Plotly's Python library is free and open source! Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!
Plotly's python package is updated frequently. Run pip install plotly --upgrade
to use the latest version.
import plotly
plotly.__version__
'3.2.0'
import plotly.plotly as py
import plotly.graph_objs as go
trace0 = go.Scatter(
x=[1, 2, 3, 4],
y=[10, 11, 12, 13],
mode='markers',
marker=dict(
size=[40, 60, 80, 100],
)
)
data = [trace0]
py.iplot(data, filename='bubblechart-size')
import plotly.plotly as py
import plotly.graph_objs as go
trace0 = go.Scatter(
x=[1, 2, 3, 4],
y=[10, 11, 12, 13],
mode='markers',
marker=dict(
color=['rgb(93, 164, 214)', 'rgb(255, 144, 14)',
'rgb(44, 160, 101)', 'rgb(255, 65, 54)'],
opacity=[1, 0.8, 0.6, 0.4],
size=[40, 60, 80, 100],
)
)
data = [trace0]
py.iplot(data, filename='bubblechart-color')
To scale the bubble size, use the attribute sizeref
. We recommend using the following formula to calculate a sizeref
value:
sizeref = 2. * max(array of size values) / (desired maximum marker size ** 2)
Note that setting 'sizeref' to a value greater than 1, decreases the rendered marker sizes, while setting 'sizeref' to less than 1, increases the rendered marker sizes. See https://plotly.com/python/reference/#scatter-marker-sizeref for more information.
Additionally, we recommend setting the sizemode attribute: https://plotly.com/python/reference/#scatter-marker-sizemode to area.
import plotly.plotly as py
import plotly.graph_objs as go
size = [20, 40, 60, 80, 100, 80, 60, 40, 20, 40]
trace0 = go.Scatter(
x=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
y=[11, 12, 10, 11, 12, 11, 12, 13, 12, 11],
mode='markers',
marker=dict(
size=size,
sizemode='area',
sizeref=2.*max(size)/(40.**2),
sizemin=4
)
)
data = [trace0]
py.iplot(data, filename='bubblechart-size-ref')
import plotly.plotly as py
import plotly.graph_objs as go
trace0 = go.Scatter(
x=[1, 2, 3, 4],
y=[10, 11, 12, 13],
text=['A<br>size: 40', 'B<br>size: 60', 'C<br>size: 80', 'D<br>size: 100'],
mode='markers',
marker=dict(
color=['rgb(93, 164, 214)', 'rgb(255, 144, 14)', 'rgb(44, 160, 101)', 'rgb(255, 65, 54)'],
size=[40, 60, 80, 100],
)
)
data = [trace0]
py.iplot(data, filename='bubblechart-text')
import plotly.plotly as py
import plotly.graph_objs as go
data = [
{
'x': [1, 3.2, 5.4, 7.6, 9.8, 12.5],
'y': [1, 3.2, 5.4, 7.6, 9.8, 12.5],
'mode': 'markers',
'marker': {
'color': [120, 125, 130, 135, 140, 145],
'size': [15, 30, 55, 70, 90, 110],
'showscale': True
}
}
]
py.iplot(data, filename='scatter-colorscale')
import plotly.plotly as py
import plotly.graph_objs as go
import pandas as pd
import math
data = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv")
df_2007 = data[data['year']==2007]
df_2007 = df_2007.sort_values(['continent', 'country'])
slope = 2.666051223553066e-05
hover_text = []
bubble_size = []
for index, row in df_2007.iterrows():
hover_text.append(('Country: {country}<br>'+
'Life Expectancy: {lifeExp}<br>'+
'GDP per capita: {gdp}<br>'+
'Population: {pop}<br>'+
'Year: {year}').format(country=row['country'],
lifeExp=row['lifeExp'],
gdp=row['gdpPercap'],
pop=row['pop'],
year=row['year']))
bubble_size.append(math.sqrt(row['pop']*slope))
df_2007['text'] = hover_text
df_2007['size'] = bubble_size
sizeref = 2.*max(df_2007['size'])/(100**2)
trace0 = go.Scatter(
x=df_2007['gdpPercap'][df_2007['continent'] == 'Africa'],
y=df_2007['lifeExp'][df_2007['continent'] == 'Africa'],
mode='markers',
name='Africa',
text=df_2007['text'][df_2007['continent'] == 'Africa'],
marker=dict(
symbol='circle',
sizemode='area',
sizeref=sizeref,
size=df_2007['size'][df_2007['continent'] == 'Africa'],
line=dict(
width=2
),
)
)
trace1 = go.Scatter(
x=df_2007['gdpPercap'][df_2007['continent'] == 'Americas'],
y=df_2007['lifeExp'][df_2007['continent'] == 'Americas'],
mode='markers',
name='Americas',
text=df_2007['text'][df_2007['continent'] == 'Americas'],
marker=dict(
sizemode='area',
sizeref=sizeref,
size=df_2007['size'][df_2007['continent'] == 'Americas'],
line=dict(
width=2
),
)
)
trace2 = go.Scatter(
x=df_2007['gdpPercap'][df_2007['continent'] == 'Asia'],
y=df_2007['lifeExp'][df_2007['continent'] == 'Asia'],
mode='markers',
name='Asia',
text=df_2007['text'][df_2007['continent'] == 'Asia'],
marker=dict(
sizemode='area',
sizeref=sizeref,
size=df_2007['size'][df_2007['continent'] == 'Asia'],
line=dict(
width=2
),
)
)
trace3 = go.Scatter(
x=df_2007['gdpPercap'][df_2007['continent'] == 'Europe'],
y=df_2007['lifeExp'][df_2007['continent'] == 'Europe'],
mode='markers',
name='Europe',
text=df_2007['text'][df_2007['continent'] == 'Europe'],
marker=dict(
sizemode='area',
sizeref=sizeref,
size=df_2007['size'][df_2007['continent'] == 'Europe'],
line=dict(
width=2
),
)
)
trace4 = go.Scatter(
x=df_2007['gdpPercap'][df_2007['continent'] == 'Oceania'],
y=df_2007['lifeExp'][df_2007['continent'] == 'Oceania'],
mode='markers',
name='Oceania',
text=df_2007['text'][df_2007['continent'] == 'Oceania'],
marker=dict(
sizemode='area',
sizeref=sizeref,
size=df_2007['size'][df_2007['continent'] == 'Oceania'],
line=dict(
width=2
),
)
)
data = [trace0, trace1, trace2, trace3, trace4]
layout = go.Layout(
title='Life Expectancy v. Per Capita GDP, 2007',
xaxis=dict(
title='GDP per capita (2000 dollars)',
gridcolor='rgb(255, 255, 255)',
range=[2.003297660701705, 5.191505530708712],
type='log',
zerolinewidth=1,
ticklen=5,
gridwidth=2,
),
yaxis=dict(
title='Life Expectancy (years)',
gridcolor='rgb(255, 255, 255)',
range=[36.12621671352166, 91.72921793264332],
zerolinewidth=1,
ticklen=5,
gridwidth=2,
),
paper_bgcolor='rgb(243, 243, 243)',
plot_bgcolor='rgb(243, 243, 243)',
)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='life-expectancy-per-GDP-2007')
See https://plotly.com/python/reference/#scatter for more information and chart attribute options!
from IPython.display import display, HTML
display(HTML('<link href="//fonts.googleapis.com/css?family=Open+Sans:600,400,300,200|Inconsolata|Ubuntu+Mono:400,700" rel="stylesheet" type="text/css" />'))
display(HTML('<link rel="stylesheet" type="text/css" href="http://help.plot.ly/documentation/all_static/css/ipython-notebook-custom.css">'))
! pip install git+https://github.com/plotly/publisher.git --upgrade
import publisher
publisher.publish(
'bubble.ipynb', 'python/bubble-charts/', 'Python Bubble Charts | plotly',
'How to make bubble charts in Python with Plotly.',
title = 'Bubble Charts | plotly',
name = 'Bubble Charts', language='python',
has_thumbnail='true', thumbnail='thumbnail/bubble.jpg',
display_as='basic', order=3,
ipynb= '~notebook_demo/1/new-to-plotly-plotlys-python-library-i',
redirect_from='python/bubble-charts-tutorial/',
)
Collecting git+https://github.com/plotly/publisher.git Cloning https://github.com/plotly/publisher.git to /private/var/folders/tc/bs9g6vrd36q74m5t8h9cgphh0000gn/T/pip-req-build-IqekGg Building wheels for collected packages: publisher Running setup.py bdist_wheel for publisher ... done Stored in directory: /private/var/folders/tc/bs9g6vrd36q74m5t8h9cgphh0000gn/T/pip-ephem-wheel-cache-nsvXuo/wheels/99/3e/a0/fbd22ba24cca72bdbaba53dbc23c1768755fb17b3af0f33966 Successfully built publisher Installing collected packages: publisher Found existing installation: publisher 0.11 Uninstalling publisher-0.11: Successfully uninstalled publisher-0.11 Successfully installed publisher-0.11
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/nbconvert.py:13: ShimWarning: The `IPython.nbconvert` package has been deprecated since IPython 4.0. You should import from nbconvert instead. "You should import from nbconvert instead.", ShimWarning) /Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/publisher/publisher.py:53: UserWarning: Did you "Save" this notebook before running this command? Remember to save, always save. warnings.warn('Did you "Save" this notebook before running this command? '