Plotly's Python library is free and open source! Get started by dowloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!
import plotly.plotly as py
import plotly.graph_objs as go
from plotly.tools import FigureFactory as FF
import numpy as np
import pandas as pd
import scipy
A Matrix is a 2D array that stores real or complex numbers. A Real Matrix is one such that all its elements $r$ belong to $\mathbb{R}$. Likewise, a Complex Matrix has entries $c$ in $\mathbb{C}$.
matrix1 = np.matrix(
[[0, 4],
[2, 0]]
)
matrix2 = np.matrix(
[[-1, 2],
[1, -2]]
)
matrix_sum = matrix1 + matrix2
colorscale = [[0, '#EAEFC4'], [1, '#9BDF46']]
font=['#000000', '#000000']
table = FF.create_annotated_heatmap(matrix_sum.tolist(), colorscale=colorscale, font_colors=font)
py.iplot(table, filename='matrix-sum')
How to find the product of two matrices
matrix1 = np.matrix(
[[1, 4],
[2, 0]]
)
matrix2 = np.matrix(
[[-1, 2],
[1, -2]]
)
matrix_prod = matrix1 * matrix2
colorscale = [[0, '#F1FFD9'], [1, '#8BDBF5']]
font=['#000000', '#000000']
table = FF.create_annotated_heatmap(matrix_prod.tolist(), colorscale=colorscale, font_colors=font)
py.iplot(table, filename='matrix-prod')
How to find the solution of $AX=B$
A = np.matrix(
[[1, 4],
[2, 0]]
)
B = np.matrix(
[[-1, 2],
[1, -2]]
)
X = np.linalg.solve(A, B)
colorscale = [[0, '#497285'], [1, '#DFEBED']]
font=['#000000', '#000000']
table = FF.create_annotated_heatmap(X.tolist(), colorscale=colorscale, font_colors=font)
py.iplot(table, filename='matrix-eq')
matrix = np.matrix(
[[1, 4],
[2, 0]]
)
det = np.linalg.det(matrix)
det
-7.9999999999999982
matrix = np.matrix(
[[1, 4],
[2, 0]]
)
inverse = np.linalg.inv(matrix)
colorscale = [[0, '#F1FAFB'], [1, '#A0E4F1']]
font=['#000000', '#000000']
table = FF.create_annotated_heatmap(inverse.tolist(), colorscale=colorscale, font_colors=font)
py.iplot(table, filename='inverse')
matrix = np.matrix(
[[1, 4],
[2, 0]]
)
eigvals = np.linalg.eigvals(matrix)
print("The eignevalues are %f and %f") %(eigvals[0], eigvals[1])
The eignevalues are 3.372281 and -2.372281
How to find the Singular Value Decomposition of a matrix, i.e. break up a matrix into the product of three matrices: $U$, $\Sigma$, $V^*$
matrix = np.matrix(
[[1, 4],
[2, 0]]
)
svd = np.linalg.svd(matrix)
u = svd[0]
sigma = svd[1]
v = svd[2]
u = u.tolist()
sigma = sigma.tolist()
v = v.tolist()
colorscale = [[0, '#111111'],[1, '#222222']]
font=['#ffffff', '#ffffff']
matrix_prod = [
['$U$', '', '$\Sigma$', '$V^*$', ''],
[u[0][0], u[0][1], sigma[0], v[0][0], v[0][1]],
[u[1][0], u[1][1], sigma[1], v[1][0], v[1][1]]
]
table = FF.create_table(matrix_prod)
py.iplot(table, filename='svd')
from IPython.display import display, HTML
display(HTML('<link href="//fonts.googleapis.com/css?family=Open+Sans:600,400,300,200|Inconsolata|Ubuntu+Mono:400,700" rel="stylesheet" type="text/css" />'))
display(HTML('<link rel="stylesheet" type="text/css" href="http://help.plot.ly/documentation/all_static/css/ipython-notebook-custom.css">'))
! pip install git+https://github.com/plotly/publisher.git --upgrade
import publisher
publisher.publish(
'python_Linear_Algebra.ipynb', 'python/linear-algebra/', 'Linear Algebra | plotly',
'Learn how to perform several operations on matrices including inverse, eigenvalues, and determinents',
title='Linear Algebra in Python. | plotly',
name='Linear Algebra',
language='python',
page_type='example_index', has_thumbnail='false', display_as='mathematics', order=10,
ipynb= '~notebook_demo/104')
Collecting git+https://github.com/plotly/publisher.git Cloning https://github.com/plotly/publisher.git to /var/folders/ld/6cl3s_l50wd40tdjq2b03jxh0000gp/T/pip-JSnMuv-build Installing collected packages: publisher Found existing installation: publisher 0.10 Uninstalling publisher-0.10: Successfully uninstalled publisher-0.10 Running setup.py install for publisher ... - \ | done Successfully installed publisher-0.10
/Users/brandendunbar/Desktop/test/venv/lib/python2.7/site-packages/IPython/nbconvert.py:13: ShimWarning: The `IPython.nbconvert` package has been deprecated. You should import from nbconvert instead. "You should import from nbconvert instead.", ShimWarning) /Users/brandendunbar/Desktop/test/venv/lib/python2.7/site-packages/publisher/publisher.py:53: UserWarning: Did you "Save" this notebook before running this command? Remember to save, always save. warnings.warn('Did you "Save" this notebook before running this command? '