# run this cell to install pycaret in Google Colab
# !pip install pycaret
# If you are using Jupyter notebook, you can pip install pycaret using jupyter notebook or command line
# pip install pycaret
from pycaret.utils import version
version()
1.0.0
from pycaret.datasets import get_data
data = get_data('juice')
Id | Purchase | WeekofPurchase | StoreID | PriceCH | PriceMM | DiscCH | DiscMM | SpecialCH | SpecialMM | LoyalCH | SalePriceMM | SalePriceCH | PriceDiff | Store7 | PctDiscMM | PctDiscCH | ListPriceDiff | STORE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | CH | 237 | 1 | 1.75 | 1.99 | 0.00 | 0.0 | 0 | 0 | 0.500000 | 1.99 | 1.75 | 0.24 | No | 0.000000 | 0.000000 | 0.24 | 1 |
1 | 2 | CH | 239 | 1 | 1.75 | 1.99 | 0.00 | 0.3 | 0 | 1 | 0.600000 | 1.69 | 1.75 | -0.06 | No | 0.150754 | 0.000000 | 0.24 | 1 |
2 | 3 | CH | 245 | 1 | 1.86 | 2.09 | 0.17 | 0.0 | 0 | 0 | 0.680000 | 2.09 | 1.69 | 0.40 | No | 0.000000 | 0.091398 | 0.23 | 1 |
3 | 4 | MM | 227 | 1 | 1.69 | 1.69 | 0.00 | 0.0 | 0 | 0 | 0.400000 | 1.69 | 1.69 | 0.00 | No | 0.000000 | 0.000000 | 0.00 | 1 |
4 | 5 | CH | 228 | 7 | 1.69 | 1.69 | 0.00 | 0.0 | 0 | 0 | 0.956535 | 1.69 | 1.69 | 0.00 | Yes | 0.000000 | 0.000000 | 0.00 | 0 |
from pycaret.classification import *
clf1 = setup(data, target = 'Purchase', session_id=786)
Setup Succesfully Completed!
Description | Value | |
---|---|---|
0 | session_id | 786 |
1 | Target Type | Binary |
2 | Label Encoded | CH: 0, MM: 1 |
3 | Original Data | (1070, 19) |
4 | Missing Values | False |
5 | Numeric Features | 13 |
6 | Categorical Features | 5 |
7 | Ordinal Features | False |
8 | High Cardinality Features | False |
9 | High Cardinality Method | None |
10 | Sampled Data | (1070, 19) |
11 | Transformed Train Set | (748, 16) |
12 | Transformed Test Set | (322, 16) |
13 | Numeric Imputer | mean |
14 | Categorical Imputer | constant |
15 | Normalize | False |
16 | Normalize Method | None |
17 | Transformation | False |
18 | Transformation Method | None |
19 | PCA | False |
20 | PCA Method | None |
21 | PCA Components | None |
22 | Ignore Low Variance | False |
23 | Combine Rare Levels | False |
24 | Rare Level Threshold | None |
25 | Numeric Binning | False |
26 | Remove Outliers | False |
27 | Outliers Threshold | None |
28 | Remove Multicollinearity | False |
29 | Multicollinearity Threshold | None |
30 | Clustering | False |
31 | Clustering Iteration | None |
32 | Polynomial Features | False |
33 | Polynomial Degree | None |
34 | Trignometry Features | False |
35 | Polynomial Threshold | None |
36 | Group Features | False |
37 | Feature Selection | False |
38 | Features Selection Threshold | None |
39 | Feature Interaction | False |
40 | Feature Ratio | False |
41 | Interaction Threshold | None |
compare_models()
Model | Accuracy | AUC | Recall | Prec. | F1 | Kappa | |
---|---|---|---|---|---|---|---|
0 | Logistic Regression | 0.8288 | 0.8995 | 0.7402 | 0.8084 | 0.7699 | 0.6346 |
1 | Linear Discriminant Analysis | 0.8222 | 0.8989 | 0.7505 | 0.7901 | 0.7664 | 0.6235 |
2 | Ridge Classifier | 0.8208 | 0 | 0.7469 | 0.789 | 0.7629 | 0.6197 |
3 | CatBoost Classifier | 0.8022 | 0.8876 | 0.7572 | 0.7518 | 0.7501 | 0.5872 |
4 | Gradient Boosting Classifier | 0.7954 | 0.895 | 0.7432 | 0.7437 | 0.7382 | 0.5712 |
5 | Extreme Gradient Boosting | 0.7901 | 0.8919 | 0.7364 | 0.736 | 0.7317 | 0.5601 |
6 | Quadratic Discriminant Analysis | 0.7848 | 0.819 | 0.7849 | 0.705 | 0.7392 | 0.5576 |
7 | Ada Boost Classifier | 0.7834 | 0.8767 | 0.6984 | 0.735 | 0.7134 | 0.54 |
8 | Light Gradient Boosting Machine | 0.7767 | 0.8709 | 0.7295 | 0.7132 | 0.7181 | 0.534 |
9 | Extra Trees Classifier | 0.7755 | 0.8356 | 0.7094 | 0.7174 | 0.7112 | 0.5281 |
10 | Naive Bayes | 0.7754 | 0.844 | 0.7778 | 0.6927 | 0.7306 | 0.5397 |
11 | Random Forest Classifier | 0.7727 | 0.856 | 0.6715 | 0.7307 | 0.6974 | 0.5164 |
12 | Decision Tree Classifier | 0.75 | 0.7491 | 0.7126 | 0.6735 | 0.689 | 0.4812 |
13 | K Neighbors Classifier | 0.7434 | 0.7871 | 0.6064 | 0.7009 | 0.6471 | 0.4477 |
14 | SVM - Linear Kernel | 0.5656 | 0 | 0.2034 | 0.1773 | 0.1182 | 0.0042 |
lr = create_model('lr')
Accuracy | AUC | Recall | Prec. | F1 | Kappa | |
---|---|---|---|---|---|---|
0 | 0.8400 | 0.9033 | 0.6667 | 0.9091 | 0.7692 | 0.6512 |
1 | 0.7867 | 0.8867 | 0.6667 | 0.7692 | 0.7143 | 0.5455 |
2 | 0.8533 | 0.9153 | 0.7586 | 0.8462 | 0.8000 | 0.6848 |
3 | 0.8800 | 0.9453 | 0.8276 | 0.8571 | 0.8421 | 0.7454 |
4 | 0.7867 | 0.8696 | 0.7241 | 0.7241 | 0.7241 | 0.5502 |
5 | 0.8800 | 0.9138 | 0.9310 | 0.7941 | 0.8571 | 0.7548 |
6 | 0.8533 | 0.9160 | 0.7586 | 0.8462 | 0.8000 | 0.6848 |
7 | 0.7867 | 0.8433 | 0.6897 | 0.7407 | 0.7143 | 0.5444 |
8 | 0.7838 | 0.9019 | 0.6207 | 0.7826 | 0.6923 | 0.5290 |
9 | 0.8378 | 0.8996 | 0.7586 | 0.8148 | 0.7857 | 0.6555 |
Mean | 0.8288 | 0.8995 | 0.7402 | 0.8084 | 0.7699 | 0.6346 |
SD | 0.0374 | 0.0266 | 0.0854 | 0.0543 | 0.0540 | 0.0817 |
dt = create_model('dt')
Accuracy | AUC | Recall | Prec. | F1 | Kappa | |
---|---|---|---|---|---|---|
0 | 0.7467 | 0.7333 | 0.6667 | 0.6897 | 0.6780 | 0.4693 |
1 | 0.7867 | 0.7667 | 0.6667 | 0.7692 | 0.7143 | 0.5455 |
2 | 0.8000 | 0.8186 | 0.8276 | 0.7059 | 0.7619 | 0.5914 |
3 | 0.8267 | 0.8332 | 0.8621 | 0.7353 | 0.7937 | 0.6458 |
4 | 0.7067 | 0.7339 | 0.7931 | 0.5897 | 0.6765 | 0.4186 |
5 | 0.8000 | 0.8167 | 0.8276 | 0.7059 | 0.7619 | 0.5914 |
6 | 0.6133 | 0.6132 | 0.5517 | 0.5000 | 0.5246 | 0.2001 |
7 | 0.6933 | 0.6799 | 0.6207 | 0.6000 | 0.6102 | 0.3575 |
8 | 0.7703 | 0.7506 | 0.6207 | 0.7500 | 0.6792 | 0.5028 |
9 | 0.7568 | 0.7448 | 0.6897 | 0.6897 | 0.6897 | 0.4897 |
Mean | 0.7500 | 0.7491 | 0.7126 | 0.6735 | 0.6890 | 0.4812 |
SD | 0.0604 | 0.0637 | 0.1014 | 0.0800 | 0.0747 | 0.1243 |
tuned_dt = tune_model('dt')
Accuracy | AUC | Recall | Prec. | F1 | Kappa | |
---|---|---|---|---|---|---|
0 | 0.8267 | 0.8715 | 0.6667 | 0.8696 | 0.7547 | 0.6243 |
1 | 0.8400 | 0.8959 | 0.7333 | 0.8462 | 0.7857 | 0.6591 |
2 | 0.8400 | 0.8962 | 0.7586 | 0.8148 | 0.7857 | 0.6583 |
3 | 0.8800 | 0.9344 | 0.9655 | 0.7778 | 0.8615 | 0.7578 |
4 | 0.7733 | 0.8598 | 0.7586 | 0.6875 | 0.7213 | 0.5311 |
5 | 0.8533 | 0.9123 | 0.8966 | 0.7647 | 0.8254 | 0.7003 |
6 | 0.6933 | 0.8133 | 0.6207 | 0.6000 | 0.6102 | 0.3575 |
7 | 0.7600 | 0.8175 | 0.6552 | 0.7037 | 0.6786 | 0.4875 |
8 | 0.7973 | 0.8636 | 0.6207 | 0.8182 | 0.7059 | 0.5556 |
9 | 0.7703 | 0.8011 | 0.7586 | 0.6875 | 0.7213 | 0.5267 |
Mean | 0.8034 | 0.8666 | 0.7434 | 0.7570 | 0.7450 | 0.5858 |
SD | 0.0526 | 0.0425 | 0.1083 | 0.0808 | 0.0698 | 0.1113 |
print(tuned_dt)
DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=8, max_features=14, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=6, min_samples_split=2, min_weight_fraction_leaf=0.0, presort='deprecated', random_state=786, splitter='best')
tuned_nb = tune_model('nb', optimize = 'AUC')
Accuracy | AUC | Recall | Prec. | F1 | Kappa | |
---|---|---|---|---|---|---|
0 | 0.7600 | 0.8522 | 0.4000 | 1.0000 | 0.5714 | 0.4444 |
1 | 0.7067 | 0.7837 | 0.6000 | 0.6429 | 0.6207 | 0.3820 |
2 | 0.8000 | 0.9010 | 0.5862 | 0.8500 | 0.6939 | 0.5527 |
3 | 0.8267 | 0.9363 | 0.6552 | 0.8636 | 0.7451 | 0.6175 |
4 | 0.7467 | 0.7834 | 0.6207 | 0.6923 | 0.6545 | 0.4555 |
5 | 0.7867 | 0.8666 | 0.6552 | 0.7600 | 0.7037 | 0.5385 |
6 | 0.7867 | 0.8831 | 0.6552 | 0.7600 | 0.7037 | 0.5385 |
7 | 0.7333 | 0.8096 | 0.4828 | 0.7368 | 0.5833 | 0.3995 |
8 | 0.7568 | 0.8467 | 0.4483 | 0.8667 | 0.5909 | 0.4417 |
9 | 0.7973 | 0.8567 | 0.5862 | 0.8500 | 0.6939 | 0.5499 |
Mean | 0.7701 | 0.8519 | 0.5690 | 0.8022 | 0.6561 | 0.4920 |
SD | 0.0340 | 0.0468 | 0.0878 | 0.0985 | 0.0577 | 0.0734 |
print(tuned_nb)
GaussianNB(priors=None, var_smoothing=0.001)
bagged_dt = ensemble_model(dt)
Accuracy | AUC | Recall | Prec. | F1 | Kappa | |
---|---|---|---|---|---|---|
0 | 0.8133 | 0.8674 | 0.7333 | 0.7857 | 0.7586 | 0.6067 |
1 | 0.7867 | 0.8752 | 0.6333 | 0.7917 | 0.7037 | 0.5402 |
2 | 0.8000 | 0.8958 | 0.6897 | 0.7692 | 0.7273 | 0.5701 |
3 | 0.8533 | 0.9022 | 0.8621 | 0.7812 | 0.8197 | 0.6966 |
4 | 0.7200 | 0.7732 | 0.6552 | 0.6333 | 0.6441 | 0.4134 |
5 | 0.8133 | 0.8804 | 0.8276 | 0.7273 | 0.7742 | 0.6162 |
6 | 0.6933 | 0.7792 | 0.6207 | 0.6000 | 0.6102 | 0.3575 |
7 | 0.7067 | 0.7946 | 0.6207 | 0.6207 | 0.6207 | 0.3816 |
8 | 0.8108 | 0.8935 | 0.7241 | 0.7778 | 0.7500 | 0.5981 |
9 | 0.7432 | 0.8452 | 0.6207 | 0.6923 | 0.6545 | 0.4512 |
Mean | 0.7741 | 0.8507 | 0.6987 | 0.7179 | 0.7063 | 0.5232 |
SD | 0.0515 | 0.0475 | 0.0835 | 0.0718 | 0.0676 | 0.1089 |
boosted_dt = ensemble_model(dt, method = 'Boosting')
Accuracy | AUC | Recall | Prec. | F1 | Kappa | |
---|---|---|---|---|---|---|
0 | 0.7867 | 0.8648 | 0.7000 | 0.7500 | 0.7241 | 0.5506 |
1 | 0.7867 | 0.8474 | 0.7000 | 0.7500 | 0.7241 | 0.5506 |
2 | 0.8000 | 0.8486 | 0.8276 | 0.7059 | 0.7619 | 0.5914 |
3 | 0.8933 | 0.9374 | 0.9310 | 0.8182 | 0.8710 | 0.7807 |
4 | 0.7067 | 0.7950 | 0.7931 | 0.5897 | 0.6765 | 0.4186 |
5 | 0.8000 | 0.8426 | 0.7586 | 0.7333 | 0.7458 | 0.5810 |
6 | 0.6533 | 0.7106 | 0.6207 | 0.5455 | 0.5806 | 0.2873 |
7 | 0.6933 | 0.7646 | 0.6207 | 0.6000 | 0.6102 | 0.3575 |
8 | 0.8378 | 0.9184 | 0.7241 | 0.8400 | 0.7778 | 0.6512 |
9 | 0.7297 | 0.7705 | 0.6207 | 0.6667 | 0.6429 | 0.4259 |
Mean | 0.7688 | 0.8300 | 0.7297 | 0.6999 | 0.7115 | 0.5195 |
SD | 0.0688 | 0.0668 | 0.0961 | 0.0932 | 0.0820 | 0.1398 |
lr = create_model('lr', verbose=False)
lda = create_model('lda', verbose=False)
gbc = create_model('gbc', verbose=False)
blender = blend_models(estimator_list=[lr,lda,gbc], method = 'soft')
Accuracy | AUC | Recall | Prec. | F1 | Kappa | |
---|---|---|---|---|---|---|
0 | 0.8267 | 0.9122 | 0.6333 | 0.9048 | 0.7451 | 0.6199 |
1 | 0.8000 | 0.9074 | 0.7000 | 0.7778 | 0.7368 | 0.5763 |
2 | 0.8533 | 0.9295 | 0.7586 | 0.8462 | 0.8000 | 0.6848 |
3 | 0.8933 | 0.9633 | 0.8966 | 0.8387 | 0.8667 | 0.7779 |
4 | 0.7600 | 0.8643 | 0.7586 | 0.6667 | 0.7097 | 0.5066 |
5 | 0.8800 | 0.9190 | 0.9310 | 0.7941 | 0.8571 | 0.7548 |
6 | 0.7600 | 0.8973 | 0.7586 | 0.6667 | 0.7097 | 0.5066 |
7 | 0.7600 | 0.8381 | 0.6897 | 0.6897 | 0.6897 | 0.4940 |
8 | 0.8108 | 0.9134 | 0.6552 | 0.8261 | 0.7308 | 0.5879 |
9 | 0.8243 | 0.8904 | 0.7586 | 0.7857 | 0.7719 | 0.6291 |
Mean | 0.8168 | 0.9035 | 0.7540 | 0.7796 | 0.7617 | 0.6138 |
SD | 0.0462 | 0.0327 | 0.0912 | 0.0772 | 0.0584 | 0.0957 |
blender.estimators_
[LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='auto', n_jobs=None, penalty='l2', random_state=786, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False), LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001), GradientBoostingClassifier(ccp_alpha=0.0, criterion='friedman_mse', init=None, learning_rate=0.1, loss='deviance', max_depth=3, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_iter_no_change=None, presort='deprecated', random_state=786, subsample=1.0, tol=0.0001, validation_fraction=0.1, verbose=0, warm_start=False)]
plot_model(blender)
plot_model(blender, plot = 'confusion_matrix')
plot_model(blender, plot = 'threshold')
plot_model(blender, plot = 'pr')
plot_model(tuned_dt, plot = 'vc')
plot_model(dt, plot = 'boundary')
plot_model(tuned_nb, plot = 'boundary')
plot_model(blender, plot = 'boundary')
evaluate_model(tuned_nb)
interactive(children=(ToggleButtons(description='Plot Type:', icons=('',), options=(('Hyperparameters', 'param…
xgboost = create_model('xgboost')
Accuracy | AUC | Recall | Prec. | F1 | Kappa | |
---|---|---|---|---|---|---|
0 | 0.8133 | 0.9130 | 0.6667 | 0.8333 | 0.7407 | 0.5977 |
1 | 0.8267 | 0.9067 | 0.7667 | 0.7931 | 0.7797 | 0.6369 |
2 | 0.8400 | 0.9250 | 0.7241 | 0.8400 | 0.7778 | 0.6538 |
3 | 0.8800 | 0.9633 | 0.9310 | 0.7941 | 0.8571 | 0.7548 |
4 | 0.7200 | 0.8328 | 0.7241 | 0.6176 | 0.6667 | 0.4279 |
5 | 0.8267 | 0.9295 | 0.8621 | 0.7353 | 0.7937 | 0.6458 |
6 | 0.7333 | 0.8471 | 0.7241 | 0.6364 | 0.6774 | 0.4518 |
7 | 0.7067 | 0.8043 | 0.6552 | 0.6129 | 0.6333 | 0.3893 |
8 | 0.7703 | 0.9084 | 0.5862 | 0.7727 | 0.6667 | 0.4964 |
9 | 0.7838 | 0.8889 | 0.7241 | 0.7241 | 0.7241 | 0.5464 |
Mean | 0.7901 | 0.8919 | 0.7364 | 0.7360 | 0.7317 | 0.5601 |
SD | 0.0541 | 0.0466 | 0.0945 | 0.0822 | 0.0672 | 0.1113 |
interpret_model(xgboost)
interpret_model(xgboost, plot = 'correlation')
interpret_model(xgboost, plot = 'reason', observation=1)
interpret_model(xgboost, plot = 'reason')