PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows. It is an end-to-end machine learning and model management tool that speeds up the experiment cycle exponentially and makes you more productive.
In comparison with the other open-source machine learning libraries, PyCaret is an alternate low-code library that can be used to replace hundreds of lines of code with few words only. This makes experiments exponentially fast and efficient. PyCaret is essentially a Python wrapper around several machine learning libraries and frameworks such as scikit-learn, XGBoost, LightGBM, CatBoost, spaCy, Optuna, Hyperopt, Ray, and many more.
The design and simplicity of PyCaret is inspired by the emerging role of citizen data scientists, a term first used by Gartner. Citizen Data Scientists are power users who can perform both simple and moderately sophisticated analytical tasks that would previously have required more expertise. Seasoned data scientists are often difficult to find and expensive to hire but citizen data scientists can be an effective way to mitigate this gap and address data-related challenges in the business setting.
Official Website: https://www.pycaret.org Documentation: https://pycaret.readthedocs.io/en/latest/
Installing PyCaret is very easy and takes only a few minutes. We strongly recommend using a virtual environment to avoid potential conflicts with other libraries. PyCaret's default installation is a slim version of pycaret that only installs hard dependencies that are listed in requirements.txt. To install the default version:
pip install pycaret
When you install the full version of pycaret, all the optional dependencies as listed here are also installed.To install version:
pip install pycaret[full]
import pandas as pd
import numpy as np
data = pd.read_csv('AirPassengers.csv')
data['Date'] = pd.to_datetime(data['Date'])
data.head()
Date | Passengers | |
---|---|---|
0 | 1949-01-01 | 112 |
1 | 1949-02-01 | 118 |
2 | 1949-03-01 | 132 |
3 | 1949-04-01 | 129 |
4 | 1949-05-01 | 121 |
import plotly.express as px
data['MA12'] = data['Passengers'].rolling(12).mean()
fig = px.line(data, x="Date", y=["Passengers", "MA12"], template = 'plotly_dark')
fig.show()
# extract features from date
data['Month'] = [i.month for i in data['Date']]
data['Year'] = [i.year for i in data['Date']]
data['Series'] = np.arange(1,len(data)+1).astype('int64')
# drop date and MA12
data.drop(['Date', 'MA12'], axis=1, inplace=True)
# rearrange columns
data = data[['Series', 'Year', 'Month', 'Passengers']] #re-arrange columns
# check head
data.head()
Series | Year | Month | Passengers | |
---|---|---|---|---|
0 | 1 | 1949 | 1 | 112 |
1 | 2 | 1949 | 2 | 118 |
2 | 3 | 1949 | 3 | 132 |
3 | 4 | 1949 | 4 | 129 |
4 | 5 | 1949 | 5 | 121 |
train = data[data['Year'] < 1960]
test = data[data['Year'] >= 1960]
train.shape, test.shape
((132, 4), (12, 4))
from pycaret.regression import *
s = setup(data = train, test_data = test,
target = 'Passengers',
fold_strategy = 'timeseries',
numeric_features = ['Year', 'Series'],
fold = 3,
transform_target = True,
session_id = 123, silent = True,
log_experiment = True, experiment_name = 'airpassengers', log_plots=True, log_data=True)
Description | Value | |
---|---|---|
0 | session_id | 123 |
1 | Target | Passengers |
2 | Original Data | (132, 4) |
3 | Missing Values | False |
4 | Numeric Features | 2 |
5 | Categorical Features | 1 |
6 | Ordinal Features | False |
7 | High Cardinality Features | False |
8 | High Cardinality Method | None |
9 | Transformed Train Set | (132, 13) |
10 | Transformed Test Set | (12, 13) |
11 | Shuffle Train-Test | True |
12 | Stratify Train-Test | False |
13 | Fold Generator | TimeSeriesSplit |
14 | Fold Number | 3 |
15 | CPU Jobs | -1 |
16 | Use GPU | False |
17 | Log Experiment | True |
18 | Experiment Name | airpassengers |
19 | USI | af66 |
20 | Imputation Type | simple |
21 | Iterative Imputation Iteration | None |
22 | Numeric Imputer | mean |
23 | Iterative Imputation Numeric Model | None |
24 | Categorical Imputer | constant |
25 | Iterative Imputation Categorical Model | None |
26 | Unknown Categoricals Handling | least_frequent |
27 | Normalize | False |
28 | Normalize Method | None |
29 | Transformation | False |
30 | Transformation Method | None |
31 | PCA | False |
32 | PCA Method | None |
33 | PCA Components | None |
34 | Ignore Low Variance | False |
35 | Combine Rare Levels | False |
36 | Rare Level Threshold | None |
37 | Numeric Binning | False |
38 | Remove Outliers | False |
39 | Outliers Threshold | None |
40 | Remove Multicollinearity | False |
41 | Multicollinearity Threshold | None |
42 | Remove Perfect Collinearity | True |
43 | Clustering | False |
44 | Clustering Iteration | None |
45 | Polynomial Features | False |
46 | Polynomial Degree | None |
47 | Trignometry Features | False |
48 | Polynomial Threshold | None |
49 | Group Features | False |
50 | Feature Selection | False |
51 | Feature Selection Method | classic |
52 | Features Selection Threshold | None |
53 | Feature Interaction | False |
54 | Feature Ratio | False |
55 | Interaction Threshold | None |
56 | Transform Target | True |
57 | Transform Target Method | box-cox |
# check X_train index
get_config('X_train').index
Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 122, 123, 124, 125, 126, 127, 128, 129, 130, 131], dtype='int64', length=132)
# check X_test index
get_config('X_test').index
Int64Index([132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143], dtype='int64')
# train all models using default hyperparameters
best = compare_models(sort = 'MAE')
Model | MAE | MSE | RMSE | R2 | RMSLE | MAPE | TT (Sec) | |
---|---|---|---|---|---|---|---|---|
lar | Least Angle Regression | 22.3980 | 923.8651 | 28.2855 | 0.5621 | 0.0878 | 0.0746 | 0.0067 |
lr | Linear Regression | 22.3981 | 923.8749 | 28.2856 | 0.5621 | 0.0878 | 0.0746 | 0.9200 |
huber | Huber Regressor | 22.4274 | 892.3078 | 27.9491 | 0.5981 | 0.0880 | 0.0749 | 0.0133 |
br | Bayesian Ridge | 22.4783 | 932.2165 | 28.5483 | 0.5611 | 0.0884 | 0.0746 | 0.0067 |
ridge | Ridge Regression | 23.1976 | 1003.9426 | 30.0410 | 0.5258 | 0.0933 | 0.0764 | 0.7500 |
lasso | Lasso Regression | 38.4188 | 2413.5109 | 46.8468 | 0.0882 | 0.1473 | 0.1241 | 0.7567 |
en | Elastic Net | 40.6486 | 2618.8759 | 49.4048 | -0.0824 | 0.1563 | 0.1349 | 0.0067 |
omp | Orthogonal Matching Pursuit | 44.3054 | 3048.2658 | 53.8613 | -0.4499 | 0.1713 | 0.1520 | 0.0067 |
xgboost | Extreme Gradient Boosting | 46.7192 | 3791.0476 | 59.9683 | -0.5515 | 0.1962 | 0.1432 | 0.0733 |
gbr | Gradient Boosting Regressor | 50.1217 | 4032.0567 | 61.2306 | -0.6189 | 0.2034 | 0.1538 | 0.0167 |
rf | Random Forest Regressor | 52.3637 | 4647.0635 | 65.2883 | -0.7726 | 0.2131 | 0.1578 | 0.0733 |
catboost | CatBoost Regressor | 53.6141 | 4414.8319 | 64.3184 | -0.7792 | 0.2161 | 0.1653 | 0.3267 |
et | Extra Trees Regressor | 54.6312 | 4500.5115 | 64.0882 | -0.7207 | 0.2146 | 0.1675 | 0.0533 |
ada | AdaBoost Regressor | 55.0753 | 5128.1587 | 68.9577 | -0.9915 | 0.2277 | 0.1667 | 0.0300 |
dt | Decision Tree Regressor | 57.9293 | 6230.5556 | 70.9838 | -0.9553 | 0.2265 | 0.1700 | 0.0100 |
knn | K Neighbors Regressor | 64.1165 | 7098.4735 | 78.7031 | -1.4511 | 0.2582 | 0.1882 | 0.0100 |
lightgbm | Light Gradient Boosting Machine | 76.8521 | 8430.4943 | 91.0063 | -2.9097 | 0.3379 | 0.2490 | 0.2433 |
llar | Lasso Least Angle Regression | 129.0182 | 21858.5806 | 138.1309 | -6.5554 | 0.5446 | 0.3958 | 0.0067 |
par | Passive Aggressive Regressor | 156.1775 | 95107.3645 | 210.3616 | -93.7884 | 0.4304 | 0.6643 | 0.0100 |
print(best)
PowerTransformedTargetRegressor(copy_X=True, eps=2.220446049250313e-16, fit_intercept=True, fit_path=True, jitter=None, n_nonzero_coefs=500, normalize=True, power_transformer_method='box-cox', power_transformer_standardize=True, precompute='auto', random_state=123, regressor=Lars(copy_X=True, eps=2.220446049250313e-16, fit_intercept=True, fit_path=True, jitter=None, n_nonzero_coefs=500, normalize=True, precompute='auto', random_state=123, verbose=False), verbose=False)
# check on hold-out
pred_holdout = predict_model(best);
Model | MAE | MSE | RMSE | R2 | RMSLE | MAPE | |
---|---|---|---|---|---|---|---|
0 | Least Angle Regression | 25.0714 | 972.2733 | 31.1813 | 0.8245 | 0.0692 | 0.0571 |
evaluate_model(best)
interactive(children=(ToggleButtons(description='Plot Type:', icons=('',), options=(('Hyperparameters', 'param…
predictions = predict_model(best, data=data)
predictions['Date'] = pd.date_range(start='1949-01-01', end = '1960-12-01', freq = 'MS')
import plotly.express as px
fig = px.line(predictions, x='Date', y=["Passengers", "Label"], template = 'plotly_dark')
fig.add_vrect(x0="1960-01-01", x1="1960-12-01", fillcolor="grey", opacity=0.25, line_width=0)
fig.show()
# create future dataset to score
future_dates = pd.date_range(start = '1961-01-01', end = '1965-01-01', freq = 'MS')
future_df = pd.DataFrame()
future_df['Month'] = [i.month for i in future_dates]
future_df['Year'] = [i.year for i in future_dates]
future_df['Series'] = np.arange(145,(145+len(future_dates)))
future_df.head()
Month | Year | Series | |
---|---|---|---|
0 | 1 | 1961 | 145 |
1 | 2 | 1961 | 146 |
2 | 3 | 1961 | 147 |
3 | 4 | 1961 | 148 |
4 | 5 | 1961 | 149 |
# finalize model
final_best = finalize_model(best)
# generate predictions on future dataset
predictions_future = predict_model(final_best, data=future_df)
predictions_future.head()
Month | Year | Series | Label | |
---|---|---|---|---|
0 | 1 | 1961 | 145 | 486.278268 |
1 | 2 | 1961 | 146 | 482.208187 |
2 | 3 | 1961 | 147 | 550.485967 |
3 | 4 | 1961 | 148 | 535.187177 |
4 | 5 | 1961 | 149 | 538.923789 |
# plot historic and predicted values
concat_df = pd.concat([data,predictions_future], axis=0)
concat_df_i = pd.date_range(start='1949-01-01', end = '1965-01-01', freq = 'MS')
concat_df.set_index(concat_df_i, inplace=True)
import plotly.express as px
fig = px.line(concat_df, x=concat_df.index, y=["Passengers", "Label"], template = 'plotly_dark')
fig.show()
# !mlflow ui