# Copyright 2023 Shane Khalid. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================License.
import yfinance as yf
import tensorflow as tf
from tensorflow import keras
from keras.layers import GRU, Dropout, SimpleRNN, LSTM, Dense, SimpleRNN, GRU
from keras.models import Sequential
from sklearn.preprocessing import MinMaxScaler
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
import torch
if torch.cuda.is_available():
device = torch.device("cuda")
print("GPU is available and being used.")
else:
device = torch.device("cpu")
print("GPU is not available, using CPU instead.")
import pandas as pd
import numpy as np
import plotly.express as px
import statsmodels.api as sm
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import matplotlib.pyplot as plt
import matplotlib.dates as dates
import seaborn as sns
import math
import datetime
import keras
import warnings
warnings.filterwarnings('ignore')
from datetime import date, timedelta
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Dropout
from keras.layers import *
from keras.callbacks import EarlyStopping
from keras.metrics import Accuracy
from keras.metrics import F1Score
from keras.metrics import Precision
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
#from sklearn.metrics import accuracy_score
#from sklearn.metrics import precision_score
#from sklearn.metrics import f1_score
%matplotlib inline
2023-10-30 17:36:22.078914: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered 2023-10-30 17:36:22.079005: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered 2023-10-30 17:36:22.079025: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered 2023-10-30 17:36:22.175099: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-10-30 17:36:27.494027: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:880] could not open file to read NUMA node: /sys/bus/pci/devices/0000:43:00.0/numa_node Your kernel may have been built without NUMA support. 2023-10-30 17:36:27.650172: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:880] could not open file to read NUMA node: /sys/bus/pci/devices/0000:43:00.0/numa_node Your kernel may have been built without NUMA support. 2023-10-30 17:36:27.650226: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:880] could not open file to read NUMA node: /sys/bus/pci/devices/0000:43:00.0/numa_node Your kernel may have been built without NUMA support.
Num GPUs Available: 1 GPU is available and being used.
google_training_complete = pd.read_csv("./Google_Stock_Train (2010-2022).csv")
# Convert 'Date' column to datetime format
google_training_complete['Date'] = pd.to_datetime(google_training_complete['Date'])
google_training_complete.head(10)
Date | Open | High | Low | Close | Adj Close | Volume | |
---|---|---|---|---|---|---|---|
0 | 2010-01-04 | 15.689439 | 15.753504 | 15.621622 | 15.684434 | 15.684434 | 78169752 |
1 | 2010-01-05 | 15.695195 | 15.711712 | 15.554054 | 15.615365 | 15.615365 | 120067812 |
2 | 2010-01-06 | 15.662162 | 15.662162 | 15.174174 | 15.221722 | 15.221722 | 158988852 |
3 | 2010-01-07 | 15.250250 | 15.265265 | 14.831081 | 14.867367 | 14.867367 | 256315428 |
4 | 2010-01-08 | 14.814815 | 15.096346 | 14.742492 | 15.065566 | 15.065566 | 188783028 |
5 | 2010-01-11 | 15.126627 | 15.126627 | 14.865866 | 15.042793 | 15.042793 | 288227484 |
6 | 2010-01-12 | 14.956206 | 14.968969 | 14.714715 | 14.776777 | 14.776777 | 193937868 |
7 | 2010-01-13 | 14.426677 | 14.724224 | 14.361862 | 14.691942 | 14.691942 | 259604136 |
8 | 2010-01-14 | 14.612112 | 14.869870 | 14.584835 | 14.761011 | 14.761011 | 169434396 |
9 | 2010-01-15 | 14.848348 | 14.853854 | 14.465465 | 14.514515 | 14.514515 | 217162620 |
# Line chart for Google stock price over time
fig1 = px.line(google_training_complete, x='Date', y='Close', title='Google Stock Price Over Time')
fig1.show()
# Scatter plot of daily trading volume
fig2 = px.scatter(google_training_complete, x='Date', y='Volume', title='Daily Trading Volume')
fig2.show()
# Box plot of Google stock prices for each year
google_training_complete['Year'] = google_training_complete['Date'].dt.year
fig3 = px.box(google_training_complete, x='Year', y='Close', title='Google Stock Prices - Yearly Box Plot')
fig3.show()
# Candlestick chart for stock prices
fig4 = go.Figure(data=[go.Candlestick(x=google_training_complete['Date'],
open=google_training_complete['Open'],
high=google_training_complete['High'],
low=google_training_complete['Low'],
close=google_training_complete['Close'])])
fig4.update_layout(title='Google Stock Prices - Candlestick Chart',
xaxis_title='Date',
yaxis_title='Stock Price')
fig4.show()
# Histogram of daily returns
google_training_complete['Daily_Return'] = google_training_complete['Close'].pct_change()
fig5 = px.histogram(google_training_complete, x='Daily_Return', nbins=30, title='Distribution of Daily Returns')
fig5.show()
# Heatmap of correlation matrix
correlation_matrix = google_training_complete.corr()
fig6 = px.imshow(correlation_matrix, x=correlation_matrix.index, y=correlation_matrix.columns, title='Correlation Matrix Heatmap')
fig6.show()
# Moving Average of closing prices
google_training_complete['MA_50'] = google_training_complete['Close'].rolling(window=50).mean()
fig7 = px.line(google_training_complete, x='Date', y=['Close', 'MA_50'], title='Google Stock Close Price with 50-Day Moving Average')
fig7.show()
# Scatter plot of closing prices vs. trading volume
fig8 = px.scatter(google_training_complete, x='Close', y='Volume', title='Closing Prices vs. Trading Volume')
fig8.show()
# Line chart for daily stock price change
google_training_complete['Daily_Change'] = google_training_complete['Close'].diff()
fig9 = px.line(google_training_complete, x='Date', y='Daily_Change', title='Daily Stock Price Change')
fig9.show()
# Bar chart of trading volume per month
google_training_complete['Month'] = google_training_complete['Date'].dt.month
monthly_volume = google_training_complete.groupby('Month')['Volume'].sum().reset_index()
fig10 = px.bar(monthly_volume, x='Month', y='Volume', title='Total Trading Volume per Month')
fig10.show()
# Area chart for daily trading volume
fig11 = px.area(google_training_complete, x='Date', y='Volume', title='Daily Trading Volume (Area Chart)')
fig11.show()
# Histogram of daily stock price fluctuations
fig12 = px.histogram(google_training_complete, x='Daily_Change', title='Distribution of Daily Stock Price Changes')
fig12.show()
# Line chart for percent change of daily stock price
google_training_complete['Daily_Pct_Change'] = google_training_complete['Close'].pct_change() * 100
fig13 = px.line(google_training_complete, x='Date', y='Daily_Pct_Change', title='Daily Stock Price Percent Change')
fig13.show()
# Box plot of daily stock price percent change by month
fig14 = px.box(google_training_complete, x='Month', y='Daily_Pct_Change', title='Daily Stock Price Percent Change by Month')
fig14.show()
# Scatter plot of closing prices with Trend Line (should have used differnt color)
fig15 = px.scatter(google_training_complete, x='Date', y='Close', title='Google Stock Prices with Trendline', trendline='lowess')
fig15.show()
# Line chart for daily trading volume with moving average
google_training_complete['MA_Volume'] = google_training_complete['Volume'].rolling(window=10).mean()
fig16 = px.line(google_training_complete, x='Date', y=['Volume', 'MA_Volume'], title='Daily Trading Volume with 10-Day Moving Average')
fig16.show()
# Box plot of daily stock price changes by year
google_training_complete['Year'] = google_training_complete['Date'].dt.year
fig17 = px.box(google_training_complete, x='Year', y='Daily_Change', title='Daily Stock Price Changes by Year')
fig17.show()
# Line chart for daily closing prices in 2022
# 2022 because Train dataset is 2010-2022
df_2022 = google_training_complete[google_training_complete['Year'] == 2022]
fig18 = px.line(google_training_complete, x='Date', y='Close', title='Google Stock Prices in 2022')
fig18.show()
# Scatter plot of daily returns vs. trading volume
fig19 = px.scatter(google_training_complete, x='Daily_Return', y='Volume', title='Daily Returns vs. Trading Volume')
fig19.show()
# Line chart for daily trading volume with range slider
fig20 = px.line(google_training_complete, x='Date', y='Volume', title='Daily Trading Volume with Range Slider')
fig20.update_xaxes(rangeslider_visible=True)
fig20.show()
google_training_processed = google_training_complete.iloc[:, 4:5].values
google_training_processed
array([[15.684434], [15.615365], [15.221722], ..., [86.019997], [88.449997], [88.230003]])
scaler = MinMaxScaler(feature_range = (0, 1))
google_training_scaled = scaler.fit_transform(google_training_processed)
print(google_training_scaled)
print(google_training_scaled.shape)
[[0.03434761] [0.03385045] [0.03101697] ... [0.54062898] [0.55812033] [0.55653679]] (3272, 1)
X_train = []
y_train = []
for i in range(60, google_training_scaled.shape[0]):
X_train.append(google_training_scaled[i-60:i, 0])
y_train.append(google_training_scaled[i, 0])
type(X_train)
list
X_train, y_train = np.array(X_train), np.array(y_train)
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
print(X_train.shape)
(3212, 60, 1)
- nb_sequence : total number of sequences in dataset
- nb_timestep : size of sequences
- nb_feature : number of features describing timesteps
RNN_model = Sequential()
RNN_model.add(SimpleRNN(units=300, return_sequences=True, input_shape=(features_set.shape[1], 1)))
RNN_model.add(Dropout(0.2))
RNN_model.add(SimpleRNN(units=100, return_sequences=True))
RNN_model.add(Dropout(0.2))
RNN_model.add(SimpleRNN(units=100, return_sequences=True))
RNN_model.add(Dropout(0.2))
RNN_model.add(SimpleRNN(units=100))
RNN_model.add(Dropout(0.2))
RNN_model.add(Dense(units = 1))
RNN_model.summary()
Model: "sequential_3" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= simple_rnn_12 (SimpleRNN) (None, 60, 300) 90600 dropout_12 (Dropout) (None, 60, 300) 0 simple_rnn_13 (SimpleRNN) (None, 60, 100) 40100 dropout_13 (Dropout) (None, 60, 100) 0 simple_rnn_14 (SimpleRNN) (None, 60, 100) 20100 dropout_14 (Dropout) (None, 60, 100) 0 simple_rnn_15 (SimpleRNN) (None, 100) 20100 dropout_15 (Dropout) (None, 100) 0 dense_3 (Dense) (None, 1) 101 ================================================================= Total params: 171001 (667.97 KB) Trainable params: 171001 (667.97 KB) Non-trainable params: 0 (0.00 Byte) _________________________________________________________________
# Compiling the RNN
RNN_model.compile(optimizer = 'adam', loss = 'mean_squared_error', metrics = ['MAE', 'MAPE', 'F1Score', 'Accuracy', 'Precision'])
# Fitting the RNN to the Training set
RNN_History = RNN_model.fit(X_train, y_train, epochs = 200, batch_size = 640)
Epoch 1/200 6/6 [==============================] - 6s 360ms/step - loss: 0.0470 - MAE: 0.1679 - MAPE: 34665.6445 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 2/200 6/6 [==============================] - 2s 365ms/step - loss: 0.0453 - MAE: 0.1697 - MAPE: 45851.7969 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 3/200 6/6 [==============================] - 2s 356ms/step - loss: 0.0349 - MAE: 0.1435 - MAPE: 22458.0391 - f1_score: 0.4376 - Accuracy: 3.1133e-04 - precision: 1.0000 Epoch 4/200 6/6 [==============================] - 2s 349ms/step - loss: 0.0208 - MAE: 0.1146 - MAPE: 30958.8789 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 5/200 6/6 [==============================] - 2s 366ms/step - loss: 0.0276 - MAE: 0.1333 - MAPE: 16932.1641 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 6/200 6/6 [==============================] - 2s 360ms/step - loss: 0.0141 - MAE: 0.0943 - MAPE: 14159.5840 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 7/200 6/6 [==============================] - 2s 355ms/step - loss: 0.0122 - MAE: 0.0876 - MAPE: 1929.8502 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 8/200 6/6 [==============================] - 2s 355ms/step - loss: 0.0094 - MAE: 0.0770 - MAPE: 23608.6875 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 9/200 6/6 [==============================] - 2s 365ms/step - loss: 0.0085 - MAE: 0.0729 - MAPE: 2486.9617 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 10/200 6/6 [==============================] - 2s 364ms/step - loss: 0.0077 - MAE: 0.0699 - MAPE: 12808.5645 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 11/200 6/6 [==============================] - 2s 354ms/step - loss: 0.0095 - MAE: 0.0774 - MAPE: 374.5854 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 12/200 6/6 [==============================] - 2s 356ms/step - loss: 0.0084 - MAE: 0.0716 - MAPE: 4428.9150 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 13/200 6/6 [==============================] - 2s 362ms/step - loss: 0.0075 - MAE: 0.0684 - MAPE: 15339.8184 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 14/200 6/6 [==============================] - 2s 374ms/step - loss: 0.0073 - MAE: 0.0681 - MAPE: 22680.6172 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 15/200 6/6 [==============================] - 2s 348ms/step - loss: 0.0080 - MAE: 0.0710 - MAPE: 8063.8350 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 16/200 6/6 [==============================] - 2s 348ms/step - loss: 0.0067 - MAE: 0.0652 - MAPE: 32189.7090 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 17/200 6/6 [==============================] - 2s 369ms/step - loss: 0.0061 - MAE: 0.0615 - MAPE: 17116.7441 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 18/200 6/6 [==============================] - 2s 356ms/step - loss: 0.0061 - MAE: 0.0614 - MAPE: 13209.2588 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 19/200 6/6 [==============================] - 2s 347ms/step - loss: 0.0108 - MAE: 0.0849 - MAPE: 37726.6367 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 20/200 6/6 [==============================] - 2s 348ms/step - loss: 0.0092 - MAE: 0.0763 - MAPE: 37541.8242 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 21/200 6/6 [==============================] - 2s 352ms/step - loss: 0.0073 - MAE: 0.0674 - MAPE: 8676.9219 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 22/200 6/6 [==============================] - 2s 363ms/step - loss: 0.0066 - MAE: 0.0641 - MAPE: 18020.9785 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 23/200 6/6 [==============================] - 2s 350ms/step - loss: 0.0064 - MAE: 0.0627 - MAPE: 21786.7578 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 24/200 6/6 [==============================] - 2s 351ms/step - loss: 0.0057 - MAE: 0.0592 - MAPE: 16166.2402 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 25/200 6/6 [==============================] - 2s 366ms/step - loss: 0.0052 - MAE: 0.0569 - MAPE: 19620.1758 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 26/200 6/6 [==============================] - 2s 372ms/step - loss: 0.0056 - MAE: 0.0600 - MAPE: 4229.5527 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 27/200 6/6 [==============================] - 2s 354ms/step - loss: 0.0076 - MAE: 0.0695 - MAPE: 29286.2285 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 28/200 6/6 [==============================] - 2s 351ms/step - loss: 0.0069 - MAE: 0.0667 - MAPE: 3832.9861 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 29/200 6/6 [==============================] - 2s 367ms/step - loss: 0.0071 - MAE: 0.0649 - MAPE: 3955.5347 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 30/200 6/6 [==============================] - 2s 355ms/step - loss: 0.0054 - MAE: 0.0575 - MAPE: 7445.3877 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 31/200 6/6 [==============================] - 2s 385ms/step - loss: 0.0047 - MAE: 0.0532 - MAPE: 15847.2246 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 32/200 6/6 [==============================] - 2s 390ms/step - loss: 0.0042 - MAE: 0.0517 - MAPE: 4900.8691 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 33/200 6/6 [==============================] - 2s 354ms/step - loss: 0.0042 - MAE: 0.0506 - MAPE: 14455.2109 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 34/200 6/6 [==============================] - 2s 356ms/step - loss: 0.0042 - MAE: 0.0507 - MAPE: 905.5336 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 35/200 6/6 [==============================] - 2s 356ms/step - loss: 0.0052 - MAE: 0.0558 - MAPE: 6715.8965 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 36/200 6/6 [==============================] - 2s 376ms/step - loss: 0.0041 - MAE: 0.0495 - MAPE: 40924.8633 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 37/200 6/6 [==============================] - 2s 356ms/step - loss: 0.0044 - MAE: 0.0518 - MAPE: 4588.4268 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 38/200 6/6 [==============================] - 2s 413ms/step - loss: 0.0040 - MAE: 0.0497 - MAPE: 50394.9727 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 39/200 6/6 [==============================] - 2s 370ms/step - loss: 0.0041 - MAE: 0.0493 - MAPE: 1676.2240 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 40/200 6/6 [==============================] - 2s 355ms/step - loss: 0.0050 - MAE: 0.0561 - MAPE: 28412.3711 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 41/200 6/6 [==============================] - 2s 378ms/step - loss: 0.0053 - MAE: 0.0561 - MAPE: 22210.6152 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 42/200 6/6 [==============================] - 2s 353ms/step - loss: 0.0043 - MAE: 0.0507 - MAPE: 26591.7754 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 43/200 6/6 [==============================] - 2s 360ms/step - loss: 0.0042 - MAE: 0.0509 - MAPE: 18227.5840 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 44/200 6/6 [==============================] - 2s 359ms/step - loss: 0.0047 - MAE: 0.0536 - MAPE: 2750.9104 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 45/200 6/6 [==============================] - 2s 355ms/step - loss: 0.0047 - MAE: 0.0546 - MAPE: 23894.5820 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 46/200 6/6 [==============================] - 2s 350ms/step - loss: 0.0040 - MAE: 0.0499 - MAPE: 40003.7461 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 47/200 6/6 [==============================] - 2s 358ms/step - loss: 0.0040 - MAE: 0.0487 - MAPE: 14508.5820 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 48/200 6/6 [==============================] - 2s 355ms/step - loss: 0.0042 - MAE: 0.0501 - MAPE: 14071.2656 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 49/200 6/6 [==============================] - 2s 358ms/step - loss: 0.0047 - MAE: 0.0544 - MAPE: 21410.3828 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 50/200 6/6 [==============================] - 2s 360ms/step - loss: 0.0035 - MAE: 0.0463 - MAPE: 45754.6641 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 51/200 6/6 [==============================] - 2s 358ms/step - loss: 0.0045 - MAE: 0.0517 - MAPE: 18751.1797 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 52/200 6/6 [==============================] - 2s 346ms/step - loss: 0.0040 - MAE: 0.0498 - MAPE: 15332.9541 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 53/200 6/6 [==============================] - 2s 379ms/step - loss: 0.0040 - MAE: 0.0494 - MAPE: 984.3538 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 54/200 6/6 [==============================] - 2s 348ms/step - loss: 0.0034 - MAE: 0.0454 - MAPE: 26293.2305 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 55/200 6/6 [==============================] - 2s 355ms/step - loss: 0.0044 - MAE: 0.0516 - MAPE: 8264.2949 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 56/200 6/6 [==============================] - 2s 346ms/step - loss: 0.0042 - MAE: 0.0507 - MAPE: 10199.1904 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 57/200 6/6 [==============================] - 2s 360ms/step - loss: 0.0049 - MAE: 0.0537 - MAPE: 14904.8418 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 58/200 6/6 [==============================] - 2s 370ms/step - loss: 0.0039 - MAE: 0.0480 - MAPE: 107.6110 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 59/200 6/6 [==============================] - 2s 362ms/step - loss: 0.0040 - MAE: 0.0492 - MAPE: 13705.5615 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 60/200 6/6 [==============================] - 2s 359ms/step - loss: 0.0043 - MAE: 0.0507 - MAPE: 13281.3926 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 61/200 6/6 [==============================] - 2s 351ms/step - loss: 0.0045 - MAE: 0.0511 - MAPE: 2459.5901 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 62/200 6/6 [==============================] - 2s 359ms/step - loss: 0.0039 - MAE: 0.0497 - MAPE: 6559.1133 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 63/200 6/6 [==============================] - 2s 349ms/step - loss: 0.0043 - MAE: 0.0518 - MAPE: 16079.5391 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 64/200 6/6 [==============================] - 2s 353ms/step - loss: 0.0048 - MAE: 0.0548 - MAPE: 19842.4688 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 65/200 6/6 [==============================] - 2s 355ms/step - loss: 0.0034 - MAE: 0.0463 - MAPE: 22843.6289 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 66/200 6/6 [==============================] - 2s 366ms/step - loss: 0.0035 - MAE: 0.0457 - MAPE: 16522.6680 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 67/200 6/6 [==============================] - 2s 360ms/step - loss: 0.0035 - MAE: 0.0462 - MAPE: 21514.8066 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 68/200 6/6 [==============================] - 2s 356ms/step - loss: 0.0031 - MAE: 0.0434 - MAPE: 24425.9121 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 69/200 6/6 [==============================] - 2s 360ms/step - loss: 0.0030 - MAE: 0.0424 - MAPE: 6660.2129 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 70/200 6/6 [==============================] - 2s 354ms/step - loss: 0.0030 - MAE: 0.0427 - MAPE: 20068.6504 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 71/200 6/6 [==============================] - 2s 350ms/step - loss: 0.0034 - MAE: 0.0457 - MAPE: 2795.1675 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 72/200 6/6 [==============================] - 2s 353ms/step - loss: 0.0035 - MAE: 0.0466 - MAPE: 18526.0801 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 73/200 6/6 [==============================] - 2s 346ms/step - loss: 0.0032 - MAE: 0.0445 - MAPE: 2072.7393 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 74/200 6/6 [==============================] - 2s 361ms/step - loss: 0.0033 - MAE: 0.0448 - MAPE: 29976.8203 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 75/200 6/6 [==============================] - 2s 353ms/step - loss: 0.0033 - MAE: 0.0451 - MAPE: 2237.7971 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 76/200 6/6 [==============================] - 2s 355ms/step - loss: 0.0029 - MAE: 0.0424 - MAPE: 30202.9395 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 77/200 6/6 [==============================] - 2s 355ms/step - loss: 0.0027 - MAE: 0.0406 - MAPE: 9760.5537 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 78/200 6/6 [==============================] - 2s 359ms/step - loss: 0.0033 - MAE: 0.0450 - MAPE: 33296.9102 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 79/200 6/6 [==============================] - 2s 354ms/step - loss: 0.0035 - MAE: 0.0465 - MAPE: 270.2314 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 80/200 6/6 [==============================] - 2s 351ms/step - loss: 0.0034 - MAE: 0.0444 - MAPE: 2800.8938 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 81/200 6/6 [==============================] - 2s 367ms/step - loss: 0.0040 - MAE: 0.0484 - MAPE: 5511.1699 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 82/200 6/6 [==============================] - 2s 355ms/step - loss: 0.0028 - MAE: 0.0412 - MAPE: 6877.3325 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 83/200 6/6 [==============================] - 2s 353ms/step - loss: 0.0030 - MAE: 0.0433 - MAPE: 3570.9412 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 84/200 6/6 [==============================] - 2s 358ms/step - loss: 0.0035 - MAE: 0.0464 - MAPE: 38165.5625 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 85/200 6/6 [==============================] - 2s 356ms/step - loss: 0.0031 - MAE: 0.0440 - MAPE: 35574.5352 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 86/200 6/6 [==============================] - 2s 369ms/step - loss: 0.0030 - MAE: 0.0431 - MAPE: 11698.0029 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 87/200 6/6 [==============================] - 2s 367ms/step - loss: 0.0029 - MAE: 0.0418 - MAPE: 39207.3672 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 88/200 6/6 [==============================] - 2s 361ms/step - loss: 0.0028 - MAE: 0.0414 - MAPE: 15013.0771 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 89/200 6/6 [==============================] - 2s 354ms/step - loss: 0.0028 - MAE: 0.0409 - MAPE: 22587.0215 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 90/200 6/6 [==============================] - 2s 346ms/step - loss: 0.0029 - MAE: 0.0415 - MAPE: 18637.6855 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 91/200 6/6 [==============================] - 2s 363ms/step - loss: 0.0027 - MAE: 0.0401 - MAPE: 43856.3555 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 92/200 6/6 [==============================] - 2s 353ms/step - loss: 0.0028 - MAE: 0.0411 - MAPE: 22366.0078 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 93/200 6/6 [==============================] - 2s 349ms/step - loss: 0.0032 - MAE: 0.0438 - MAPE: 17855.4238 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 94/200 6/6 [==============================] - 2s 350ms/step - loss: 0.0031 - MAE: 0.0435 - MAPE: 12141.1895 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 95/200 6/6 [==============================] - 2s 349ms/step - loss: 0.0030 - MAE: 0.0430 - MAPE: 23761.3906 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 96/200 6/6 [==============================] - 2s 353ms/step - loss: 0.0028 - MAE: 0.0410 - MAPE: 8291.6162 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 97/200 6/6 [==============================] - 2s 356ms/step - loss: 0.0028 - MAE: 0.0409 - MAPE: 2062.0908 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 98/200 6/6 [==============================] - 2s 350ms/step - loss: 0.0040 - MAE: 0.0479 - MAPE: 6379.7925 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 99/200 6/6 [==============================] - 2s 350ms/step - loss: 0.0031 - MAE: 0.0443 - MAPE: 19472.6035 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 100/200 6/6 [==============================] - 2s 355ms/step - loss: 0.0028 - MAE: 0.0412 - MAPE: 3781.8198 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 101/200 6/6 [==============================] - 2s 386ms/step - loss: 0.0036 - MAE: 0.0461 - MAPE: 416.6832 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 102/200 6/6 [==============================] - 2s 359ms/step - loss: 0.0028 - MAE: 0.0411 - MAPE: 7485.9961 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 103/200 6/6 [==============================] - 2s 353ms/step - loss: 0.0027 - MAE: 0.0405 - MAPE: 4515.4707 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 104/200 6/6 [==============================] - 2s 359ms/step - loss: 0.0026 - MAE: 0.0399 - MAPE: 9387.6025 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 105/200 6/6 [==============================] - 2s 367ms/step - loss: 0.0025 - MAE: 0.0388 - MAPE: 29271.6094 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 106/200 6/6 [==============================] - 2s 356ms/step - loss: 0.0027 - MAE: 0.0404 - MAPE: 5495.4824 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 107/200 6/6 [==============================] - 2s 367ms/step - loss: 0.0025 - MAE: 0.0382 - MAPE: 24105.8457 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 108/200 6/6 [==============================] - 2s 345ms/step - loss: 0.0029 - MAE: 0.0417 - MAPE: 2152.7141 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 109/200 6/6 [==============================] - 3s 434ms/step - loss: 0.0030 - MAE: 0.0417 - MAPE: 776.0928 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 110/200 6/6 [==============================] - 2s 370ms/step - loss: 0.0024 - MAE: 0.0378 - MAPE: 24772.6309 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 111/200 6/6 [==============================] - 2s 360ms/step - loss: 0.0027 - MAE: 0.0402 - MAPE: 27523.1660 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 112/200 6/6 [==============================] - 2s 368ms/step - loss: 0.0027 - MAE: 0.0405 - MAPE: 4202.6743 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 113/200 6/6 [==============================] - 2s 350ms/step - loss: 0.0026 - MAE: 0.0393 - MAPE: 46809.0156 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 114/200 6/6 [==============================] - 2s 374ms/step - loss: 0.0025 - MAE: 0.0395 - MAPE: 7685.2764 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 115/200 6/6 [==============================] - 2s 371ms/step - loss: 0.0024 - MAE: 0.0384 - MAPE: 91.8202 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 116/200 6/6 [==============================] - 2s 369ms/step - loss: 0.0023 - MAE: 0.0376 - MAPE: 4041.5872 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 117/200 6/6 [==============================] - 2s 349ms/step - loss: 0.0024 - MAE: 0.0375 - MAPE: 5659.0024 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 118/200 6/6 [==============================] - 2s 352ms/step - loss: 0.0023 - MAE: 0.0376 - MAPE: 7982.0195 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 119/200 6/6 [==============================] - 2s 363ms/step - loss: 0.0024 - MAE: 0.0384 - MAPE: 27136.3496 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 120/200 6/6 [==============================] - 2s 355ms/step - loss: 0.0025 - MAE: 0.0387 - MAPE: 41635.8555 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 121/200 6/6 [==============================] - 2s 365ms/step - loss: 0.0024 - MAE: 0.0383 - MAPE: 5427.6929 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 122/200 6/6 [==============================] - 2s 351ms/step - loss: 0.0030 - MAE: 0.0414 - MAPE: 26344.6523 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 123/200 6/6 [==============================] - 2s 362ms/step - loss: 0.0025 - MAE: 0.0389 - MAPE: 14843.5957 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 124/200 6/6 [==============================] - 2s 397ms/step - loss: 0.0032 - MAE: 0.0451 - MAPE: 4249.5977 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 125/200 6/6 [==============================] - 2s 370ms/step - loss: 0.0033 - MAE: 0.0442 - MAPE: 14731.4326 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 126/200 6/6 [==============================] - 2s 411ms/step - loss: 0.0031 - MAE: 0.0413 - MAPE: 5009.2012 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 127/200 6/6 [==============================] - 2s 371ms/step - loss: 0.0028 - MAE: 0.0411 - MAPE: 18121.4629 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 128/200 6/6 [==============================] - 2s 359ms/step - loss: 0.0026 - MAE: 0.0396 - MAPE: 27555.6094 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 129/200 6/6 [==============================] - 2s 360ms/step - loss: 0.0023 - MAE: 0.0375 - MAPE: 5816.5649 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 130/200 6/6 [==============================] - 2s 376ms/step - loss: 0.0022 - MAE: 0.0372 - MAPE: 251.5748 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 131/200 6/6 [==============================] - 2s 371ms/step - loss: 0.0022 - MAE: 0.0364 - MAPE: 2654.7224 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 132/200 6/6 [==============================] - 2s 353ms/step - loss: 0.0023 - MAE: 0.0379 - MAPE: 7520.6104 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 133/200 6/6 [==============================] - 2s 362ms/step - loss: 0.0022 - MAE: 0.0363 - MAPE: 8246.1943 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 134/200 6/6 [==============================] - 2s 367ms/step - loss: 0.0024 - MAE: 0.0378 - MAPE: 9180.4941 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 135/200 6/6 [==============================] - 2s 373ms/step - loss: 0.0023 - MAE: 0.0373 - MAPE: 6203.1313 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 136/200 6/6 [==============================] - 2s 357ms/step - loss: 0.0023 - MAE: 0.0370 - MAPE: 1235.2007 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 137/200 6/6 [==============================] - 2s 349ms/step - loss: 0.0022 - MAE: 0.0370 - MAPE: 1517.6664 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 138/200 6/6 [==============================] - 2s 349ms/step - loss: 0.0022 - MAE: 0.0363 - MAPE: 3822.4280 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 139/200 6/6 [==============================] - 2s 360ms/step - loss: 0.0022 - MAE: 0.0364 - MAPE: 25093.9453 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 140/200 6/6 [==============================] - 2s 401ms/step - loss: 0.0022 - MAE: 0.0367 - MAPE: 22615.8730 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 141/200 6/6 [==============================] - 2s 381ms/step - loss: 0.0022 - MAE: 0.0365 - MAPE: 8926.5732 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 142/200 6/6 [==============================] - 2s 357ms/step - loss: 0.0024 - MAE: 0.0385 - MAPE: 6988.0249 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 143/200 6/6 [==============================] - 2s 355ms/step - loss: 0.0030 - MAE: 0.0430 - MAPE: 11990.0469 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 144/200 6/6 [==============================] - 2s 373ms/step - loss: 0.0031 - MAE: 0.0435 - MAPE: 6071.7891 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 145/200 6/6 [==============================] - 2s 353ms/step - loss: 0.0028 - MAE: 0.0399 - MAPE: 4435.3296 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 146/200 6/6 [==============================] - 2s 358ms/step - loss: 0.0070 - MAE: 0.0620 - MAPE: 25925.8652 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 147/200 6/6 [==============================] - 2s 362ms/step - loss: 0.0042 - MAE: 0.0500 - MAPE: 45791.1797 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 148/200 6/6 [==============================] - 2s 359ms/step - loss: 0.0069 - MAE: 0.0695 - MAPE: 17033.1250 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 149/200 6/6 [==============================] - 2s 356ms/step - loss: 0.0043 - MAE: 0.0525 - MAPE: 3669.8394 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 150/200 6/6 [==============================] - 2s 354ms/step - loss: 0.0039 - MAE: 0.0503 - MAPE: 8311.1328 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 151/200 6/6 [==============================] - 2s 357ms/step - loss: 0.0030 - MAE: 0.0435 - MAPE: 19482.1348 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 152/200 6/6 [==============================] - 2s 369ms/step - loss: 0.0031 - MAE: 0.0445 - MAPE: 7466.7310 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 153/200 6/6 [==============================] - 2s 352ms/step - loss: 0.0030 - MAE: 0.0436 - MAPE: 21220.3242 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 154/200 6/6 [==============================] - 2s 362ms/step - loss: 0.0025 - MAE: 0.0396 - MAPE: 13104.8643 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 155/200 6/6 [==============================] - 2s 387ms/step - loss: 0.0024 - MAE: 0.0388 - MAPE: 1847.1635 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 156/200 6/6 [==============================] - 2s 370ms/step - loss: 0.0023 - MAE: 0.0374 - MAPE: 2249.0518 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 157/200 6/6 [==============================] - 2s 353ms/step - loss: 0.0023 - MAE: 0.0380 - MAPE: 20992.8223 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 158/200 6/6 [==============================] - 2s 352ms/step - loss: 0.0045 - MAE: 0.0533 - MAPE: 10206.7285 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 159/200 6/6 [==============================] - 2s 359ms/step - loss: 0.0039 - MAE: 0.0477 - MAPE: 16951.2637 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 160/200 6/6 [==============================] - 2s 350ms/step - loss: 0.0038 - MAE: 0.0470 - MAPE: 1336.5027 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 161/200 6/6 [==============================] - 2s 363ms/step - loss: 0.0047 - MAE: 0.0547 - MAPE: 31755.0312 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 162/200 6/6 [==============================] - 2s 365ms/step - loss: 0.0040 - MAE: 0.0496 - MAPE: 16545.1211 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 163/200 6/6 [==============================] - 2s 375ms/step - loss: 0.0041 - MAE: 0.0495 - MAPE: 1979.2913 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 164/200 6/6 [==============================] - 2s 366ms/step - loss: 0.0035 - MAE: 0.0453 - MAPE: 5976.0303 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 165/200 6/6 [==============================] - 2s 382ms/step - loss: 0.0028 - MAE: 0.0414 - MAPE: 8878.8398 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 166/200 6/6 [==============================] - 2s 356ms/step - loss: 0.0028 - MAE: 0.0413 - MAPE: 5263.0044 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 167/200 6/6 [==============================] - 2s 364ms/step - loss: 0.0025 - MAE: 0.0386 - MAPE: 275.6794 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 168/200 6/6 [==============================] - 2s 370ms/step - loss: 0.0026 - MAE: 0.0389 - MAPE: 12066.6797 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 169/200 6/6 [==============================] - 2s 356ms/step - loss: 0.0029 - MAE: 0.0411 - MAPE: 5819.5903 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 170/200 6/6 [==============================] - 2s 373ms/step - loss: 0.0027 - MAE: 0.0406 - MAPE: 7835.0835 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 171/200 6/6 [==============================] - 2s 378ms/step - loss: 0.0026 - MAE: 0.0404 - MAPE: 3115.9006 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 172/200 6/6 [==============================] - 2s 341ms/step - loss: 0.0024 - MAE: 0.0378 - MAPE: 17391.0430 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 173/200 6/6 [==============================] - 2s 348ms/step - loss: 0.0024 - MAE: 0.0384 - MAPE: 5364.2559 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 174/200 6/6 [==============================] - 2s 353ms/step - loss: 0.0026 - MAE: 0.0401 - MAPE: 19596.7070 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 175/200 6/6 [==============================] - 2s 358ms/step - loss: 0.0024 - MAE: 0.0379 - MAPE: 13125.5215 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 176/200 6/6 [==============================] - 2s 363ms/step - loss: 0.0024 - MAE: 0.0377 - MAPE: 1499.0759 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 177/200 6/6 [==============================] - 3s 520ms/step - loss: 0.0023 - MAE: 0.0372 - MAPE: 1064.7485 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 178/200 6/6 [==============================] - 3s 379ms/step - loss: 0.0022 - MAE: 0.0361 - MAPE: 11207.5977 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 179/200 6/6 [==============================] - 2s 361ms/step - loss: 0.0024 - MAE: 0.0377 - MAPE: 6049.3574 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 180/200 6/6 [==============================] - 2s 391ms/step - loss: 0.0022 - MAE: 0.0371 - MAPE: 16938.8086 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 181/200 6/6 [==============================] - 2s 387ms/step - loss: 0.0024 - MAE: 0.0382 - MAPE: 18849.2930 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 182/200 6/6 [==============================] - 2s 418ms/step - loss: 0.0029 - MAE: 0.0419 - MAPE: 10983.9473 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 183/200 6/6 [==============================] - 2s 360ms/step - loss: 0.0031 - MAE: 0.0435 - MAPE: 13567.4297 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 184/200 6/6 [==============================] - 2s 363ms/step - loss: 0.0023 - MAE: 0.0368 - MAPE: 1034.2555 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 185/200 6/6 [==============================] - 2s 354ms/step - loss: 0.0025 - MAE: 0.0384 - MAPE: 23139.3633 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 186/200 6/6 [==============================] - 2s 351ms/step - loss: 0.0020 - MAE: 0.0347 - MAPE: 1262.4810 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 187/200 6/6 [==============================] - 2s 354ms/step - loss: 0.0020 - MAE: 0.0349 - MAPE: 10446.3057 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 188/200 6/6 [==============================] - 2s 353ms/step - loss: 0.0022 - MAE: 0.0364 - MAPE: 1684.0332 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 189/200 6/6 [==============================] - 2s 368ms/step - loss: 0.0021 - MAE: 0.0363 - MAPE: 8245.3203 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 190/200 6/6 [==============================] - 2s 352ms/step - loss: 0.0021 - MAE: 0.0358 - MAPE: 4371.4194 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 191/200 6/6 [==============================] - 2s 369ms/step - loss: 0.0022 - MAE: 0.0353 - MAPE: 223.7309 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 192/200 6/6 [==============================] - 2s 358ms/step - loss: 0.0024 - MAE: 0.0374 - MAPE: 4914.2168 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 193/200 6/6 [==============================] - 2s 376ms/step - loss: 0.0023 - MAE: 0.0367 - MAPE: 19955.9941 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 194/200 6/6 [==============================] - 2s 360ms/step - loss: 0.0050 - MAE: 0.0548 - MAPE: 9206.4229 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 195/200 6/6 [==============================] - 2s 381ms/step - loss: 0.0037 - MAE: 0.0476 - MAPE: 690.3354 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 196/200 6/6 [==============================] - 3s 432ms/step - loss: 0.0035 - MAE: 0.0464 - MAPE: 10861.7197 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 197/200 6/6 [==============================] - 2s 361ms/step - loss: 0.0028 - MAE: 0.0415 - MAPE: 2500.8582 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 198/200 6/6 [==============================] - 2s 381ms/step - loss: 0.0031 - MAE: 0.0436 - MAPE: 16417.8750 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 199/200 6/6 [==============================] - 2s 358ms/step - loss: 0.0026 - MAE: 0.0400 - MAPE: 1819.0098 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 200/200 6/6 [==============================] - 2s 354ms/step - loss: 0.0024 - MAE: 0.0385 - MAPE: 1347.4576 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000
LSTM_model = Sequential()
LSTM_model.add(LSTM(units=300, return_sequences=True, input_shape=(features_set.shape[1], 1)))
LSTM_model.add(Dropout(0.2))
LSTM_model.add(LSTM(units=100, return_sequences=True))
LSTM_model.add(Dropout(0.2))
LSTM_model.add(LSTM(units=100, return_sequences=True))
LSTM_model.add(Dropout(0.2))
LSTM_model.add(LSTM(units=100))
LSTM_model.add(Dropout(0.2))
LSTM_model.add(Dense(units = 1))
LSTM_model.summary()
Model: "sequential_4" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= lstm (LSTM) (None, 60, 300) 362400 dropout_16 (Dropout) (None, 60, 300) 0 lstm_1 (LSTM) (None, 60, 100) 160400 dropout_17 (Dropout) (None, 60, 100) 0 lstm_2 (LSTM) (None, 60, 100) 80400 dropout_18 (Dropout) (None, 60, 100) 0 lstm_3 (LSTM) (None, 100) 80400 dropout_19 (Dropout) (None, 100) 0 dense_4 (Dense) (None, 1) 101 ================================================================= Total params: 683701 (2.61 MB) Trainable params: 683701 (2.61 MB) Non-trainable params: 0 (0.00 Byte) _________________________________________________________________
LSTM_model.compile(optimizer = 'adam', loss = 'mean_squared_error', metrics = ['MAE', 'MAPE', 'F1Score', 'Accuracy', 'Precision'])
LSTM_History = LSTM_model.fit(features_set, labels, epochs = 200, batch_size = 640)
Epoch 1/200 6/6 [==============================] - 7s 41ms/step - loss: 0.0867 - MAE: 0.2076 - MAPE: 10095.1367 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 2/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0540 - MAE: 0.1596 - MAPE: 16152.6367 - f1_score: 0.4376 - Accuracy: 3.1133e-04 - precision: 0.0000e+00 Epoch 3/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0189 - MAE: 0.1139 - MAPE: 48786.0312 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 4/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0089 - MAE: 0.0668 - MAPE: 22915.8906 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 5/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0039 - MAE: 0.0397 - MAPE: 9428.9629 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 6/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0030 - MAE: 0.0381 - MAPE: 3659.3215 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 7/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0030 - MAE: 0.0390 - MAPE: 2380.5793 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 8/200 6/6 [==============================] - 0s 40ms/step - loss: 0.0023 - MAE: 0.0303 - MAPE: 6324.5840 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 9/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0022 - MAE: 0.0268 - MAPE: 3557.6655 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 10/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0016 - MAE: 0.0247 - MAPE: 4105.1680 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 11/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0016 - MAE: 0.0249 - MAPE: 2091.3821 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 12/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0017 - MAE: 0.0247 - MAPE: 163.1446 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 13/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0019 - MAE: 0.0267 - MAPE: 3607.2119 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 14/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0016 - MAE: 0.0249 - MAPE: 8090.6772 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 15/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0019 - MAE: 0.0264 - MAPE: 4008.1765 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 16/200 6/6 [==============================] - 0s 41ms/step - loss: 0.0020 - MAE: 0.0275 - MAPE: 85.4819 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 17/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0018 - MAE: 0.0269 - MAPE: 6041.6577 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 18/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0016 - MAE: 0.0238 - MAPE: 2586.8306 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 19/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0013 - MAE: 0.0225 - MAPE: 3722.1621 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 20/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0014 - MAE: 0.0224 - MAPE: 4912.9385 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 21/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0013 - MAE: 0.0217 - MAPE: 4805.6602 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 22/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0013 - MAE: 0.0219 - MAPE: 1637.5371 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 23/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0013 - MAE: 0.0218 - MAPE: 5341.2231 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 24/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0012 - MAE: 0.0216 - MAPE: 5495.4883 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 25/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0013 - MAE: 0.0220 - MAPE: 4864.3281 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 26/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0012 - MAE: 0.0209 - MAPE: 5390.5596 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 27/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0012 - MAE: 0.0210 - MAPE: 5062.6060 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 28/200 6/6 [==============================] - 0s 40ms/step - loss: 0.0012 - MAE: 0.0205 - MAPE: 5430.0830 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 29/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0011 - MAE: 0.0209 - MAPE: 6807.1172 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 30/200 6/6 [==============================] - 0s 40ms/step - loss: 0.0012 - MAE: 0.0209 - MAPE: 4940.2354 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 31/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0013 - MAE: 0.0219 - MAPE: 6652.1577 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 32/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0012 - MAE: 0.0210 - MAPE: 61.5209 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 33/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0012 - MAE: 0.0213 - MAPE: 4900.0029 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 34/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0012 - MAE: 0.0208 - MAPE: 4871.5571 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 35/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0012 - MAE: 0.0207 - MAPE: 5978.1606 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 36/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0010 - MAE: 0.0197 - MAPE: 3203.8962 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 37/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0012 - MAE: 0.0207 - MAPE: 4837.1782 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 38/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0011 - MAE: 0.0197 - MAPE: 2539.6870 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 39/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0015 - MAE: 0.0232 - MAPE: 2253.7524 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 40/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0014 - MAE: 0.0231 - MAPE: 7767.3105 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 41/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0012 - MAE: 0.0209 - MAPE: 6212.0278 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 42/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0012 - MAE: 0.0209 - MAPE: 1497.1174 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 43/200 6/6 [==============================] - 0s 40ms/step - loss: 0.0011 - MAE: 0.0201 - MAPE: 6126.6626 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 44/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0011 - MAE: 0.0204 - MAPE: 6229.5977 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 45/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0012 - MAE: 0.0213 - MAPE: 1976.7722 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 46/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0011 - MAE: 0.0209 - MAPE: 5041.8188 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 47/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0012 - MAE: 0.0209 - MAPE: 701.9355 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 48/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0012 - MAE: 0.0210 - MAPE: 1825.7566 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 49/200 6/6 [==============================] - 0s 40ms/step - loss: 0.0013 - MAE: 0.0216 - MAPE: 3769.0562 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 50/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0012 - MAE: 0.0219 - MAPE: 923.1461 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 51/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0011 - MAE: 0.0204 - MAPE: 5427.5674 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 52/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0010 - MAE: 0.0197 - MAPE: 5282.3008 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 53/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0011 - MAE: 0.0199 - MAPE: 3953.0986 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 54/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0012 - MAE: 0.0203 - MAPE: 2343.1533 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 55/200 6/6 [==============================] - 0s 60ms/step - loss: 0.0011 - MAE: 0.0206 - MAPE: 2597.8992 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 56/200 6/6 [==============================] - 0s 48ms/step - loss: 0.0013 - MAE: 0.0215 - MAPE: 4493.4839 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 57/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0011 - MAE: 0.0201 - MAPE: 2589.6489 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 58/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0010 - MAE: 0.0197 - MAPE: 4832.6577 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 59/200 6/6 [==============================] - 0s 40ms/step - loss: 0.0011 - MAE: 0.0199 - MAPE: 4441.9497 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 60/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0011 - MAE: 0.0201 - MAPE: 2968.6094 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 61/200 6/6 [==============================] - 0s 41ms/step - loss: 0.0012 - MAE: 0.0204 - MAPE: 2492.5974 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 62/200 6/6 [==============================] - 0s 40ms/step - loss: 0.0010 - MAE: 0.0194 - MAPE: 1660.6082 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 63/200 6/6 [==============================] - 0s 39ms/step - loss: 9.8934e-04 - MAE: 0.0192 - MAPE: 4890.2866 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 64/200 6/6 [==============================] - 0s 40ms/step - loss: 0.0011 - MAE: 0.0200 - MAPE: 63.2859 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 65/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0010 - MAE: 0.0194 - MAPE: 4916.3887 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 66/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0012 - MAE: 0.0208 - MAPE: 4313.2866 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 67/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0010 - MAE: 0.0196 - MAPE: 3751.0901 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 68/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0011 - MAE: 0.0199 - MAPE: 5368.3691 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 69/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0011 - MAE: 0.0204 - MAPE: 2105.2786 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 70/200 6/6 [==============================] - 0s 39ms/step - loss: 9.6978e-04 - MAE: 0.0192 - MAPE: 6508.0161 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 71/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0015 - MAE: 0.0240 - MAPE: 2889.1401 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 72/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0014 - MAE: 0.0226 - MAPE: 3465.6016 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 73/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0015 - MAE: 0.0232 - MAPE: 3379.9045 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 74/200 6/6 [==============================] - 0s 40ms/step - loss: 0.0012 - MAE: 0.0205 - MAPE: 2614.0823 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 75/200 6/6 [==============================] - 0s 50ms/step - loss: 9.6950e-04 - MAE: 0.0189 - MAPE: 5975.8213 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 76/200 6/6 [==============================] - 0s 42ms/step - loss: 9.8108e-04 - MAE: 0.0189 - MAPE: 1968.7216 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 77/200 6/6 [==============================] - 0s 40ms/step - loss: 9.9354e-04 - MAE: 0.0195 - MAPE: 463.7607 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 78/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0012 - MAE: 0.0209 - MAPE: 4750.7979 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 79/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0012 - MAE: 0.0204 - MAPE: 1982.2397 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 80/200 6/6 [==============================] - 0s 37ms/step - loss: 9.4675e-04 - MAE: 0.0192 - MAPE: 4735.6821 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 81/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0012 - MAE: 0.0204 - MAPE: 1293.3907 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 82/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0011 - MAE: 0.0199 - MAPE: 954.0157 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 83/200 6/6 [==============================] - 0s 38ms/step - loss: 9.6781e-04 - MAE: 0.0193 - MAPE: 5054.5200 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 84/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0011 - MAE: 0.0207 - MAPE: 3812.1785 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 85/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0010 - MAE: 0.0196 - MAPE: 2060.8857 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 86/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0011 - MAE: 0.0194 - MAPE: 4462.6313 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 87/200 6/6 [==============================] - 0s 37ms/step - loss: 9.8494e-04 - MAE: 0.0192 - MAPE: 9198.7549 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 88/200 6/6 [==============================] - 0s 38ms/step - loss: 9.8756e-04 - MAE: 0.0193 - MAPE: 2768.4346 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 89/200 6/6 [==============================] - 0s 37ms/step - loss: 9.6744e-04 - MAE: 0.0189 - MAPE: 2721.3455 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 90/200 6/6 [==============================] - 0s 36ms/step - loss: 9.5425e-04 - MAE: 0.0196 - MAPE: 817.0126 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 91/200 6/6 [==============================] - 0s 38ms/step - loss: 9.5588e-04 - MAE: 0.0188 - MAPE: 517.2844 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 92/200 6/6 [==============================] - 0s 37ms/step - loss: 9.5272e-04 - MAE: 0.0189 - MAPE: 1028.2313 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 93/200 6/6 [==============================] - 0s 38ms/step - loss: 9.5845e-04 - MAE: 0.0190 - MAPE: 47.5495 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 94/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0017 - MAE: 0.0257 - MAPE: 3481.3135 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 95/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0013 - MAE: 0.0232 - MAPE: 5777.4321 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 96/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0011 - MAE: 0.0201 - MAPE: 1285.8923 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 97/200 6/6 [==============================] - 0s 41ms/step - loss: 0.0011 - MAE: 0.0202 - MAPE: 2016.4852 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 98/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0011 - MAE: 0.0204 - MAPE: 5752.2578 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 99/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0011 - MAE: 0.0197 - MAPE: 325.6953 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 100/200 6/6 [==============================] - 0s 38ms/step - loss: 9.7380e-04 - MAE: 0.0191 - MAPE: 4917.5029 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 101/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0014 - MAE: 0.0227 - MAPE: 3660.3403 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 102/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0011 - MAE: 0.0200 - MAPE: 3090.5676 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 103/200 6/6 [==============================] - 0s 37ms/step - loss: 9.5398e-04 - MAE: 0.0187 - MAPE: 3836.9253 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 104/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0010 - MAE: 0.0191 - MAPE: 2966.6067 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 105/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0011 - MAE: 0.0200 - MAPE: 3397.6150 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 106/200 6/6 [==============================] - 0s 37ms/step - loss: 9.6700e-04 - MAE: 0.0189 - MAPE: 3726.1936 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 107/200 6/6 [==============================] - 0s 38ms/step - loss: 9.5150e-04 - MAE: 0.0186 - MAPE: 877.1010 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 108/200 6/6 [==============================] - 0s 39ms/step - loss: 9.8270e-04 - MAE: 0.0193 - MAPE: 783.3370 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 109/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0010 - MAE: 0.0199 - MAPE: 5827.5225 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 110/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0011 - MAE: 0.0197 - MAPE: 1584.1986 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 111/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0011 - MAE: 0.0196 - MAPE: 2797.4688 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 112/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0014 - MAE: 0.0226 - MAPE: 2340.7922 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 113/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0016 - MAE: 0.0249 - MAPE: 4119.8203 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 114/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0010 - MAE: 0.0203 - MAPE: 1218.5309 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 115/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0010 - MAE: 0.0191 - MAPE: 7041.8491 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 116/200 6/6 [==============================] - 0s 37ms/step - loss: 9.2809e-04 - MAE: 0.0186 - MAPE: 1904.6056 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 117/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0010 - MAE: 0.0202 - MAPE: 5280.6240 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 118/200 6/6 [==============================] - 0s 38ms/step - loss: 9.5859e-04 - MAE: 0.0186 - MAPE: 491.9634 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 119/200 6/6 [==============================] - 0s 37ms/step - loss: 8.0834e-04 - MAE: 0.0173 - MAPE: 3212.0928 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 120/200 6/6 [==============================] - 0s 38ms/step - loss: 8.6738e-04 - MAE: 0.0179 - MAPE: 245.4634 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 121/200 6/6 [==============================] - 0s 37ms/step - loss: 8.9225e-04 - MAE: 0.0179 - MAPE: 1983.2170 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 122/200 6/6 [==============================] - 0s 39ms/step - loss: 8.6599e-04 - MAE: 0.0185 - MAPE: 1007.9837 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 123/200 6/6 [==============================] - 0s 40ms/step - loss: 0.0011 - MAE: 0.0208 - MAPE: 5557.0718 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 124/200 6/6 [==============================] - 0s 38ms/step - loss: 8.6013e-04 - MAE: 0.0185 - MAPE: 2880.4448 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 125/200 6/6 [==============================] - 0s 37ms/step - loss: 8.0012e-04 - MAE: 0.0173 - MAPE: 5518.3735 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 126/200 6/6 [==============================] - 0s 37ms/step - loss: 8.8179e-04 - MAE: 0.0177 - MAPE: 1784.5487 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 127/200 6/6 [==============================] - 0s 38ms/step - loss: 9.2242e-04 - MAE: 0.0184 - MAPE: 3962.7512 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 128/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0011 - MAE: 0.0207 - MAPE: 3693.6699 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 129/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0010 - MAE: 0.0201 - MAPE: 6704.6060 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 130/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0011 - MAE: 0.0205 - MAPE: 1773.8242 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 131/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0015 - MAE: 0.0233 - MAPE: 3853.5942 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 132/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0016 - MAE: 0.0278 - MAPE: 1887.5865 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 133/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0011 - MAE: 0.0219 - MAPE: 6183.1787 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 134/200 6/6 [==============================] - 0s 39ms/step - loss: 0.0011 - MAE: 0.0209 - MAPE: 48.8577 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 135/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0011 - MAE: 0.0211 - MAPE: 2983.3794 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 136/200 6/6 [==============================] - 0s 37ms/step - loss: 8.9494e-04 - MAE: 0.0188 - MAPE: 5246.8760 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 137/200 6/6 [==============================] - 0s 37ms/step - loss: 8.6244e-04 - MAE: 0.0180 - MAPE: 3020.9626 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 138/200 6/6 [==============================] - 0s 38ms/step - loss: 8.9431e-04 - MAE: 0.0186 - MAPE: 1229.3715 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 139/200 6/6 [==============================] - 0s 38ms/step - loss: 8.1995e-04 - MAE: 0.0183 - MAPE: 230.6032 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 140/200 6/6 [==============================] - 0s 38ms/step - loss: 9.2162e-04 - MAE: 0.0183 - MAPE: 5006.6987 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 141/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0010 - MAE: 0.0193 - MAPE: 132.6137 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 142/200 6/6 [==============================] - 0s 37ms/step - loss: 9.1031e-04 - MAE: 0.0184 - MAPE: 2424.7290 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 143/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0011 - MAE: 0.0205 - MAPE: 2858.3340 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 144/200 6/6 [==============================] - 0s 39ms/step - loss: 9.8727e-04 - MAE: 0.0188 - MAPE: 3365.1785 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 145/200 6/6 [==============================] - 0s 38ms/step - loss: 9.1864e-04 - MAE: 0.0186 - MAPE: 2401.9607 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 146/200 6/6 [==============================] - 0s 38ms/step - loss: 8.3845e-04 - MAE: 0.0175 - MAPE: 8599.2080 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 147/200 6/6 [==============================] - 0s 38ms/step - loss: 8.6452e-04 - MAE: 0.0180 - MAPE: 2882.7532 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 148/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0010 - MAE: 0.0191 - MAPE: 2820.4556 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 149/200 6/6 [==============================] - 0s 38ms/step - loss: 8.6740e-04 - MAE: 0.0179 - MAPE: 1023.7833 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 150/200 6/6 [==============================] - 0s 37ms/step - loss: 8.7193e-04 - MAE: 0.0177 - MAPE: 877.7140 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 151/200 6/6 [==============================] - 0s 39ms/step - loss: 8.2773e-04 - MAE: 0.0174 - MAPE: 2653.6829 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 152/200 6/6 [==============================] - 0s 38ms/step - loss: 8.1717e-04 - MAE: 0.0174 - MAPE: 1428.2167 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 153/200 6/6 [==============================] - 0s 38ms/step - loss: 8.9639e-04 - MAE: 0.0187 - MAPE: 4572.9272 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 154/200 6/6 [==============================] - 0s 37ms/step - loss: 7.9461e-04 - MAE: 0.0178 - MAPE: 5106.5444 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 155/200 6/6 [==============================] - 0s 38ms/step - loss: 8.1740e-04 - MAE: 0.0184 - MAPE: 1071.5863 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 156/200 6/6 [==============================] - 0s 39ms/step - loss: 7.9413e-04 - MAE: 0.0186 - MAPE: 4252.3125 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 157/200 6/6 [==============================] - 0s 38ms/step - loss: 8.5620e-04 - MAE: 0.0184 - MAPE: 2576.7703 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 158/200 6/6 [==============================] - 0s 37ms/step - loss: 8.0380e-04 - MAE: 0.0173 - MAPE: 3733.7837 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 159/200 6/6 [==============================] - 0s 37ms/step - loss: 8.4723e-04 - MAE: 0.0177 - MAPE: 1023.9481 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 160/200 6/6 [==============================] - 0s 38ms/step - loss: 9.1409e-04 - MAE: 0.0190 - MAPE: 2525.3816 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 161/200 6/6 [==============================] - 0s 37ms/step - loss: 7.5363e-04 - MAE: 0.0173 - MAPE: 1576.7024 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 162/200 6/6 [==============================] - 0s 38ms/step - loss: 7.8568e-04 - MAE: 0.0180 - MAPE: 3474.7568 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 163/200 6/6 [==============================] - 0s 37ms/step - loss: 8.3247e-04 - MAE: 0.0177 - MAPE: 2856.5544 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 164/200 6/6 [==============================] - 0s 38ms/step - loss: 8.9754e-04 - MAE: 0.0184 - MAPE: 1865.2383 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 165/200 6/6 [==============================] - 0s 38ms/step - loss: 9.2677e-04 - MAE: 0.0188 - MAPE: 3359.3464 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 166/200 6/6 [==============================] - 0s 37ms/step - loss: 8.2711e-04 - MAE: 0.0178 - MAPE: 5258.6909 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 167/200 6/6 [==============================] - 0s 38ms/step - loss: 7.6113e-04 - MAE: 0.0169 - MAPE: 7204.0708 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 168/200 6/6 [==============================] - 0s 37ms/step - loss: 7.5891e-04 - MAE: 0.0167 - MAPE: 6330.9097 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 169/200 6/6 [==============================] - 0s 37ms/step - loss: 9.2107e-04 - MAE: 0.0182 - MAPE: 3796.4421 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 170/200 6/6 [==============================] - 0s 39ms/step - loss: 8.3887e-04 - MAE: 0.0183 - MAPE: 1292.4973 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 171/200 6/6 [==============================] - 0s 37ms/step - loss: 7.8280e-04 - MAE: 0.0176 - MAPE: 3316.2532 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 172/200 6/6 [==============================] - 0s 37ms/step - loss: 7.6619e-04 - MAE: 0.0169 - MAPE: 1133.3474 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 173/200 6/6 [==============================] - 0s 40ms/step - loss: 8.3276e-04 - MAE: 0.0173 - MAPE: 3639.8511 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 174/200 6/6 [==============================] - 0s 38ms/step - loss: 7.3815e-04 - MAE: 0.0167 - MAPE: 2199.4829 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 175/200 6/6 [==============================] - 0s 40ms/step - loss: 9.1265e-04 - MAE: 0.0185 - MAPE: 266.9843 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 176/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0017 - MAE: 0.0250 - MAPE: 1066.3867 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 177/200 6/6 [==============================] - 0s 40ms/step - loss: 0.0012 - MAE: 0.0221 - MAPE: 1066.3877 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 178/200 6/6 [==============================] - 0s 42ms/step - loss: 9.5631e-04 - MAE: 0.0203 - MAPE: 1225.5463 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 179/200 6/6 [==============================] - 0s 40ms/step - loss: 0.0011 - MAE: 0.0204 - MAPE: 8483.7998 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 180/200 6/6 [==============================] - 0s 41ms/step - loss: 9.2278e-04 - MAE: 0.0198 - MAPE: 1250.0765 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 181/200 6/6 [==============================] - 0s 39ms/step - loss: 8.0489e-04 - MAE: 0.0177 - MAPE: 7725.0996 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 182/200 6/6 [==============================] - 0s 40ms/step - loss: 8.3717e-04 - MAE: 0.0179 - MAPE: 5270.9517 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 183/200 6/6 [==============================] - 0s 38ms/step - loss: 7.4017e-04 - MAE: 0.0167 - MAPE: 2469.0720 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 184/200 6/6 [==============================] - 0s 40ms/step - loss: 6.9623e-04 - MAE: 0.0163 - MAPE: 3000.8743 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 185/200 6/6 [==============================] - 0s 40ms/step - loss: 7.3121e-04 - MAE: 0.0168 - MAPE: 2214.5830 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 186/200 6/6 [==============================] - 0s 39ms/step - loss: 7.9472e-04 - MAE: 0.0170 - MAPE: 2955.8074 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 187/200 6/6 [==============================] - 0s 40ms/step - loss: 7.6226e-04 - MAE: 0.0170 - MAPE: 6020.6431 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 188/200 6/6 [==============================] - 0s 38ms/step - loss: 8.2732e-04 - MAE: 0.0175 - MAPE: 2374.7051 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 189/200 6/6 [==============================] - 0s 39ms/step - loss: 8.0163e-04 - MAE: 0.0173 - MAPE: 1088.9432 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 190/200 6/6 [==============================] - 0s 38ms/step - loss: 7.4861e-04 - MAE: 0.0167 - MAPE: 5081.1465 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 191/200 6/6 [==============================] - 0s 60ms/step - loss: 7.3903e-04 - MAE: 0.0168 - MAPE: 4080.7527 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 192/200 6/6 [==============================] - 0s 60ms/step - loss: 7.7706e-04 - MAE: 0.0174 - MAPE: 5579.6807 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 193/200 6/6 [==============================] - 0s 54ms/step - loss: 7.2327e-04 - MAE: 0.0170 - MAPE: 7961.8931 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 194/200 6/6 [==============================] - 0s 49ms/step - loss: 9.2637e-04 - MAE: 0.0193 - MAPE: 2138.3674 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 195/200 6/6 [==============================] - 0s 59ms/step - loss: 8.9312e-04 - MAE: 0.0191 - MAPE: 4415.5425 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 196/200 6/6 [==============================] - 0s 39ms/step - loss: 8.4071e-04 - MAE: 0.0184 - MAPE: 1568.6184 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 197/200 6/6 [==============================] - 0s 44ms/step - loss: 7.9499e-04 - MAE: 0.0178 - MAPE: 2082.4395 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 198/200 6/6 [==============================] - 0s 40ms/step - loss: 7.5189e-04 - MAE: 0.0177 - MAPE: 6481.0195 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 199/200 6/6 [==============================] - 0s 38ms/step - loss: 9.4304e-04 - MAE: 0.0187 - MAPE: 1355.9016 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 200/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0010 - MAE: 0.0198 - MAPE: 2984.0625 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000
GRU_model = Sequential()
GRU_model.add(GRU(units=300, return_sequences=True, input_shape=(features_set.shape[1], 1)))
GRU_model.add(Dropout(0.2))
GRU_model.add(GRU(units=100, return_sequences=True))
GRU_model.add(Dropout(0.2))
GRU_model.add(GRU(units=100, return_sequences=True))
GRU_model.add(Dropout(0.2))
GRU_model.add(GRU(units=100))
GRU_model.add(Dropout(0.2))
GRU_model.add(Dense(units = 1))
GRU_model.summary()
Model: "sequential_5" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= gru (GRU) (None, 60, 300) 272700 dropout_20 (Dropout) (None, 60, 300) 0 gru_1 (GRU) (None, 60, 100) 120600 dropout_21 (Dropout) (None, 60, 100) 0 gru_2 (GRU) (None, 60, 100) 60600 dropout_22 (Dropout) (None, 60, 100) 0 gru_3 (GRU) (None, 100) 60600 dropout_23 (Dropout) (None, 100) 0 dense_5 (Dense) (None, 1) 101 ================================================================= Total params: 514601 (1.96 MB) Trainable params: 514601 (1.96 MB) Non-trainable params: 0 (0.00 Byte) _________________________________________________________________
GRU_model.compile(optimizer = 'adam', loss = 'mean_squared_error', metrics = ['MAE', 'MAPE', 'F1Score', 'Accuracy', 'Precision'])
GRU_History = GRU_model.fit(features_set, labels, epochs = 200, batch_size = 640)
Epoch 1/200 6/6 [==============================] - 6s 79ms/step - loss: 0.0598 - MAE: 0.1799 - MAPE: 42537.5625 - f1_score: 0.4376 - Accuracy: 3.1133e-04 - precision: 1.0000 Epoch 2/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0157 - MAE: 0.0818 - MAPE: 24464.4004 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 3/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0041 - MAE: 0.0472 - MAPE: 14219.3887 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 4/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0039 - MAE: 0.0494 - MAPE: 6708.4600 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 5/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0032 - MAE: 0.0344 - MAPE: 5434.9390 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 6/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0029 - MAE: 0.0323 - MAPE: 3615.2881 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 7/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0023 - MAE: 0.0324 - MAPE: 10065.0117 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 8/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0023 - MAE: 0.0324 - MAPE: 1498.1990 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 9/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0018 - MAE: 0.0266 - MAPE: 1392.9135 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 10/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0020 - MAE: 0.0263 - MAPE: 3212.2773 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 11/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0014 - MAE: 0.0228 - MAPE: 6089.4077 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 12/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0013 - MAE: 0.0220 - MAPE: 4050.6211 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 13/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0014 - MAE: 0.0221 - MAPE: 2665.9312 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 14/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0015 - MAE: 0.0234 - MAPE: 6548.0400 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 15/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0015 - MAE: 0.0237 - MAPE: 3941.4199 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 16/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0014 - MAE: 0.0225 - MAPE: 7436.8794 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 17/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0012 - MAE: 0.0210 - MAPE: 1672.8270 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 18/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0011 - MAE: 0.0205 - MAPE: 3104.4785 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 19/200 6/6 [==============================] - 0s 34ms/step - loss: 0.0012 - MAE: 0.0205 - MAPE: 429.0417 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 20/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0011 - MAE: 0.0201 - MAPE: 572.4976 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 21/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0011 - MAE: 0.0201 - MAPE: 2979.8623 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 22/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0012 - MAE: 0.0204 - MAPE: 1913.9456 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 23/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0010 - MAE: 0.0193 - MAPE: 1758.8938 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 24/200 6/6 [==============================] - 0s 35ms/step - loss: 9.9857e-04 - MAE: 0.0193 - MAPE: 1965.6210 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 25/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0010 - MAE: 0.0192 - MAPE: 3942.5471 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 26/200 6/6 [==============================] - 0s 36ms/step - loss: 9.8854e-04 - MAE: 0.0190 - MAPE: 2956.6628 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 27/200 6/6 [==============================] - 0s 35ms/step - loss: 9.7701e-04 - MAE: 0.0189 - MAPE: 4067.7500 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 28/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0010 - MAE: 0.0195 - MAPE: 305.6445 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 29/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0012 - MAE: 0.0215 - MAPE: 792.9704 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 30/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0013 - MAE: 0.0218 - MAPE: 4082.9443 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 31/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0011 - MAE: 0.0210 - MAPE: 1310.5103 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 32/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0010 - MAE: 0.0192 - MAPE: 255.6467 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 33/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0019 - MAE: 0.0282 - MAPE: 7019.6064 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 34/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0013 - MAE: 0.0233 - MAPE: 6805.7559 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 35/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0017 - MAE: 0.0261 - MAPE: 763.6566 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 36/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0013 - MAE: 0.0246 - MAPE: 6694.3936 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 37/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0014 - MAE: 0.0240 - MAPE: 2347.6023 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 38/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0013 - MAE: 0.0224 - MAPE: 3337.9402 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 39/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0011 - MAE: 0.0215 - MAPE: 4986.9482 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 40/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0010 - MAE: 0.0212 - MAPE: 3307.1440 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 41/200 6/6 [==============================] - 0s 36ms/step - loss: 8.9657e-04 - MAE: 0.0195 - MAPE: 2773.0916 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 42/200 6/6 [==============================] - 0s 37ms/step - loss: 0.0021 - MAE: 0.0292 - MAPE: 5419.1543 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 43/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0015 - MAE: 0.0265 - MAPE: 7172.8535 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 44/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0012 - MAE: 0.0237 - MAPE: 7824.0742 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 45/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0011 - MAE: 0.0207 - MAPE: 729.2680 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 46/200 6/6 [==============================] - 0s 34ms/step - loss: 9.2524e-04 - MAE: 0.0193 - MAPE: 2714.7883 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 47/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0013 - MAE: 0.0229 - MAPE: 7408.1724 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 48/200 6/6 [==============================] - 0s 35ms/step - loss: 9.9411e-04 - MAE: 0.0205 - MAPE: 520.9581 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 49/200 6/6 [==============================] - 0s 34ms/step - loss: 0.0011 - MAE: 0.0204 - MAPE: 774.7983 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 50/200 6/6 [==============================] - 0s 37ms/step - loss: 8.9229e-04 - MAE: 0.0190 - MAPE: 5975.3296 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 51/200 6/6 [==============================] - 0s 34ms/step - loss: 9.4661e-04 - MAE: 0.0195 - MAPE: 697.5920 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 52/200 6/6 [==============================] - 0s 34ms/step - loss: 8.4952e-04 - MAE: 0.0183 - MAPE: 4304.4902 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 53/200 6/6 [==============================] - 0s 34ms/step - loss: 9.6127e-04 - MAE: 0.0194 - MAPE: 2650.1030 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 54/200 6/6 [==============================] - 0s 36ms/step - loss: 9.4477e-04 - MAE: 0.0193 - MAPE: 4256.7368 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 55/200 6/6 [==============================] - 0s 38ms/step - loss: 8.7754e-04 - MAE: 0.0186 - MAPE: 3635.0417 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 56/200 6/6 [==============================] - 0s 36ms/step - loss: 8.5041e-04 - MAE: 0.0179 - MAPE: 3296.5396 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 57/200 6/6 [==============================] - 0s 36ms/step - loss: 8.1594e-04 - MAE: 0.0180 - MAPE: 2423.9211 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 58/200 6/6 [==============================] - 0s 35ms/step - loss: 9.0585e-04 - MAE: 0.0187 - MAPE: 740.0018 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 59/200 6/6 [==============================] - 0s 35ms/step - loss: 8.9242e-04 - MAE: 0.0193 - MAPE: 3683.1199 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 60/200 6/6 [==============================] - 0s 36ms/step - loss: 8.5348e-04 - MAE: 0.0188 - MAPE: 8651.9268 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 61/200 6/6 [==============================] - 0s 35ms/step - loss: 8.2854e-04 - MAE: 0.0182 - MAPE: 3180.2783 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 62/200 6/6 [==============================] - 0s 34ms/step - loss: 9.3875e-04 - MAE: 0.0192 - MAPE: 1694.0045 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 63/200 6/6 [==============================] - 0s 34ms/step - loss: 8.5700e-04 - MAE: 0.0191 - MAPE: 8236.4512 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 64/200 6/6 [==============================] - 0s 35ms/step - loss: 8.2023e-04 - MAE: 0.0186 - MAPE: 3774.4456 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 65/200 6/6 [==============================] - 0s 34ms/step - loss: 9.7597e-04 - MAE: 0.0208 - MAPE: 2906.8979 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 66/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0015 - MAE: 0.0249 - MAPE: 5212.8018 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 67/200 6/6 [==============================] - 0s 34ms/step - loss: 9.6636e-04 - MAE: 0.0197 - MAPE: 1966.2268 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 68/200 6/6 [==============================] - 0s 35ms/step - loss: 8.9722e-04 - MAE: 0.0190 - MAPE: 7733.6567 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 69/200 6/6 [==============================] - 0s 35ms/step - loss: 9.5707e-04 - MAE: 0.0194 - MAPE: 3737.7278 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 70/200 6/6 [==============================] - 0s 35ms/step - loss: 8.7630e-04 - MAE: 0.0183 - MAPE: 4400.6309 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 71/200 6/6 [==============================] - 0s 35ms/step - loss: 7.9640e-04 - MAE: 0.0176 - MAPE: 4667.8843 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 72/200 6/6 [==============================] - 0s 35ms/step - loss: 7.6340e-04 - MAE: 0.0175 - MAPE: 759.7166 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 73/200 6/6 [==============================] - 0s 35ms/step - loss: 8.3902e-04 - MAE: 0.0178 - MAPE: 3205.3074 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 74/200 6/6 [==============================] - 0s 34ms/step - loss: 7.1532e-04 - MAE: 0.0170 - MAPE: 7425.6162 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 75/200 6/6 [==============================] - 0s 34ms/step - loss: 8.7988e-04 - MAE: 0.0191 - MAPE: 2157.1851 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 76/200 6/6 [==============================] - 0s 36ms/step - loss: 7.8703e-04 - MAE: 0.0184 - MAPE: 546.4073 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 77/200 6/6 [==============================] - 0s 34ms/step - loss: 9.4534e-04 - MAE: 0.0196 - MAPE: 3219.3984 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 78/200 6/6 [==============================] - 0s 34ms/step - loss: 8.5481e-04 - MAE: 0.0200 - MAPE: 649.7078 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 79/200 6/6 [==============================] - 0s 35ms/step - loss: 9.3607e-04 - MAE: 0.0195 - MAPE: 6181.2314 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 80/200 6/6 [==============================] - 0s 34ms/step - loss: 0.0017 - MAE: 0.0271 - MAPE: 3926.2422 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 81/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0010 - MAE: 0.0227 - MAPE: 630.2184 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 82/200 6/6 [==============================] - 0s 35ms/step - loss: 9.3932e-04 - MAE: 0.0201 - MAPE: 7741.7354 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 83/200 6/6 [==============================] - 0s 34ms/step - loss: 8.5286e-04 - MAE: 0.0183 - MAPE: 4622.4756 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 84/200 6/6 [==============================] - 0s 35ms/step - loss: 7.6727e-04 - MAE: 0.0183 - MAPE: 512.1459 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 85/200 6/6 [==============================] - 0s 35ms/step - loss: 7.4256e-04 - MAE: 0.0182 - MAPE: 6511.8423 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 86/200 6/6 [==============================] - 0s 34ms/step - loss: 7.4687e-04 - MAE: 0.0183 - MAPE: 1147.0010 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 87/200 6/6 [==============================] - 0s 35ms/step - loss: 7.7580e-04 - MAE: 0.0180 - MAPE: 4902.0366 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 88/200 6/6 [==============================] - 0s 36ms/step - loss: 7.5556e-04 - MAE: 0.0178 - MAPE: 7214.0112 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 89/200 6/6 [==============================] - 0s 35ms/step - loss: 7.7704e-04 - MAE: 0.0176 - MAPE: 4014.8123 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 90/200 6/6 [==============================] - 0s 34ms/step - loss: 7.2925e-04 - MAE: 0.0173 - MAPE: 1285.2451 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 91/200 6/6 [==============================] - 0s 35ms/step - loss: 7.5061e-04 - MAE: 0.0178 - MAPE: 4561.3784 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 92/200 6/6 [==============================] - 0s 36ms/step - loss: 7.1916e-04 - MAE: 0.0172 - MAPE: 1539.1210 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 93/200 6/6 [==============================] - 0s 39ms/step - loss: 8.1345e-04 - MAE: 0.0181 - MAPE: 5165.5171 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 94/200 6/6 [==============================] - 0s 34ms/step - loss: 7.5221e-04 - MAE: 0.0173 - MAPE: 3204.9736 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 95/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0012 - MAE: 0.0229 - MAPE: 6320.2720 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 96/200 6/6 [==============================] - 0s 36ms/step - loss: 8.9615e-04 - MAE: 0.0194 - MAPE: 2450.8765 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 97/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0011 - MAE: 0.0206 - MAPE: 193.7095 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 98/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0010 - MAE: 0.0206 - MAPE: 4201.9824 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 99/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0011 - MAE: 0.0230 - MAPE: 4488.0898 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 100/200 6/6 [==============================] - 0s 34ms/step - loss: 0.0011 - MAE: 0.0239 - MAPE: 4684.4756 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 101/200 6/6 [==============================] - 0s 35ms/step - loss: 7.6561e-04 - MAE: 0.0194 - MAPE: 2994.6472 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 102/200 6/6 [==============================] - 0s 34ms/step - loss: 0.0013 - MAE: 0.0226 - MAPE: 1915.5132 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 103/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0014 - MAE: 0.0250 - MAPE: 293.3149 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 104/200 6/6 [==============================] - 0s 36ms/step - loss: 0.0012 - MAE: 0.0241 - MAPE: 1936.7085 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 105/200 6/6 [==============================] - 0s 36ms/step - loss: 9.1535e-04 - MAE: 0.0213 - MAPE: 7467.1738 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 106/200 6/6 [==============================] - 0s 34ms/step - loss: 7.6411e-04 - MAE: 0.0187 - MAPE: 416.7107 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 107/200 6/6 [==============================] - 0s 36ms/step - loss: 7.5466e-04 - MAE: 0.0178 - MAPE: 2330.8533 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 108/200 6/6 [==============================] - 0s 35ms/step - loss: 7.5015e-04 - MAE: 0.0175 - MAPE: 5318.1333 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 109/200 6/6 [==============================] - 0s 34ms/step - loss: 7.6009e-04 - MAE: 0.0173 - MAPE: 5988.5820 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 110/200 6/6 [==============================] - 0s 34ms/step - loss: 7.0994e-04 - MAE: 0.0172 - MAPE: 3324.1621 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 111/200 6/6 [==============================] - 0s 34ms/step - loss: 7.2698e-04 - MAE: 0.0175 - MAPE: 4554.6929 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 112/200 6/6 [==============================] - 0s 35ms/step - loss: 7.7762e-04 - MAE: 0.0182 - MAPE: 6328.6455 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 113/200 6/6 [==============================] - 0s 34ms/step - loss: 6.9188e-04 - MAE: 0.0176 - MAPE: 5424.5112 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 114/200 6/6 [==============================] - 0s 35ms/step - loss: 6.9595e-04 - MAE: 0.0177 - MAPE: 3765.5930 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 115/200 6/6 [==============================] - 0s 34ms/step - loss: 6.5153e-04 - MAE: 0.0164 - MAPE: 718.2709 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 116/200 6/6 [==============================] - 0s 35ms/step - loss: 7.1251e-04 - MAE: 0.0168 - MAPE: 261.5475 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 117/200 6/6 [==============================] - 0s 33ms/step - loss: 7.6156e-04 - MAE: 0.0177 - MAPE: 1907.7561 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 118/200 6/6 [==============================] - 0s 34ms/step - loss: 6.5178e-04 - MAE: 0.0165 - MAPE: 2064.2080 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 119/200 6/6 [==============================] - 0s 35ms/step - loss: 8.5291e-04 - MAE: 0.0188 - MAPE: 12962.2266 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 120/200 6/6 [==============================] - 0s 34ms/step - loss: 7.4107e-04 - MAE: 0.0173 - MAPE: 7174.8535 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 121/200 6/6 [==============================] - 0s 34ms/step - loss: 7.6460e-04 - MAE: 0.0178 - MAPE: 4190.6123 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 122/200 6/6 [==============================] - 0s 34ms/step - loss: 7.0021e-04 - MAE: 0.0176 - MAPE: 4681.1372 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 123/200 6/6 [==============================] - 0s 34ms/step - loss: 7.1405e-04 - MAE: 0.0192 - MAPE: 2401.4919 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 124/200 6/6 [==============================] - 0s 35ms/step - loss: 8.0677e-04 - MAE: 0.0179 - MAPE: 6716.6265 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 125/200 6/6 [==============================] - 0s 34ms/step - loss: 7.5553e-04 - MAE: 0.0172 - MAPE: 3859.3950 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 126/200 6/6 [==============================] - 0s 34ms/step - loss: 6.1296e-04 - MAE: 0.0160 - MAPE: 4287.5552 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 127/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0010 - MAE: 0.0209 - MAPE: 5384.1855 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 128/200 6/6 [==============================] - 0s 35ms/step - loss: 8.0929e-04 - MAE: 0.0201 - MAPE: 345.5365 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 129/200 6/6 [==============================] - 0s 34ms/step - loss: 6.6536e-04 - MAE: 0.0177 - MAPE: 2163.7483 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 130/200 6/6 [==============================] - 0s 35ms/step - loss: 6.1435e-04 - MAE: 0.0160 - MAPE: 2795.2622 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 131/200 6/6 [==============================] - 0s 36ms/step - loss: 6.6368e-04 - MAE: 0.0163 - MAPE: 7093.1025 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 132/200 6/6 [==============================] - 0s 35ms/step - loss: 6.1828e-04 - MAE: 0.0161 - MAPE: 575.1943 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 133/200 6/6 [==============================] - 0s 35ms/step - loss: 5.9749e-04 - MAE: 0.0158 - MAPE: 6105.1963 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 134/200 6/6 [==============================] - 0s 35ms/step - loss: 6.8131e-04 - MAE: 0.0165 - MAPE: 4446.3076 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 135/200 6/6 [==============================] - 0s 34ms/step - loss: 8.9191e-04 - MAE: 0.0193 - MAPE: 660.5879 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 136/200 6/6 [==============================] - 0s 34ms/step - loss: 7.5774e-04 - MAE: 0.0183 - MAPE: 3085.4739 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 137/200 6/6 [==============================] - 0s 35ms/step - loss: 7.4401e-04 - MAE: 0.0177 - MAPE: 3100.4409 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 138/200 6/6 [==============================] - 0s 34ms/step - loss: 7.6159e-04 - MAE: 0.0174 - MAPE: 1029.7885 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 139/200 6/6 [==============================] - 0s 34ms/step - loss: 7.1387e-04 - MAE: 0.0170 - MAPE: 1443.5061 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 140/200 6/6 [==============================] - 0s 34ms/step - loss: 6.5743e-04 - MAE: 0.0162 - MAPE: 1105.7280 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 141/200 6/6 [==============================] - 0s 36ms/step - loss: 6.7291e-04 - MAE: 0.0165 - MAPE: 4567.3413 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 142/200 6/6 [==============================] - 0s 34ms/step - loss: 6.2194e-04 - MAE: 0.0163 - MAPE: 9809.8701 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 143/200 6/6 [==============================] - 0s 35ms/step - loss: 6.9463e-04 - MAE: 0.0167 - MAPE: 3332.8691 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 144/200 6/6 [==============================] - 0s 35ms/step - loss: 6.6282e-04 - MAE: 0.0164 - MAPE: 4243.7505 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 145/200 6/6 [==============================] - 0s 34ms/step - loss: 6.5627e-04 - MAE: 0.0165 - MAPE: 1587.5892 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 146/200 6/6 [==============================] - 0s 34ms/step - loss: 7.1715e-04 - MAE: 0.0175 - MAPE: 391.6780 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 147/200 6/6 [==============================] - 0s 35ms/step - loss: 7.0256e-04 - MAE: 0.0177 - MAPE: 10044.3516 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 148/200 6/6 [==============================] - 0s 34ms/step - loss: 8.8631e-04 - MAE: 0.0185 - MAPE: 7914.1421 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 149/200 6/6 [==============================] - 0s 34ms/step - loss: 9.8410e-04 - MAE: 0.0218 - MAPE: 13838.8643 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 150/200 6/6 [==============================] - 0s 36ms/step - loss: 8.2050e-04 - MAE: 0.0210 - MAPE: 5233.6069 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 151/200 6/6 [==============================] - 0s 35ms/step - loss: 7.0494e-04 - MAE: 0.0182 - MAPE: 6980.9888 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 152/200 6/6 [==============================] - 0s 35ms/step - loss: 7.0280e-04 - MAE: 0.0176 - MAPE: 2383.6506 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 153/200 6/6 [==============================] - 0s 35ms/step - loss: 7.2234e-04 - MAE: 0.0169 - MAPE: 3734.5410 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 154/200 6/6 [==============================] - 0s 34ms/step - loss: 6.7157e-04 - MAE: 0.0169 - MAPE: 5528.3735 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 155/200 6/6 [==============================] - 0s 34ms/step - loss: 6.0254e-04 - MAE: 0.0159 - MAPE: 265.4604 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 156/200 6/6 [==============================] - 0s 35ms/step - loss: 7.2080e-04 - MAE: 0.0173 - MAPE: 1533.2561 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 157/200 6/6 [==============================] - 0s 35ms/step - loss: 6.9208e-04 - MAE: 0.0181 - MAPE: 5446.7056 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 158/200 6/6 [==============================] - 0s 36ms/step - loss: 6.9326e-04 - MAE: 0.0179 - MAPE: 6443.0542 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 159/200 6/6 [==============================] - 0s 34ms/step - loss: 7.2627e-04 - MAE: 0.0193 - MAPE: 8785.4453 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 160/200 6/6 [==============================] - 0s 35ms/step - loss: 9.6188e-04 - MAE: 0.0204 - MAPE: 7907.8467 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 161/200 6/6 [==============================] - 0s 38ms/step - loss: 0.0014 - MAE: 0.0249 - MAPE: 6886.6782 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 162/200 6/6 [==============================] - 0s 35ms/step - loss: 8.4995e-04 - MAE: 0.0225 - MAPE: 15876.8555 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 163/200 6/6 [==============================] - 0s 35ms/step - loss: 8.1640e-04 - MAE: 0.0204 - MAPE: 1286.1879 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 164/200 6/6 [==============================] - 0s 34ms/step - loss: 0.0010 - MAE: 0.0237 - MAPE: 7574.7168 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 165/200 6/6 [==============================] - 0s 35ms/step - loss: 8.7256e-04 - MAE: 0.0210 - MAPE: 3713.5884 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 166/200 6/6 [==============================] - 0s 34ms/step - loss: 8.5558e-04 - MAE: 0.0199 - MAPE: 10152.6641 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 167/200 6/6 [==============================] - 0s 34ms/step - loss: 7.7297e-04 - MAE: 0.0187 - MAPE: 6278.4478 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 168/200 6/6 [==============================] - 0s 35ms/step - loss: 6.9803e-04 - MAE: 0.0179 - MAPE: 1673.6584 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 169/200 6/6 [==============================] - 0s 34ms/step - loss: 6.7984e-04 - MAE: 0.0178 - MAPE: 7670.5024 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 170/200 6/6 [==============================] - 0s 35ms/step - loss: 0.0011 - MAE: 0.0220 - MAPE: 7138.9248 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 171/200 6/6 [==============================] - 0s 34ms/step - loss: 0.0013 - MAE: 0.0264 - MAPE: 5018.9126 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 172/200 6/6 [==============================] - 0s 34ms/step - loss: 0.0010 - MAE: 0.0247 - MAPE: 11362.6455 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 173/200 6/6 [==============================] - 0s 35ms/step - loss: 7.6373e-04 - MAE: 0.0202 - MAPE: 8677.2598 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 174/200 6/6 [==============================] - 0s 34ms/step - loss: 8.7156e-04 - MAE: 0.0196 - MAPE: 4196.5195 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 175/200 6/6 [==============================] - 0s 35ms/step - loss: 6.0987e-04 - MAE: 0.0165 - MAPE: 1195.7736 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 176/200 6/6 [==============================] - 0s 35ms/step - loss: 7.4348e-04 - MAE: 0.0174 - MAPE: 5786.6577 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 177/200 6/6 [==============================] - 0s 35ms/step - loss: 6.9901e-04 - MAE: 0.0182 - MAPE: 610.3708 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 178/200 6/6 [==============================] - 0s 34ms/step - loss: 7.3841e-04 - MAE: 0.0175 - MAPE: 6291.3623 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 179/200 6/6 [==============================] - 0s 34ms/step - loss: 8.0804e-04 - MAE: 0.0188 - MAPE: 8502.3154 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 180/200 6/6 [==============================] - 0s 35ms/step - loss: 6.5784e-04 - MAE: 0.0175 - MAPE: 2848.3542 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 181/200 6/6 [==============================] - 0s 35ms/step - loss: 6.0734e-04 - MAE: 0.0164 - MAPE: 2557.2864 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 182/200 6/6 [==============================] - 0s 35ms/step - loss: 5.5486e-04 - MAE: 0.0154 - MAPE: 237.8777 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 183/200 6/6 [==============================] - 0s 36ms/step - loss: 5.8076e-04 - MAE: 0.0158 - MAPE: 2085.6560 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 184/200 6/6 [==============================] - 0s 35ms/step - loss: 5.9513e-04 - MAE: 0.0159 - MAPE: 4134.6284 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 185/200 6/6 [==============================] - 0s 34ms/step - loss: 5.8860e-04 - MAE: 0.0155 - MAPE: 2329.6516 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 186/200 6/6 [==============================] - 0s 35ms/step - loss: 6.0211e-04 - MAE: 0.0159 - MAPE: 1028.7203 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 187/200 6/6 [==============================] - 0s 34ms/step - loss: 5.9954e-04 - MAE: 0.0166 - MAPE: 8056.0732 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 188/200 6/6 [==============================] - 0s 34ms/step - loss: 6.1727e-04 - MAE: 0.0160 - MAPE: 6510.5205 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 189/200 6/6 [==============================] - 0s 35ms/step - loss: 5.6278e-04 - MAE: 0.0152 - MAPE: 2023.8593 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 190/200 6/6 [==============================] - 0s 34ms/step - loss: 5.6672e-04 - MAE: 0.0155 - MAPE: 2900.2112 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 191/200 6/6 [==============================] - 0s 35ms/step - loss: 5.8325e-04 - MAE: 0.0153 - MAPE: 3035.5920 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 192/200 6/6 [==============================] - 0s 34ms/step - loss: 0.0011 - MAE: 0.0217 - MAPE: 182.1926 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 193/200 6/6 [==============================] - 0s 35ms/step - loss: 8.6783e-04 - MAE: 0.0217 - MAPE: 2149.6631 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 194/200 6/6 [==============================] - 0s 36ms/step - loss: 7.6545e-04 - MAE: 0.0191 - MAPE: 4660.5562 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 195/200 6/6 [==============================] - 0s 35ms/step - loss: 8.0095e-04 - MAE: 0.0184 - MAPE: 7045.1953 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 196/200 6/6 [==============================] - 0s 36ms/step - loss: 7.1320e-04 - MAE: 0.0175 - MAPE: 823.5317 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 197/200 6/6 [==============================] - 0s 36ms/step - loss: 8.5526e-04 - MAE: 0.0197 - MAPE: 7217.6216 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 198/200 6/6 [==============================] - 0s 34ms/step - loss: 8.9882e-04 - MAE: 0.0193 - MAPE: 6855.1128 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 199/200 6/6 [==============================] - 0s 34ms/step - loss: 8.7476e-04 - MAE: 0.0196 - MAPE: 1617.5645 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000 Epoch 200/200 6/6 [==============================] - 0s 36ms/step - loss: 6.2845e-04 - MAE: 0.0174 - MAPE: 3097.6794 - f1_score: 0.4376 - Accuracy: 6.2266e-04 - precision: 1.0000
fig = go.Figure()
# Training loss trace
fig.add_trace(go.Scatter(x=list(range(1, len(RNN_History.history['loss']) + 1)),
y=RNN_History.history['loss'],
mode='lines',
name='RNN Training Loss'))
fig.add_trace(go.Scatter(x=list(range(1, len(LSTM_History.history['loss']) + 1)),
y=LSTM_History.history['loss'],
mode='lines',
name='LSTM Training Loss'))
fig.add_trace(go.Scatter(x=list(range(1, len(GRU_History.history['loss']) + 1)),
y=GRU_History.history['loss'],
mode='lines',
name='GRU Training Loss'))
fig.update_layout(title='Training and Validation Loss',
xaxis_title='Epoch',
yaxis_title='Loss',
legend_title='Loss Type',
hovermode='x',
hoverlabel=dict(bgcolor='white', font_size=12, font_family='Rockwell'),
template='plotly_white')
fig.show()
google_testing_complete = pd.read_csv("./Google_Stock_Test (2023).csv")
google_testing_processed = google_testing_complete.iloc[:, 1:2].values
google_total = pd.concat((google_training_complete['Close'], google_testing_complete['Close']), axis=0)
test_inputs = google_total[len(google_total) - len(google_testing_complete) - 60:].values
test_inputs
array([101.419998, 98.68 , 97.860001, 97.18 , 97.559998, 99.059998, 96.559998, 99.970001, 100.769997, 99.629997, 99.970001, 101.129997, 102.519997, 104.480003, 94.93 , 92.220001, 96.290001, 94.510002, 90.470001, 86.970001, 83.43 , 86.580002, 88.489998, 88.900002, 87.32 , 93.940002, 96.410004, 95.699997, 98.440002, 98.849998, 98.360001, 97.43 , 95.599998, 97.050003, 98.459999, 97.459999, 96.050003, 95.190002, 100.989998, 100.989998, 100.440002, 99.480003, 96.980003, 94.940002, 93.709999, 92.830002, 93.309998, 95.629997, 95.07 , 90.860001, 90.260002, 88.440002, 89.019997, 89.580002, 87.760002, 89.230003, 87.389999, 86.019997, 88.449997, 88.230003, 89.120003, 88.080002, 86.199997, 87.339996, 88.019997, 88.419998, 91.519997, 91.129997, 92.120003, 91.290001, 91.120003, 93.050003, 98.019997, 99.790001, 97.699997, 95.220001, 97.519997, 99.370003, 96.940002, 98.839996, 100.43 , 107.739998, 104.779999, 102.900002, 107.639999, 99.370003, 95.010002, 94.57 , 94.610001, 94.68 , 96.940002, 95.510002, 94.349998, 91.790001, 91.650002, 90.889999, 89.129997, 89.870003, 90.059998, 90.360001, 92. , 93.650002, 95.129997, 93.860001, 94.25 , 92.32 , 90.629997, 91.110001, 93.970001, 96.110001, 100.32 , 101.620003, 101.220001, 104.919998, 103.370003, 105.599998, 105.440002, 102.459999, 101.029999, 101.389999, 100.889999, 103.730003, 104.360001, 104.720001, 104.470001, 108.419998, 106.440002, 105.349998, 104.639999, 107.43 , 108.870003, 105.970001, 104.5 , 104.18 , 105.290001, 105.410004, 105.970001, 103.849998, 103.709999, 107.589996, 107.339996, 107.199997, 105.32 , 105.410004, 104.690002, 105.57 , 107.769997, 107.349998, 111.75 , 116.57 , 117.510002, 116.510002, 119.510002, 120.839996, 122.830002, 122.760002, 125.050003, 122.559998, 120.900002, 123.480003, 124.610001, 123.669998, 122.870003, 123.720001, 124.669998, 126.010002, 127.309998, 122.5 , 122.139999, 122.230003, 123.639999, 123.830002, 123.669998, 125.089996, 123.529999, 123.099998, 120.550003, 123.150002, 122.339996, 118.339996, 118.330002, 120.18 , 119.099998, 119.699997, 119.900002, 121.75 , 120.110001, 119.480003, 116.449997, 117.139999, 118.93 , 124.540001, 125.419998, 124.650002, 123.760002, 122.029999, 119.199997, 120.019997, 121.529999, 122.209999, 129.270004, 129.399994, 132.580002])
test_inputs = test_inputs.reshape(-1,1)
test_inputs = scaler.transform(test_inputs)
test_features = []
for i in range(60, len(test_inputs)):
test_features.append(test_inputs[i-60:i, 0])
test_features = np.array(test_features)
test_features = np.reshape(test_features, (test_features.shape[0], test_features.shape[1], 1))
test_features.shape
(143, 60, 1)
# Test the model on the test set
## RNN
RNN_test_loss = RNN_model.evaluate(test_features, google_testing_processed)
print(f'RNN Test Loss: {RNN_test_loss}')
## LSTM
LSTM_test_loss = LSTM_model.evaluate(test_features, google_testing_processed)
print(f'LSTM Test Loss: {LSTM_test_loss}')
## GRU
GRU_test_loss = GRU_model.evaluate(test_features, google_testing_processed)
print(f'GRU Test Loss: {GRU_test_loss}')
5/5 [==============================] - 1s 54ms/step - loss: 11554.4688 - MAE: 106.7566 - MAPE: 99.3472 - f1_score: 1.9816 - Accuracy: 0.0000e+00 - precision: 1.0000 RNN Test Loss: [11554.46875, 106.75663757324219, 99.34722137451172, array([1.9815602], dtype=float32), 0.0, 1.0] 5/5 [==============================] - 1s 27ms/step - loss: 11572.7139 - MAE: 106.8377 - MAPE: 99.4197 - f1_score: 1.9816 - Accuracy: 0.0000e+00 - precision: 1.0000 LSTM Test Loss: [11572.7138671875, 106.83771514892578, 99.41974639892578, array([1.9815602], dtype=float32), 0.0, 1.0] 5/5 [==============================] - 1s 23ms/step - loss: 11559.2441 - MAE: 106.7759 - MAPE: 99.3626 - f1_score: 1.9816 - Accuracy: 0.0000e+00 - precision: 1.0000 GRU Test Loss: [11559.244140625, 106.77589416503906, 99.36260986328125, array([1.9815602], dtype=float32), 0.0, 1.0]
# RNN
RNN_predictions = RNN_model.predict(test_features)
RNN_predictions = scaler.inverse_transform(RNN_predictions)
# LSTM
LSTM_predictions = LSTM_model.predict(test_features)
LSTM_predictions = scaler.inverse_transform(LSTM_predictions)
# GRU
GRU_predictions = GRU_model.predict(test_features)
GRU_predictions = scaler.inverse_transform(GRU_predictions)
5/5 [==============================] - 1s 54ms/step 5/5 [==============================] - 1s 10ms/step 5/5 [==============================] - 1s 12ms/step
google_testing_complete
Date | Open | High | Low | Close | Adj Close | Volume | |
---|---|---|---|---|---|---|---|
0 | 2023-01-03 | 89.589996 | 91.050003 | 88.519997 | 89.120003 | 89.120003 | 28131200 |
1 | 2023-01-04 | 90.349998 | 90.650002 | 87.269997 | 88.080002 | 88.080002 | 34854800 |
2 | 2023-01-05 | 87.470001 | 87.570000 | 85.900002 | 86.199997 | 86.199997 | 27194400 |
3 | 2023-01-06 | 86.790001 | 87.690002 | 84.860001 | 87.339996 | 87.339996 | 41381500 |
4 | 2023-01-09 | 88.360001 | 90.050003 | 87.860001 | 88.019997 | 88.019997 | 29003900 |
... | ... | ... | ... | ... | ... | ... | ... |
138 | 2023-07-24 | 121.660004 | 123.000000 | 120.980003 | 121.529999 | 121.529999 | 29686100 |
139 | 2023-07-25 | 121.360001 | 123.150002 | 121.019997 | 122.209999 | 122.209999 | 52509600 |
140 | 2023-07-26 | 130.070007 | 130.979996 | 128.320007 | 129.270004 | 129.270004 | 61682100 |
141 | 2023-07-27 | 131.669998 | 133.240005 | 128.789993 | 129.399994 | 129.399994 | 44952100 |
142 | 2023-07-28 | 130.779999 | 133.740005 | 130.570007 | 132.580002 | 132.580002 | 36572900 |
143 rows × 7 columns
google_prediction = google_testing_complete['Date']
google_prediction = pd.DataFrame(google_prediction)
google_prediction['RNN_Open'] = RNN_predictions
google_prediction['LSTM_Open'] = LSTM_predictions
google_prediction['GRU_Open'] = GRU_predictions
google_prediction
Date | RNN_Open | LSTM_Open | GRU_Open | |
---|---|---|---|---|
0 | 2023-01-03 | 89.761795 | 82.481285 | 87.833824 |
1 | 2023-01-04 | 89.380569 | 82.145378 | 88.074127 |
2 | 2023-01-05 | 89.087761 | 81.918633 | 88.152527 |
3 | 2023-01-06 | 88.819893 | 81.767494 | 87.754929 |
4 | 2023-01-09 | 88.490471 | 81.667305 | 87.387054 |
... | ... | ... | ... | ... |
138 | 2023-07-24 | 131.086044 | 111.596542 | 120.487892 |
139 | 2023-07-25 | 131.083679 | 111.854652 | 120.331024 |
140 | 2023-07-26 | 131.231766 | 111.973335 | 120.570282 |
141 | 2023-07-27 | 131.598236 | 112.064293 | 121.998161 |
142 | 2023-07-28 | 132.154419 | 112.244171 | 123.765366 |
143 rows × 4 columns
fig = go.Figure()
# Actual Google stock price trace
fig.add_trace(go.Scatter(x=google_testing_complete.Date,
y=google_testing_complete.Open,
mode='lines',
name='Actual Google Stock Price',
line=dict(color='black')))
# RNN Google Google stock price trace
fig.add_trace(go.Scatter(x=google_prediction.Date,
y=google_prediction.RNN_Open,
mode='lines',
name='RNN Predicted Google Stock Price',
line=dict(color='red')))
# LSTM Predicted Google stock price trace
fig.add_trace(go.Scatter(x=google_prediction.Date,
y=google_prediction.LSTM_Open,
mode='lines',
name='LSTM Predicted Google Stock Price',
line=dict(color='green')))
# LSTM Predicted Google stock price trace
fig.add_trace(go.Scatter(x=google_prediction.Date,
y=google_prediction.GRU_Open,
mode='lines',
name='GRU Predicted Google Stock Price',
line=dict(color='lightblue')))
fig.update_layout(title='Google Stock Price Forecast',
xaxis_title='Date',
yaxis_title='Google Stock Price',
legend_title='Price Type',
hovermode='x',
hoverlabel=dict(bgcolor='white', font_size=12, font_family='Rockwell'),
template='plotly_white')
fig.show()