This notebook illustrates how to run a security analysis with remedial actions. For a contingency, an operator strategy groups a list of actions and a condition to apply them. This small tutorial is based on a 6 nodes network, called Metrix, that is easily understandable. We are going to simulate contingencies and various operator strategies to show the available features. Network elements can be monitored in pre-contingency state, after a contingency and after each operator strategy.
pip install pypowsybl
Defaulting to user installation because normal site-packages is not writeable Looking in indexes: https://devin-depot.rte-france.com/repository/pypi-all/simple Requirement already satisfied: pypowsybl in /home/kuleszahug/.local/lib/python3.8/site-packages (1.4.0.dev1) Requirement already satisfied: prettytable in /home/kuleszahug/.local/lib/python3.8/site-packages (from pypowsybl) (2.0.0) Requirement already satisfied: numpy>=1.20.0 in /home/kuleszahug/.local/lib/python3.8/site-packages (from pypowsybl) (1.24.3) Requirement already satisfied: networkx in /home/kuleszahug/.local/lib/python3.8/site-packages (from pypowsybl) (3.1) Requirement already satisfied: pandas>=1.3.5 in /home/kuleszahug/.local/lib/python3.8/site-packages (from pypowsybl) (2.0.3) Requirement already satisfied: python-dateutil>=2.8.2 in /home/kuleszahug/.local/lib/python3.8/site-packages (from pandas>=1.3.5->pypowsybl) (2.8.2) Requirement already satisfied: pytz>=2020.1 in /home/kuleszahug/.local/lib/python3.8/site-packages (from pandas>=1.3.5->pypowsybl) (2023.3) Requirement already satisfied: tzdata>=2022.1 in /home/kuleszahug/.local/lib/python3.8/site-packages (from pandas>=1.3.5->pypowsybl) (2023.3) Requirement already satisfied: setuptools in /home/kuleszahug/.local/lib/python3.8/site-packages (from prettytable->pypowsybl) (69.1.1) Requirement already satisfied: wcwidth in /home/kuleszahug/.local/lib/python3.8/site-packages (from prettytable->pypowsybl) (0.2.6) Requirement already satisfied: six>=1.5 in /home/kuleszahug/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->pandas>=1.3.5->pypowsybl) (1.16.0) DEPRECATION: distro-info 0.23ubuntu1 has a non-standard version number. pip 24.1 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of distro-info or contact the author to suggest that they release a version with a conforming version number. Discussion can be found at https://github.com/pypa/pip/issues/12063 DEPRECATION: python-debian 0.1.36ubuntu1 has a non-standard version number. pip 24.1 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of python-debian or contact the author to suggest that they release a version with a conforming version number. Discussion can be found at https://github.com/pypa/pip/issues/12063 Note: you may need to restart the kernel to use updated packages.
import pypowsybl as pp
import pandas as pd
import numpy as np
from pypowsybl._pypowsybl import ConditionType
six_nodes = pp.network.create_metrix_tutorial_six_buses_network()
six_nodes.get_network_area_diagram()
sa = pp.security.create_analysis()
We simulate a contingency on line S_SO_1. When loosing this line, flows are redirected and line S_SO_2 is overloaded. We are going to test various operator strategies to remove the limit violation.
sa.add_single_element_contingency('S_SO_1', 'S_SO_1_contingency')
sa.add_monitored_elements(branch_ids=['S_SO_2', 'SO_NO_1'])
We add a current limit on line S_SO_2
six_nodes.create_operational_limits(pd.DataFrame.from_records(index='element_id', data=[
{'element_id': 'S_SO_2', 'name': 'permanent_limit', 'element_type': 'LINE', 'side': 'TWO',
'type': 'CURRENT', 'value': 400,
'acceptable_duration': np.Inf, 'is_fictitious': False}
]))
six_nodes.get_single_line_diagram('SO_poste')
six_nodes.get_single_line_diagram('SE_poste')
You have to add all the actions involved in the strategies you want to test. Here, we want to see the effect of opening switches SS1_SS1_DJ_OMN or/and SOO1_SOO1_DJ_OMN: opening only the first one, only the second one or both. Operator strategies have the condition ANY_VIOLATION_CONDITION
sa.add_switch_action(action_id='Switch_SS1_SS1_DJ_OMN_OPEN', switch_id='SS1_SS1_DJ_OMN', open=True)
sa.add_switch_action(action_id='Switch_SOO1_SOO1_DJ_OMN_OPEN', switch_id='SOO1_SOO1_DJ_OMN', open=True)
sa.add_operator_strategy('StrategyOpenSS1_SS1', 'S_SO_1_contingency', ['Switch_SS1_SS1_DJ_OMN_OPEN'], ConditionType.ANY_VIOLATION_CONDITION)
sa.add_operator_strategy('StrategyOpenSOO1_SOO1', 'S_SO_1_contingency', ['Switch_SOO1_SOO1_DJ_OMN_OPEN'], ConditionType.ANY_VIOLATION_CONDITION)
sa.add_operator_strategy('StrategyOpenBothSwitchs', 'S_SO_1_contingency', ['Switch_SS1_SS1_DJ_OMN_OPEN', 'Switch_SOO1_SOO1_DJ_OMN_OPEN'], ConditionType.ANY_VIOLATION_CONDITION)
An other strategy could be to modify the active power target of some generators, in a way the two modifications compensate (also called re-dispatching). Decreasing active power target of generator SO_G2 and increasing active power of SE_G (closer to loads) could be efficient.
sa.add_generator_active_power_action(action_id='Simple_Redispatch_SO_G2', generator_id='SO_G2', is_relative=True, active_power=-100)
sa.add_generator_active_power_action(action_id='Simple_Redispatch_SE_G', generator_id='SE_G', is_relative=True, active_power=100)
sa.add_operator_strategy('StrategyRedispatch', 'S_SO_1_contingency', ['Simple_Redispatch_SO_G2', 'Simple_Redispatch_SE_G'], ConditionType.ANY_VIOLATION_CONDITION)
sa_result = sa.run_ac(six_nodes)
We should have no limit violations at the pre contingency state.
sa_result.pre_contingency_result
PreContingencyResult(, status=CONVERGED, limit_violations=[0])
Then the first contingency trigger the current limit installed on S_SO_2
sa_result.find_post_contingency_result('S_SO_1_contingency')
PostContingencyResult(contingency_id='S_SO_1_contingency', status=CONVERGED, limit_violations=[1])
sa_result.find_post_contingency_result('S_SO_1_contingency').limit_violations[0]
LimitViolation(subject_id='S_SO_2', subject_name='', limit_type=CURRENT, limit=400.0, limit_name='permanent', acceptable_duration=2147483647, limit_reduction=1.0, value=419.2577908692318, side=TWO)
We see that the flow is at 419.25.
Let's check results for StrategyOpenSS1_SS1 :
sa_result.operator_strategy_results['StrategyOpenSS1_SS1']
OperatorStrategyResult(operator_strategy_id='StrategyOpenSS1_SS1', status=CONVERGED, limit_violations=[0])
sa_result.branch_results.loc['S_SO_1_contingency', 'StrategyOpenSS1_SS1', 'S_SO_2']['i2']
378.3380062100674
We no longer have a limit violation, and we see that flow on S_SO2 is under 400.
Let's check results for StrategyOpenSOO1_SOO1 :
sa_result.operator_strategy_results['StrategyOpenSOO1_SOO1']
OperatorStrategyResult(operator_strategy_id='StrategyOpenSOO1_SOO1', status=CONVERGED, limit_violations=[2])
sa_result.operator_strategy_results['StrategyOpenSOO1_SOO1'].limit_violations[0]
LimitViolation(subject_id='SO_NO_1', subject_name='', limit_type=CURRENT, limit=700.0, limit_name="10'", acceptable_duration=1, limit_reduction=1.0, value=1044.4966633667539, side=ONE)
sa_result.operator_strategy_results['StrategyOpenSOO1_SOO1'].limit_violations[1]
LimitViolation(subject_id='SO_NO_1', subject_name='', limit_type=CURRENT, limit=600.0, limit_name='permanent', acceptable_duration=2147483647, limit_reduction=1.0, value=1044.4966633667539, side=TWO)
We see that we have two new limit violation on SO_NO_1. But still no limit violation on S_SO2
Let's check results for StrategyOpenBothSwitchs :
sa_result.operator_strategy_results['StrategyOpenBothSwitchs']
OperatorStrategyResult(operator_strategy_id='StrategyOpenBothSwitchs', status=CONVERGED, limit_violations=[2])
sa_result.operator_strategy_results['StrategyOpenSOO1_SOO1'].limit_violations[0]
LimitViolation(subject_id='SO_NO_1', subject_name='', limit_type=CURRENT, limit=700.0, limit_name="10'", acceptable_duration=1, limit_reduction=1.0, value=1044.4966633667539, side=ONE)
sa_result.operator_strategy_results['StrategyOpenSOO1_SOO1'].limit_violations[1]
LimitViolation(subject_id='SO_NO_1', subject_name='', limit_type=CURRENT, limit=600.0, limit_name='permanent', acceptable_duration=2147483647, limit_reduction=1.0, value=1044.4966633667539, side=TWO)
We also have some violations on SO_NO_1 but still no violation on S_SO2.
Finally the StrategyRedispatch :
sa_result.operator_strategy_results['StrategyRedispatch']
OperatorStrategyResult(operator_strategy_id='StrategyRedispatch', status=CONVERGED, limit_violations=[0])
No more limit violations !
To have an overview on the flows on S_SO_2 you can print the whole monitored branche results :
sa_result.branch_results
p1 | q1 | i1 | p2 | q2 | i2 | flow_transfer | |||
---|---|---|---|---|---|---|---|---|---|
contingency_id | operator_strategy_id | branch_id | |||||||
SO_NO_1 | 54.531481 | -110.016475 | 174.419119 | -53.892618 | 110.107741 | 174.419119 | NaN | ||
S_SO_2 | -133.377630 | 85.519336 | 226.042956 | 134.297348 | -85.366050 | 226.042956 | NaN | ||
S_SO_1_contingency | SO_NO_1 | 79.418783 | -124.999658 | 210.365186 | -78.489460 | 125.132419 | 210.365186 | NaN | |
S_SO_2 | -249.100890 | 153.754036 | 419.257791 | 252.264878 | -153.226705 | 419.257791 | NaN | ||
StrategyOpenSS1_SS1 | SO_NO_1 | 92.554967 | -133.720643 | 231.007243 | -91.434316 | 133.880736 | 231.007243 | NaN | |
S_SO_2 | -226.152625 | 136.898071 | 378.338006 | 228.729139 | -136.468652 | 378.338006 | NaN | ||
StrategyOpenSOO1_SOO1 | SO_NO_1 | 451.041734 | -580.734940 | 1044.496663 | -428.131295 | 584.007860 | 1044.496663 | NaN | |
S_SO_2 | -136.449843 | 11.254213 | 199.930622 | 137.169344 | -11.134296 | 199.930622 | NaN | ||
StrategyOpenBothSwitchs | SO_NO_1 | 451.154164 | -580.693805 | 1044.548491 | -428.241452 | 583.967049 | 1044.548491 | NaN | |
S_SO_2 | -125.372880 | 9.603397 | 183.434283 | 125.978547 | -9.502452 | 183.434283 | NaN | ||
StrategyRedispatch | SO_NO_1 | 59.361506 | -124.265369 | 195.621370 | -58.557884 | 124.380172 | 195.621370 | NaN | |
S_SO_2 | -185.947603 | 155.624090 | 346.465617 | 188.108295 | -155.263975 | 346.465617 | NaN |