import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:]
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
Net( (conv1): Conv2d (1, 6, kernel_size=(5, 5), stride=(1, 1)) (conv2): Conv2d (6, 16, kernel_size=(5, 5), stride=(1, 1)) (fc1): Linear(in_features=400, out_features=120) (fc2): Linear(in_features=120, out_features=84) (fc3): Linear(in_features=84, out_features=10) )
params = list(net.parameters())
print(len(params))
print(params[0].size())
10 torch.Size([6, 1, 5, 5])
input = Variable(torch.randn(1, 1, 32, 32))
out = net(input)
print(out)
Variable containing: 0.0520 -0.0491 0.0239 0.1516 -0.0555 0.0332 0.0873 -0.0206 -0.0700 0.0891 [torch.FloatTensor of size 1x10]
target = Variable(torch.arange(1, 11))
target = target.view(1, -1)
criterion = nn.MSELoss()
loss = criterion(out, target)
print(loss)
Variable containing: 38.2532 [torch.FloatTensor of size 1]
print(loss.grad_fn)
print(loss.grad_fn.next_functions[0][0])
print(loss.grad_fn.next_functions[0][0].next_functions[0][0])
print(loss.grad_fn.next_functions[0][0].next_functions[0][0].next_functions[0][0])
<MseLossBackward object at 0x7f0d3d0da050> <AddmmBackward object at 0x7f0d3d0da150> <ExpandBackward object at 0x7f0d3d0da110> <AccumulateGrad object at 0x7f0d3d0da190>
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
loss.backward(retain_graph=True)
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
conv1.bias.grad before backward None conv1.bias.grad after backward Variable containing: -0.0810 -0.0638 -0.0474 -0.1109 0.0235 0.0689 [torch.FloatTensor of size 6]
%%time
import torch.optim as optim
net.zero_grad()
optimizer = optim.SGD(net.parameters(), lr = 0.01)
optimizer.zero_grad()
for i in range(10):
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()
print(output, target)
(Variable containing: Columns 0 to 7 4.7988 -1.8145 9.6046 5.1899 2.7905 11.5400 19.0878 12.0102 Columns 8 to 9 19.2533 18.5875 [torch.FloatTensor of size 1x10] , Variable containing: 1 2 3 4 5 6 7 8 9 10 [torch.FloatTensor of size 1x10] ) (Variable containing: -0.0659 0.2023 0.1443 0.1505 0.2695 0.1457 0.1217 0.1000 0.2713 0.2817 [torch.FloatTensor of size 1x10] , Variable containing: 1 2 3 4 5 6 7 8 9 10 [torch.FloatTensor of size 1x10] ) (Variable containing: -0.0519 0.2295 0.1683 0.2111 0.3358 0.2225 0.1956 0.2225 0.3733 0.4116 [torch.FloatTensor of size 1x10] , Variable containing: 1 2 3 4 5 6 7 8 9 10 [torch.FloatTensor of size 1x10] ) (Variable containing: -0.0323 0.2573 0.1696 0.2499 0.3687 0.2751 0.2512 0.3136 0.4476 0.4794 [torch.FloatTensor of size 1x10] , Variable containing: 1 2 3 4 5 6 7 8 9 10 [torch.FloatTensor of size 1x10] ) (Variable containing: -0.0463 0.2677 0.1846 0.2679 0.3976 0.2892 0.2572 0.3281 0.4646 0.5145 [torch.FloatTensor of size 1x10] , Variable containing: 1 2 3 4 5 6 7 8 9 10 [torch.FloatTensor of size 1x10] ) (Variable containing: -0.0291 0.2927 0.2018 0.3052 0.4399 0.3470 0.3272 0.4194 0.5561 0.6071 [torch.FloatTensor of size 1x10] , Variable containing: 1 2 3 4 5 6 7 8 9 10 [torch.FloatTensor of size 1x10] ) (Variable containing: -0.0247 0.3149 0.2164 0.3453 0.4927 0.3971 0.3772 0.4971 0.6338 0.6973 [torch.FloatTensor of size 1x10] , Variable containing: 1 2 3 4 5 6 7 8 9 10 [torch.FloatTensor of size 1x10] ) (Variable containing: -0.0192 0.3426 0.2362 0.3930 0.5573 0.4562 0.4400 0.5915 0.7289 0.8067 [torch.FloatTensor of size 1x10] , Variable containing: 1 2 3 4 5 6 7 8 9 10 [torch.FloatTensor of size 1x10] ) (Variable containing: -0.0102 0.3746 0.2632 0.4507 0.6344 0.5283 0.5213 0.7050 0.8480 0.9410 [torch.FloatTensor of size 1x10] , Variable containing: 1 2 3 4 5 6 7 8 9 10 [torch.FloatTensor of size 1x10] ) (Variable containing: 0.0019 0.4116 0.2986 0.5196 0.7248 0.6148 0.6235 0.8407 0.9949 1.1035 [torch.FloatTensor of size 1x10] , Variable containing: 1 2 3 4 5 6 7 8 9 10 [torch.FloatTensor of size 1x10] ) CPU times: user 208 ms, sys: 0 ns, total: 208 ms Wall time: 50.1 ms