Band structure calculations

In this notebook we will see, how to calculate band structures using pyiron.

In [1]:
from pyiron import Project
from ase.spacegroup import crystal
import matplotlib.pyplot as plt
import seekpath as sp
import numpy as np
%config InlineBackend.figure_format = 'retina'
In [2]:
pr = Project("band_structure")

Structures with seekpath

First we see how seekpath works! Therefore we create firts a structure using pyiron.

Create structure with pyiron

In [4]:
structure_Fe = pr.create_structure("Fe", "bcc", 2.81)
In [5]:
In [6]:
Fe: [0. 0. 0.]
Fe: [1.405 1.405 1.405]
pbc: [ True  True  True]
[[2.81000000e+00 0.00000000e+00 0.00000000e+00]
 [1.72062875e-16 2.81000000e+00 0.00000000e+00]
 [1.72062875e-16 1.72062875e-16 2.81000000e+00]]

Create structure with seekpath

For seekpath we need a tuple containing

  1. The cell in $3\times3$ array
  2. The scaled positions
  3. List of ints to distinguish the atom types (indices of pyiron structure) as input structure.
In [7]:
input_sp = (structure_Fe.cell, structure_Fe.get_scaled_positions(), structure_Fe.indices)

Just to see how the output looks like, let us do...

In [8]:
{'point_coords': {'GAMMA': [0.0, 0.0, 0.0],
  'H': [0.5, -0.5, 0.5],
  'P': [0.25, 0.25, 0.25],
  'N': [0.0, 0.0, 0.5]},
 'path': [('GAMMA', 'H'),
  ('H', 'N'),
  ('N', 'GAMMA'),
  ('GAMMA', 'P'),
  ('P', 'H'),
  ('P', 'N')],
 'has_inversion_symmetry': True,
 'augmented_path': False,
 'bravais_lattice': 'cI',
 'bravais_lattice_extended': 'cI1',
 'conv_lattice': array([[2.81, 0.  , 0.  ],
        [0.  , 2.81, 0.  ],
        [0.  , 0.  , 2.81]]),
 'conv_positions': array([[0. , 0. , 0. ],
        [0.5, 0.5, 0.5]]),
 'conv_types': array([0, 0], dtype=int32),
 'primitive_lattice': array([[-1.405,  1.405,  1.405],
        [ 1.405, -1.405,  1.405],
        [ 1.405,  1.405, -1.405]]),
 'primitive_positions': array([[0., 0., 0.]]),
 'primitive_types': array([0], dtype=int32),
 'reciprocal_primitive_lattice': [[1.6776982741209693e-16,
  [2.236009006113732, 0.0, 2.236009006113732],
  [2.236009006113732, 2.236009006113732, 0.0]],
 'inverse_primitive_transformation_matrix': array([[0, 1, 1],
        [1, 0, 1],
        [1, 1, 0]]),
 'primitive_transformation_matrix': array([[-0.5,  0.5,  0.5],
        [ 0.5, -0.5,  0.5],
        [ 0.5,  0.5, -0.5]]),
 'volume_original_wrt_conv': 0.9999999999999999,
 'volume_original_wrt_prim': 1.9999999999999998,
 'spacegroup_number': 229,
 'spacegroup_international': 'Im-3m'}

The code creates automatically the conventional and primitive cell with all high-symmetry points and a suggested path taking all high-symmetry paths into account.

Keep in mind: The high-symmetry points and paths make only sence for the primitive cell! Therefore we run all calculations in the primitive cell created by seekpath.

Create a structure

We use the same structure as before!

Create new structure (primitive cell) with high-symmetry points and paths

For the following command all arguments valid for seekpath are supported. Look at the docstring and at seekpath.

In [9]:
structure_Fe_sp = structure_Fe.create_line_mode_structure()
In [10]:
In [11]:
Fe: [0. 0. 0.]
pbc: [ True  True  True]
[[-1.405  1.405  1.405]
 [ 1.405 -1.405  1.405]
 [ 1.405  1.405 -1.405]]

We see, that the structure is now the primitive cell containing only one atom.

In [12]:
{'GAMMA': [0.0, 0.0, 0.0],
 'H': [0.5, -0.5, 0.5],
 'P': [0.25, 0.25, 0.25],
 'N': [0.0, 0.0, 0.5]}
In [13]:
{'full': [('GAMMA', 'H'),
  ('H', 'N'),
  ('N', 'GAMMA'),
  ('GAMMA', 'P'),
  ('P', 'H'),
  ('P', 'N')]}

The path is stored like this. Here you can also add paths to the dictionary.

Each tuple gives a start and end point for this specific trace. Thus also disonnected paths are possible to calculate.

In [14]:
structure_Fe_sp.add_high_symmetry_path({"my_path": [("GAMMA", "H"), ("GAMMA", "P")]})
In [15]:
{'full': [('GAMMA', 'H'),
  ('H', 'N'),
  ('N', 'GAMMA'),
  ('GAMMA', 'P'),
  ('P', 'H'),
  ('P', 'N')],
 'my_path': [('GAMMA', 'H'), ('GAMMA', 'P')]}

Create jobs

We need two jobs for a band structure! The first gives us the correct Fermi energy and the charge densities used for the second calculations.

Create job for charge density

This is only a small example for BS calculations. Could be that the input parameter like cutoff etc. does not make much sense... for real physics...

In [16]:
def setup_hamiltonian_sphinx(project, jobname, structure, chgcar_file=""): 
    #version 1.0 (08.03.2019)
    #Name und typ
    ham = project.create_job(job_type='Sphinx', job_name=jobname)
    #parameter für xc functional
    ham.exchange_correlation_functional = 'PBE'
    ham.structure = structure

    #parameter für kpoints
    ham.set_kpoints([8, 8, 8])
    return ham
In [17]:
ham_spx_chg = setup_hamiltonian_sphinx(pr, "Fe_spx_CHG", structure_Fe_sp)

Run it!

In [18]:
The job Fe_spx_CHG was saved and received the ID: 4
In [19]:
finished    1
Name: status, dtype: int64

Create second job

We restart the fist job with the following command. Then the charge density of the first job is taken for the second!

In [20]:
ham_spx_bs = ham_spx_chg.restart_for_band_structure_calculations(job_name="Fe_spx_BS")
ham_spx_bs = ham_spx_chg.restart_from_charge_density( job_name="Fe_spx_BS", job_type=None, band_structure_calc=True )

Set line mode for k-points

To set the correct path, we have to give the name of the path (in our example either full or my_path) and the number of points for each subpath (would be for n_path=100and path_name="my_path" 200 k-points in total)

In [21]:
ham_spx_bs.set_kpoints(scheme="Line", path_name="full", n_path=100)
/srv/conda/envs/notebook/lib/python3.7/site-packages/pyiron/base/generic/ UserWarning: The input in GenericParameters changed, while the state of the job was already finished.
  "The input in GenericParameters changed, while the state of the job was already finished."

A parameter usefull for BS calculations. Look at the sphinx manual for details.

In [22]:
ham_spx_bs.input["nSloppy"] = 6

Run it!

In [23]:
The job Fe_spx_BS was saved and received the ID: 5
In [24]:
finished    2
Name: status, dtype: int64

Store the data!

The energy values are stored in the following paths of the hdf5 file.

In [25]:
energy_sphinx = ham_spx_bs['output/generic/dft/bands_eigen_values'][-1]
ef_sphinx = ham_spx_chg['output/generic/dft/bands_e_fermi'][-1]
energy_sphinx -= ef_sphinx

Plot it!

Now we can easily plot it!

In [26]:
plt.plot(energy_sphinx[:-1], 'b-')
plt.axhline(y=0, ls='--', c='k')
plt.xlim(0, len(energy_sphinx));
In [ ]: