import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import linalg
from scipy.integrate import odeint
sns.set()
%matplotlib inline
t = 0;dt = 0.001; s4 = 0;
ci= 0
s5=0.7; factive=0.2; s7=0.01; s6=1-factive-s7-s4;
tnow =[]
ixnow = []
F1=[]
F2=[]
F3=[]
F4=[]
for i in range(1,250000+1):
t = t + dt
ni = 0
if t>30 and t<40:
ni = 100
ci =0.1
if t>50 and t<60:
ni = 100
ci = 0.3
if t>70 and t<80:
ni = 100
ci = 5
if t>90 and t<100:
ni = 100
ci = 20
if t>110 and t<120:
ni = 100
ci = 30
if t>130 and t<140:
ni = 100
ci = 40
if t>150 and t<160:
ni = 100
ci = 50
if t>170 and t<180:
ni = 100
ci = 60
if t>190 and t<200:
ni = 100
ci = 70
#if t>310 and t<340:
#ni = 100
#ci = 70
#if t>340 and t<370:
#ni = 100
#ci = 80
#if t>370 and t<400:
#ni = 100
#ci =90
#if t>400 and t<430:
#ni = 100
#ci = 95
#if t>430 and t<460:
#ni = 100
#ci = 100
f3n=ni**2.5/(ni**2.5+17**2.5)
kcon1=0.1
kcoff1=0.05
kcon2=20
kcoff2=0.3
kinact=0.05
#kinact=1
#kinact=0.001
#kinact=1
#kinact=0.2
s5=s5+ (s6*ci*kcon1-s5*kcoff1+factive*f3n*kinact-s5*0.3) *dt
factive=factive+(s7*ci*kcon2-factive*kcoff2+s5*0.15-factive*f3n*kinact)*dt
s7=s7+(factive*kcoff2+s6*0.1-s7*ci*kcon2-s7*f3n*kinact*25)*dt
s6=1-s5-factive-s7
F1.append(s5)
F2.append(factive)
F3.append(s7)
F4.append(s6)
incx=factive*f3n
tnow.append(t)
ixnow.append(incx)
plt.figure(figsize = [10,5])
plt.plot(tnow,ixnow)
plt.xlabel("Time(t)")
plt.ylabel("Current")
plt.savefig("plot/current.png")
plt.savefig("plot/current.pdf")
plt.show()
plt.figure(figsize = [10,5])
plt.plot(tnow,F1,label = "F1")
plt.plot(tnow,F2,label = "F2")
plt.plot(tnow,F3,label="F3")
plt.plot(tnow,F4,label="F4")
plt.xlabel("Time(t)",fontsize=15)
plt.ylabel("states",fontsize=15)
#plt.xticks([i*30 for i in range(10)])
plt.legend(fontsize = 8)
plt.savefig("plot/states.png")
plt.savefig("plot/states.pdf")
plt.show()