import numpy as np
from sklearn.metrics import mean_absolute_error as skmean_absolute_error
def mean_absolute_error(y_true, y_pred):
return np.mean(np.abs(y_true - y_pred))
for i in range(10):
rng = np.random.RandomState(i)
y_true = rng.rand(10)
y_pred = rng.rand(10)
score1 = mean_absolute_error(y_true, y_pred)
score2 = skmean_absolute_error(y_true, y_pred)
assert np.isclose(score1, score2)