In [ ]:
import numpy as np
import matplotlib.pyplot as plt
In [ ]:
from solcore.solar_cell import SolarCell
from solcore.light_source import LightSource
from solcore.spice.pv_module_solver import solve_pv_module
from solcore.structure import Junction
In [ ]:
T = 298

First we define the properties of the MJ solar cell that the solar module is made of. We use junctions of kind 2-diode

In [ ]:
db_junction = Junction(kind='2D', T=T, reff=1, jref=300, Eg=0.66, A=1, R_series=0.00236, R_shunt=1e14, n=3.5)
db_junction2 = Junction(kind='2D', T=T, reff=1, jref=300, Eg=1.4, A=1, R_series=0.00012, R_shunt=1e14, n=3.5)
db_junction3 = Junction(kind='2D', T=T, reff=1, jref=300, Eg=1.9, A=1, R_series=8.0e-5, R_shunt=1e14, n=3.5)
In [ ]:
my_solar_cell = SolarCell([db_junction3, db_junction2, db_junction], T=T, R_series=0.0, area=0.1)
In [ ]:
wl = np.linspace(350, 2000, 301) * 1e-9
light_source = LightSource(source_type='standard', version='AM1.5g', x=wl, output_units='photon_flux_per_m',
                           concentration=1)
In [ ]:
options = {'light_iv': True, 'wavelength': wl, 'light_source': light_source, 'optics_method': 'BL'}

After defining the individual solar cell, we solve the module IV characteristics adding some dispersion in the
values of the short circuit currents.

In [ ]:
voltage, current, all_Isc_values, raw_data = solve_pv_module(my_solar_cell, options, jscSigma=0.02)
In [ ]:
plt.figure(1)
In [ ]:
plt.subplot(311)
plt.title('Histogram of sub-cell photocurrents')
plt.ylabel('InGaP')
plt.hist(([row[0] for row in all_Isc_values]), bins=20)
In [ ]:
plt.subplot(312)
plt.hist(([row[1] for row in all_Isc_values]), bins=20)
plt.ylabel('GaAs')
In [ ]:
plt.subplot(313)
plt.xlabel('Current (A)')
plt.ylabel('Ge')
plt.hist(([row[2] for row in all_Isc_values]), bins=20)
In [ ]:
plt.figure(2)
plt.plot(voltage, current)
plt.xlabel('Voltage (V)')
plt.ylabel('Current (A)')
plt.xlim(0, 80)
plt.ylim(0, 17)
In [ ]:
plt.show()