--- jupyter: jupytext: notebook_metadata_filter: all text_representation: extension: .md format_name: markdown format_version: '1.3' jupytext_version: 1.14.1 kernelspec: display_name: Python 3 language: python name: python3 language_info: codemirror_mode: name: ipython version: 3 file_extension: .py mimetype: text/x-python name: python nbconvert_exporter: python pygments_lexer: ipython3 version: 3.8.8 plotly: description: How to format axes ticks in Python with Plotly. display_as: file_settings language: python layout: base name: Formatting Ticks order: 12 permalink: python/tick-formatting/ thumbnail: thumbnail/tick-formatting.gif --- #### Tickmode - Linear If `"linear"`, the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ```python import plotly.graph_objects as go fig = go.Figure(go.Scatter( x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], y = [28.8, 28.5, 37, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9] )) fig.update_layout( xaxis = dict( tickmode = 'linear', tick0 = 0.5, dtick = 0.75 ) ) fig.show() ``` #### Tickmode - Array If `"array"`, the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ```python import plotly.graph_objects as go fig = go.Figure(go.Scatter( x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], y = [28.8, 28.5, 37, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9] )) fig.update_layout( xaxis = dict( tickmode = 'array', tickvals = [1, 3, 5, 7, 9, 11], ticktext = ['One', 'Three', 'Five', 'Seven', 'Nine', 'Eleven'] ) ) fig.show() ``` ### Dynamic tickmode in Dash [Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`. Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with Dash Enterprise.** ```python hide_code=true from IPython.display import IFrame snippet_url = 'https://python-docs-dash-snippets.herokuapp.com/python-docs-dash-snippets/' IFrame(snippet_url + 'tick-formatting', width='100%', height=1200) ```

Sign up for Dash Club → Free cheat sheets plus updates from Chris Parmer and Adam Schroeder delivered to your inbox every two months. Includes tips and tricks, community apps, and deep dives into the Dash architecture. Join now.

#### Using Tickformat Attribute For more formatting types, see: https://github.com/d3/d3-format/blob/master/README.md#locale_format ```python import plotly.graph_objects as go fig = go.Figure(go.Scatter( x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], y = [28.8, 28.5, 37, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9] )) fig.update_layout(yaxis_tickformat = '%') fig.show() ``` #### Using Tickformat Attribute - Date/Time For more date/time formatting types, see: https://github.com/d3/d3-time-format/blob/master/README.md ```python import plotly.graph_objects as go import pandas as pd df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv') fig = go.Figure(go.Scatter( x = df['Date'], y = df['AAPL.High'], )) fig.update_layout( title = 'Time Series with Custom Date-Time Format', xaxis_tickformat = '%d %B (%a)
%Y' ) fig.show() ``` #### Using Exponentformat Attribute ```python import plotly.graph_objects as go fig = go.Figure(go.Scatter( x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], y = [68000, 52000, 60000, 20000, 95000, 40000, 60000, 79000, 74000, 42000, 20000, 90000] )) fig.update_layout( yaxis = dict( showexponent = 'all', exponentformat = 'e' ) ) fig.show() ``` #### Tickformatstops to customize for different zoom levels ```python import plotly.graph_objects as go import pandas as pd df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv') fig = go.Figure(go.Scatter( x = df['Date'], y = df['mavg'] )) fig.update_layout( xaxis_tickformatstops = [ dict(dtickrange=[None, 1000], value="%H:%M:%S.%L ms"), dict(dtickrange=[1000, 60000], value="%H:%M:%S s"), dict(dtickrange=[60000, 3600000], value="%H:%M m"), dict(dtickrange=[3600000, 86400000], value="%H:%M h"), dict(dtickrange=[86400000, 604800000], value="%e. %b d"), dict(dtickrange=[604800000, "M1"], value="%e. %b w"), dict(dtickrange=["M1", "M12"], value="%b '%y M"), dict(dtickrange=["M12", None], value="%Y Y") ] ) fig.show() ``` #### Placing ticks and gridlines between categories ```python import plotly.graph_objects as go fig = go.Figure(go.Bar( x = ["apples", "oranges", "pears"], y = [1, 2, 3] )) fig.update_xaxes( showgrid=True, ticks="outside", tickson="boundaries", ticklen=20 ) fig.show() ``` #### Reference See https://plotly.com/python/reference/layout/xaxis/ for more information and chart attribute options!