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Seeking Identification

- For our questions, we need to describe an estimand of interest
- This may be a causal object, or purely a statistical one

- Remember that we need to know whether this object is knowable given the data
generating process

- This is not a question of any given sample, but rather a question of our underlying
assumptions and the data generating process

- Two examples:
- When were only observe a subsample of outcomes for individuals, we assume the data is

missing (completely) at random to identify the full population’s average
- To identify the average treatment effect, we assumed strict ignorability (and a few other

things) to identify the effect of the treatment

- Can we assume less?
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Start with a simple example

- The housing market is extremely hot and you want to know what the probability that
a house sells (Yi = 1) vs doesn’t sell (Yi = 0)

- In particular, you want to know if houses with backyards (Xi = 1) are selling more quickly
than those without (Xi = 0).

- However, we only observe a sale for the set of homes that chose to go on the market
Zi = 1 and do not observe Yi for Zi = 0

- Can we know the probability of sale E(Yi |Xi ) for all houses?

- Formally, assume that we will have a dataset of n independent triplets (Yi ,Xi ,Zi)
- E(Yi |Xi ,Zi = 1) is identified but E(Yi |Xi ) is not without more assumptions

- But E(Yi |Xi) is partially identified
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Simple parital identification example
- Consider the law of total probability:

E(Yi |Xi) = Pr (Yi = 1|Xi) = Pr (Yi = 1|Xi ,Zi = 1)× Pr (Zi = 1|Xi)

+ Pr (Yi = 1|Xi ,Zi = 0)× Pr (Zi = 0|Xi)

- The problem is we cannot observe Pr (Yi = 1|Xi ,Zi = 0), by definition
- But, we know that it cannot be greater than one, nor less than zero

- As a result, it must be that

E(Yi |Xi) ∈[Pr (Yi = 1|Xi ,Zi = 1)× Pr (Zi = 1|Xi),

Pr (Yi = 1|Xi ,Zi = 1)× Pr (Zi = 1|Xi) + Pr (Zi = 0|Xi)]

- This is intuitive! For all the houses we don’t see go for sale, at the extreme, they could
either all not sell (the lower bound) or all sell (the upper bound).
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Simple partial identification example

- This is quite powerful – we’ve made no assumptions on the correlation between the
choice to sell and sale probability.

- The width of this interval is important – it speaks to the informativeness of the bound
(and in this case is equal to Pr (Zi = 0|Xi )

- The more likely properties are to sell, the tighter these bounds become (since the missing
piece gets smaller)

- What does a missing-at-random assumption imply?
- Pr (Yi = 1|Xi ,Zi ) = Pr (Yi = 1|Xi ), which means that you can ignore the missing data

and the set interval becomes a single point
- Hence, point identification!
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Simple partial identification example
- A few things worth noting from this simple example

- First, what if Yi wasn’t binary, but was real valued? E.g. sale price?
- If the value of Yi is unbounded, the upper bound of the set would be infinity

- However, even with unbounded Yi , you can always bound the CDF of Yi at different
points: F (Yi ≤ t) is always between 0 and 1

- This means we can set identify quantiles of the distribution!
- Recall that this came up when discussing censored data

- So long as there is sufficient observed data, Manski (1994) shows that the α quantile is
bounded by:

- Below: [α − P(Zi = 0|X )]/P(Zi = 1|X )-quantile of the observed distribution
Pr (Yi |Xi ,Zi = 1) (if Pr (Zi = 0|Xi ) ≤ α, and the min of Yi otherwise)

- Above: α/P(Zi = 1|X )-quantile of the observed distribution Pr (Yi |Xi ,Zi = 1) (if
Pr (Zi = 0|Xi ) ≤ 1 − α, and the max of Yi otherwise)
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Back to generality: partial identification

- Bounds are extremely powerful – we can make substantially fewer assumptions and
still potentially learn quite a bit

- However, it’s worth noting that these are quite limited in practice
- Today, I will walk through two examples where I think they are quite valuable

- Then we’ll discuss why these might have had limited adoption

- We will ignore inference, although it is quite important (and has a big econometrics
field associated with it)

- See Imbens and Manski (2004) and Chernozhukov, Hong and Tamer (2007) for initial
primers

7 / 21



Selection into employment

- Consider the problem of estimating the effect of a treatment (job training) on
wages

- Remember that the decision to work is a sample selection problem, even
when you have an RCT!

- E.g., we only observe the wages of those who choose to work – there may
be endogeneous decisions to not work due to the treatment

- As a result, we have both the potential wage outcomes due to D:
(Y ∗(0),Y ∗(1)) but also the decision to work S(0),S(1). Note that we don’t
observe Y ∗ = DiY ∗(1) + (1 − Di)Y ∗(0) if S = 0.

- This is a serious issue that plagues almost all research designs
- Many papers get around this by looking at “total earnings” to avoid wages
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Lee Bounds (Lee 2009)
- Lee 2009 considers this problem, and

proposes sharp bounds

- The problem boils down to the following
issue: when you treat someone, do you
change their employment status?

- If no, the Si (1) = Si (0) and there is no
selection problem

- If yes, the Si (1) ̸= Si (0) and the
question is where do the marginal
“shifters” come from and end up in the
outcome distribution?

- E.g. if those who are induced to not
work because they go to school b/c they
get high returns from schooling, then
this is negatively selecting away from
the top part of the Y ∗(1) distribution 9 / 21



Lee Bounds (Lee 2009)

- Hopefully the problem sounds familiar (IV + LATE)
- The solution is similar too

- Under monotonicity of selection ( Si(1) ≥ Si(0), it is possible to provide
sharper bounds on the treatment effect

- Let τ = E(Y ∗(1)− Y ∗(0)|S(0) = 1,S(1) = 1), our estimand of interest,
and p0 = Pr (S=1|D=1)−Pr (S=1|D=0)

Pr (S=1|D=1)

- Then, we can bound τ ∈ [∆LB
0 ,∆UB

0 ]

- ∆LB
0 = E(Y |D = 1,S = 1,Y ≤ y1−p0)− E(Y |D = 0,S = 1)

- ∆UB
0 = E(Y |D = 1,S = 1,Y ≥ yp0)− E(Y |D = 0,S = 1)

- where yp0 is the p0th quantile
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Lee Bounds

- We can bound τ ∈ [∆LB
0 ,∆UB

0 ]

- ∆LB
0 = E(Y |D = 1,S = 1,Y ≤ y1−p0)− E(Y |D = 0,S = 1)

- ∆UB
0 = E(Y |D = 1,S = 1,Y ≥ yp0)− E(Y |D = 0,S = 1)

- where yp0 is the p0th quantile

- This has a number of cool properties:
1. If p0 → 0, under monotonicity that means no sample selection. It also provides a test of

mononicity: if covariates shift between treated and control with p0 = 0 and S = 1, then
monotonicity likely fails if the selection is predictable based on covariates

2. This is very similar to the always-take and complier analogy
- The bounds are exploiting the “worst case” scenarios – if the group of “shifters” are the “best”

Y (1), then trimming the top provides a lower bound.
- If the “shifters” are the worst, then trimming the bottom provides the upper bound

3. Using covariates can be used to narrow these bounds by shrinking the size of p0
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Lee Bounds (Lee 2009)

- Why is this approach great?
- No additional instrument or model needed
- Just monotonicity
- Can also work in broader sample selection questions – not just wage

selection, but sample attrition and other problems (recall the RD
bunching approach!)

- This approach is tighter than the general Horowitz-Manski bounds
(analogous to what we discussed at start of today’s class)

- Why? Monoticity restriction gets you a lot of power
- Without that assumption, bounds are extremely wide (because the

outcome is unbounded)

- Implemented in Stata (leebounds) and R (leebounds)
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Follow-up: Better Lee Bounds (Semenova 2020)
- Makes covariate usage easier and

relaxes monotonicity condition to be
conditional on covariates (potentially
high dimensional)

- Lee bounds require a positive number
of treated and control outcomes for
each covariate value

- Challenging with continuous values, or
many

- Asymptotically sharp under “many”
covariates

- Code: https:
//github.com/vsemenova/leebounds
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Manski and Tamer (2002)
- In many survey settings, data is not

reported exactly, but instead in bounds
- Wealth may be reported in ranges to

encourage participation
- Or, data may be supressed into bins to

preserve anonymity (e.g. County
Business Patterns data on employment)

- By definition, theis interval data should
lead to set-identified parameters

- Manski and Tamer (2002) is exactly
concerned with this question
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Manski and Tamer (2002)

- Consider the data (y , v , v0, v1, x), where v is the true measure you’d like,
which is reported with intervals [v0, v1].

- Manski and Tamer (2002) assume:
1. E(Y |v , x) is weakly monotonic in v
2. E(Y |v , x , v0, v1) = E(Y |v , x)

- In these settings, it is possible to put sharp bounds on the coefficients of a
linear model

- Important to note – in a multivariate regression, the set interval data on the
right-hand side will also affect the coefficients for non-set interval data

- Can also be adopted to study E(v |x) for covariates x
- There are many data sources with type of set interval nature!
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Excellent application considering interval data: Novosad, Rafkin and
Asher (2022)

- Mortality rates among non-Hispanic
Whites without college degrees have
increased substantially over time

- Why?

- Three possible reasons:
- an artifact of shifts in the education

distribution
- mortality could be rising uniformly

among individuals in the bottom half of
the education dist

- mortality could be rising substantially
at the very bottom of the education
distribution
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Excellent application considering interval data: Novosad, Rafkin and
Asher (2022)

- This paper uses Manski and Tamer with
two additional assumptions:

1. there exists a latent education rank,
which is only coarsely observed in the
education data

2. mortality rate is weakly decreasing in
the latent education rank

- Effectively, put bounds on
E(y |x ∈ [a,b])
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Other things?

- Both of these approaches are very practical ways to deal with data issues

- They also give a hint about how to think about these applications in other settings
- We are only scratching the surface of partial ID settings today!

- Are there other useful applications worth considering?
- A major set related to modeling: many structural economic models imply inequalities for

parameters of interest, which lead to set identification
- What about using shape assumptions on treatments?
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So why don’t people use it more?
- These approaches seem quite powerful

– perhaps we can still say useful things
with less assumptions

- Manski and Molinari (2021) recently
take this approach thinking about
identifying the share of the population
that has been infected with Covid-19

- A huge issue that is plagued with a host
of selection problems!

- Make some initial assumptions on the
relationship between testing, symptoms
and positive cases, rather than modeling
the full thing in a parametric form (e.g.
SIR model)
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So why don’t people use it more?
- Well, the problem is that the bounds are
sort of informative, but sort of not...

- [0.001,0.525] is a pretty wide range of
infection rates

- Bit of a Rorschach test: this is either a
feature or a bug

- Reflects how strong the parametric
assumptions are

- Reflects how uninformed the
policymaker is

- It is very challenging to present bounds
that are this uninformative in resarch
papers

- Good goal is as a supplement
- Less true in IO style settings!
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Recommended further reading
- “Identification for Prediction and

Decision” (Manski 2007)

- “Partial Identification of Local Average
Treatment Effects With an Invalid
Instrument” Flores and Flores-Lagunes
(2013)

- “Estimation and Confidence Regions for
Parameter Sets in Econometric Models”
Chernozhukov, Hong and Tamer (2007)
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