from datetime import datetime, date
import pandas as pd
pd.__version__
'1.3.2'
from datetime import date
import pandas as pd
df = pd.DataFrame({
"name": ["alice", "bob", "charlie"],
"date_of_birth": [date(1999,4,1), date(2001,12,15), date(1985,4,24)]
})
df = pd.DataFrame({
"name":["alice","bob","charlie", "david"],
"age":[12,43,22,34]
})
df
name | age | |
---|---|---|
0 | alice | 12 |
1 | bob | 43 |
2 | charlie | 22 |
3 | david | 34 |
df["time"] = pd.Timestamp(datetime.now())
df
name | age | time | |
---|---|---|---|
0 | alice | 12 | 2022-05-05 00:46:43.273572 |
1 | bob | 43 | 2022-05-05 00:46:43.273572 |
2 | charlie | 22 | 2022-05-05 00:46:43.273572 |
3 | david | 34 | 2022-05-05 00:46:43.273572 |
df = pd.DataFrame({
"name":["alice","bob","charlie", "david"],
"age":[12,43,22,34]
})
df["timestamp_col"] = pd.Timestamp(datetime.now())
df
name | age | timestamp_col | |
---|---|---|---|
0 | alice | 12 | 2022-05-05 00:46:43.285148 |
1 | bob | 43 | 2022-05-05 00:46:43.285148 |
2 | charlie | 22 | 2022-05-05 00:46:43.285148 |
3 | david | 34 | 2022-05-05 00:46:43.285148 |
df["formatted_col"] = df["timestamp_col"].map(lambda ts: ts.strftime("%d-%m-%Y"))
df
name | age | timestamp_col | formatted_col | |
---|---|---|---|---|
0 | alice | 12 | 2022-05-05 00:46:43.285148 | 05-05-2022 |
1 | bob | 43 | 2022-05-05 00:46:43.285148 | 05-05-2022 |
2 | charlie | 22 | 2022-05-05 00:46:43.285148 | 05-05-2022 |
3 | david | 34 | 2022-05-05 00:46:43.285148 | 05-05-2022 |
import pandas as pd
df = pd.DataFrame({
'name': ['alice','bob','charlie', 'david'],
'date_of_birth': ['2001-05-27','1999-02-16','1998-09-25', '1999-01-01']
})
df['date_of_birth'] = pd.to_datetime(df['date_of_birth'])
# step 1: create a 'year' column
df['year_of_birth'] = df['date_of_birth'].map(lambda dt: dt.strftime('%Y'))
# step 2: group by the created columns
grouped_df = df.groupby('year_of_birth').size()
grouped_df.to_frame('count').reset_index()
year_of_birth | count | |
---|---|---|
0 | 1998 | 1 |
1 | 1999 | 2 |
2 | 2001 | 1 |
from datetime import timedelta
import pandas as pd
df = pd.DataFrame({
'item': ['a', 'b', 'c', 'd', 'e', 'f'],
'purchase_date': ['2001-01-15', '2001-01-18','2001-01-21','2001-01-24', '2001-01-27', '2001-01-30']
})
# convert values to datetime type
df['purchase_date'] = pd.to_datetime(df['purchase_date'])
df['purchase_start_of_week'] = df['purchase_date'].map(lambda dt: dt - timedelta(days=dt.weekday()))
grouped_df = df.groupby('purchase_start_of_week').size()
grouped_df.to_frame('count').reset_index()
purchase_start_of_week | count | |
---|---|---|
0 | 2001-01-15 | 3 |
1 | 2001-01-22 | 2 |
2 | 2001-01-29 | 1 |