decreasing in
the latent education rank

I Msriski-Tarmsae (2002 bouinds
[ R bounds (C = inf)
=0 mAA bounds (€ = 3)

- Effectively, put bounds on
E(ylx € [a b])
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Excellent application considering interval data: Novosad, Rafkin and
Asher (2022)

_ ThIS paper uses Manski and Tamer Wlth Panel A. Less than high school Panel B. High school

two additional assumptions: B[ e & | [+ e
1. there exists a latent education rank, z 1] I o L.
which is only coarsely observed inthe £, BRI 4 0 O S S £ 4_4'__;__;__' _____ T
education data g g rhrl
2. mortality rate is weakly decreasing in T v oo xes 0 i O s 0 e w0 .0

the Iatent educatlon rank FIGURE 4. CHANGES IN US MORTALITY, WOMEN AGE 50-54, 1992-1994 10 2016-2018:
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1

close to the share of women in 19921994 with less than a high school degree or exactly a high school degree,
allowing the bounds to be very tight in the starting period.
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Other things?

- Both of these approaches are very practical ways to deal with data issues

- They also give a hint about how to think about these applications in other settings
- We are only scratching the surface of partial ID settings today!

- Are there other useful applications worth considering?

- A major set related to modeling: many structural economic models imply inequalities for
parameters of interest, which lead to set identification
- What about using shape assumptions on treatments?
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So why don'’t people use it more?

These approaches seem quite powerful
_ perhaps we can still say useful thlngs Contents lists available at ScienceDirect C ]

oo or

Wlth IeSS assumptions Journal of Econometrics %

) ManSkI.and MOIInarI (2021) recently Estimating the COVID-19 infection rate: Anatomy of an m
take this approach thinking about inference problem s
identifying the Share Of the population Charles F. Manski**, Francesca Molinari®

# Department of Economics and stitute for Policy Research, Northwestern University 2211 Campus

that has been infected with Covid-19 sty sl i, 5, 5%
A huge issue that is plagued with a host #rricis 1xro

. | Article history: As a consequence of missing data on tests for infection and imperfect accuracy of tests,

of selection problems! Rekened 15 2020 Teponed vt of cumlathe populatan fecton by the SARS Cov wits e lower
Received in revised form 15 April 2020 than actual rates of infection. Hence, reported rates of severe illness conditional on

Accepted 29 April 2020 infection are higher than actual rates. Understanding the time path of the COVID-19

Avallable online 6 May 2020 pandemic has been hampered by the absence of bounds on infection rates that are

e — credible and informative. This paper explains the logical problem of bounding these

o o4 . cia rates and reports illustrative findings, using data from lllinois, New York, and Italy. We

- Ma ke some |n|t|a| assum pt| ons on the s combine the data with assumptions on the infection rate in the untested population and
o on the accuracy of the tests that appear credible in the current context. We find that the

Keywords: infection rate might be substantially higher than reported. We aso find that, assuming

re I a ti ons h i p b etWee n ‘te Sti n g , Sym pto ms Pantial identification :;:\lsr:lr):[:zl:‘a;ﬁ;\;;o :,[ejlerell‘g:‘s‘:l:; infecion Ftlty rates i linis, New Yor and lly

Missing data
Epidemiology ©2020 Elsevier B.V. All rights reserved.

and positive cases, rather than modeling ™
the full thing in a parametric form (e.g.
SIR model)
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So why don'’t people use it more?

- Well, the problem is that the bounds are
sort of informative, but sort of not...
- [0.001,0.525] is a pretty wide range of
infection rates

- Bit of a Rorschach test: this is either a
feature or a bug

- Reflects how strong the parametric
assumptions are

- Reflects how uninformed the
policymaker is

- Itis very challenging to present bounds
that are this uninformative in resarch
papers

- Good goal is as a supplement
- Less true in 10 style settings!

Table 2
Bounds on infection rate under the testing and temporal monotonicity assumptions.
Date Tilinois New York Ttaly
LB UB LB UB LB UB

3/16/2020 0.000 0.455 0.000 0.480 0.001 0.471
3/17/2020 0.000 0.464 0.000 0.497 0.001 0.471
3/18/2020 0.000 0472 0.000 0511 0.001 0.471
3/19/2020 0.000 0472 0.000 0531 0.001 0.471
3/20/2020 0.000 0472 0.001 0.536 0.001 0.471
3/21/2020 0.000 0.472 0.001 0.547 0.001 0.471
3/22/2020 0.000 0475 0.001 0.559 0.001 0.471
3/23/2020 0.000 0478 0.002 0.568 0.001 0.471
3/24/2020 0.000 0479 0.002 0.578 0.002 0.471
3/25/2020 0.000 0.479 0.002 0.583 0.002 0.471
3/26/2020 0.000 0.482 0.003 0.593 0.002 0.471
3/27/2020 0.000 0.482 0.003 0.601 0.002 0.471
3/28/2020 0.000 0.482 0.004 0.607 0.002 0.471
3/29/2020 0.001 0.499 0.004 0614 0.002 0.471
3/30/2020 0.001 0.500 0.005 0618 0.002 0.471
3/31/2020 0.001 0.502 0.005 0618 0.002 0.471
4/1/2020 0.001 0.504 0.006 0618 0.003 0.471
4/2/2020 0.001 0.506 0.006 0618 0.003 0.471
4/3/2020 0.001 0511 0.007 0618 0.003 0.471
4/4/2020 0.001 0515 0.007 0618 0.003 0.471
4/5/2020 0.001 0515 0.008 0618 0.003 0.471
4/6/2020 0.001 0517 0.008 0618 0.003 0.471
4/7/2020 0.002 0518 0.009 0618 0.003 0.471
4/8/2020 0.002 0521 0.009 0618 0.003 0.471
4/9/2020 0.002 0522 0.010 0618 0.004 0.471
4/10/2020 0.002 0.523 0.011 0618 0.004 0.471
4/11/2020 0.002 0.524 0.011 0618 0.004 0.471
4/12/2020 0.002 0.524 0.011 0618 0.004 0.471
4/13/2020 0.002 0525 0.012 0618 0.004 0.471
4/14/2020 0.003 0525 0.013 0618 0.004 0.471
4/15/2020 0.003 0525 0.013 0618 0.004 0.471
4/16/2020 0.003 0.525 0.014 0618 0.004 0.471
4/17/2020 0.003 0.525 0.014 0618 0.005 0.471
4/18/2020 0.003 0525 0.014 0618 0.005 0.471
4/19/2020 0.003 0525 0.015 0618 0.005 0.471
4/20/2020 0.003 0.525 0.015 0618 0.005 0.471
4/21/2020 0.004 0525 0.015 0618 0.005 0.471
4/22/2020 0.004 0.525 0.016 0618 0.005 0.471
4/23/2020 0.004 0525 0.016 0618 0.005 0.471
4/24/2020 0.004 0.525 0.017 0618 0.006 0.4750 / 21




Recommended further reading

- “Identification for Prediction and
Decision” (Manski 2007)

- “Partial Identification of Local Average | D E N -I_ | |: | CA P

Treatment Effects With an Invalid
Instrument” Flores and Flores-Lagunes

* FORPRENICTION

- “Estimation and Confidence Regions for

Parameter Sets in Econometric Models” | |
Chernozhukov, Hong and Tamer (2007) A N D D E(: I S | O N

Charles F. Manski




