--- jupytext: text_representation: extension: .mystnb format_name: myst format_version: 0.13 jupytext_version: 1.14.0 kernelspec: display_name: Python 3 (ipykernel) language: python name: python3 --- # Cowell's formulation For cases where we only study the gravitational forces, solving the Kepler's equation is enough to propagate the orbit forward in time. However, when we want to take perturbations that deviate from Keplerian forces into account, we need a more complex method to solve our initial value problem: one of them is **Cowell's formulation**. In this formulation we write the two body differential equation separating the Keplerian and the perturbation accelerations: $$\ddot{\mathbb{r}} = -\frac{\mu}{|\mathbb{r}|^3} \mathbb{r} + \mathbb{a}_d$$ +++
For an in-depth exploration of this topic, still to be integrated in poliastro, check out [this Master thesis](https://github.com/Juanlu001/pfc-uc3m).
+++
An earlier version of this notebook allowed for more flexibility and interactivity, but was considerably more complex. Future versions of poliastro and plotly might bring back part of that functionality, depending on user feedback. You can still download the older version [here](https://github.com/poliastro/poliastro/blob/0.8.x/docs/source/examples/Propagation%20using%20Cowell's%20formulation.ipynb).
+++ ## First example Let's setup a very simple example with constant acceleration to visualize the effects on the orbit: ```{code-cell} from astropy import time from astropy import units as u import numpy as np from poliastro.bodies import Earth from poliastro.core.propagation import func_twobody from poliastro.examples import iss from poliastro.plotting import OrbitPlotter3D from poliastro.twobody import Orbit from poliastro.twobody.propagation import CowellPropagator from poliastro.twobody.sampling import EpochsArray from poliastro.util import norm ``` ```{code-cell} # More info: https://plotly.com/python/renderers/ import plotly.io as pio pio.renderers.default = "plotly_mimetype+notebook_connected" ``` To provide an acceleration depending on an extra parameter, we can use **closures** like this one: ```{code-cell} accel = 2e-5 ``` ```{code-cell} def constant_accel_factory(accel): def constant_accel(t0, u, k): v = u[3:] norm_v = (v[0] ** 2 + v[1] ** 2 + v[2] ** 2) ** 0.5 return accel * v / norm_v return constant_accel ``` ```{code-cell} def f(t0, state, k): du_kep = func_twobody(t0, state, k) ax, ay, az = constant_accel_factory(accel)(t0, state, k) du_ad = np.array([0, 0, 0, ax, ay, az]) return du_kep + du_ad ``` ```{code-cell} times = np.linspace(0, 10 * iss.period, 500) times ``` ```{code-cell} ephem = iss.to_ephem( EpochsArray(iss.epoch + times, method=CowellPropagator(rtol=1e-11, f=f)), ) ``` And we plot the results: ```{code-cell} frame = OrbitPlotter3D() frame.set_attractor(Earth) frame.plot_ephem(ephem, label="ISS") ``` ## Error checking ```{code-cell} def state_to_vector(ss): r, v = ss.rv() x, y, z = r.to_value(u.km) vx, vy, vz = v.to_value(u.km / u.s) return np.array([x, y, z, vx, vy, vz]) ``` ```{code-cell} k = Earth.k.to(u.km**3 / u.s**2).value ``` ```{code-cell} rtol = 1e-13 full_periods = 2 ``` ```{code-cell} u0 = state_to_vector(iss) tf = (2 * full_periods + 1) * iss.period / 2 u0, tf ``` ```{code-cell} iss_f_kep = iss.propagate(tf) ``` ```{code-cell} iss_f_num = iss.propagate(tf, method=CowellPropagator(rtol=rtol)) ``` ```{code-cell} iss_f_num.r, iss_f_kep.r ``` ```{code-cell} assert np.allclose(iss_f_num.r, iss_f_kep.r, rtol=rtol, atol=1e-08 * u.km) assert np.allclose( iss_f_num.v, iss_f_kep.v, rtol=rtol, atol=1e-08 * u.km / u.s ) ``` ```{code-cell} assert np.allclose(iss_f_num.a, iss_f_kep.a, rtol=rtol, atol=1e-08 * u.km) assert np.allclose(iss_f_num.ecc, iss_f_kep.ecc, rtol=rtol) assert np.allclose(iss_f_num.inc, iss_f_kep.inc, rtol=rtol, atol=1e-08 * u.rad) assert np.allclose( iss_f_num.raan, iss_f_kep.raan, rtol=rtol, atol=1e-08 * u.rad ) assert np.allclose( iss_f_num.argp, iss_f_kep.argp, rtol=rtol, atol=1e-08 * u.rad ) assert np.allclose(iss_f_num.nu, iss_f_kep.nu, rtol=rtol, atol=1e-08 * u.rad) ``` ## Numerical validation According to [Edelbaum, 1961], a coplanar, semimajor axis change with tangent thrust is defined by: $$\frac{\operatorname{d}\!a}{a_0} = 2 \frac{F}{m V_0}\operatorname{d}\!t, \qquad \frac{\Delta{V}}{V_0} = \frac{1}{2} \frac{\Delta{a}}{a_0}$$ So let's create a new circular orbit and perform the necessary checks, assuming constant mass and thrust (i.e. constant acceleration): ```{code-cell} orb = Orbit.circular(Earth, 500 << u.km) tof = 20 * orb.period ad = constant_accel_factory(1e-7) def f(t0, state, k): du_kep = func_twobody(t0, state, k) ax, ay, az = ad(t0, state, k) du_ad = np.array([0, 0, 0, ax, ay, az]) return du_kep + du_ad orb_final = orb.propagate(tof, method=CowellPropagator(f=f)) ``` ```{code-cell} da_a0 = (orb_final.a - orb.a) / orb.a da_a0 ``` ```{code-cell} dv_v0 = abs(norm(orb_final.v) - norm(orb.v)) / norm(orb.v) 2 * dv_v0 ``` ```{code-cell} np.allclose(da_a0, 2 * dv_v0, rtol=1e-2) ``` This means **we successfully validated the model against an extremely simple orbit transfer with an approximate analytical solution**. Notice that the final eccentricity, as originally noticed by Edelbaum, is nonzero: ```{code-cell} orb_final.ecc ``` ## References * [Edelbaum, 1961] "Propulsion requirements for controllable satellites"