Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s).
%load_ext watermark
%watermark -a 'Sebastian Raschka' -u -d -v -p numpy,pandas,matplotlib,scikit-learn,nltk
Sebastian Raschka Last updated: 01/20/2016 CPython 3.5.1 IPython 4.0.1 numpy 1.10.1 pandas 0.17.1 matplotlib 1.5.0 scikit-learn 0.17 nltk 3.1
# to install watermark just uncomment the following line:
#%install_ext https://raw.githubusercontent.com/rasbt/watermark/master/watermark.py
The IMDB movie review set can be downloaded from http://ai.stanford.edu/~amaas/data/sentiment/. After downloading the dataset, decompress the files.
A) If you are working with Linux or MacOS X, open a new terminal windowm cd
into the download directory and execute
tar -zxf aclImdb_v1.tar.gz
B) If you are working with Windows, download an archiver such as 7Zip to extract the files from the download archive.
I received an email from a reader who was having troubles with reading the movie review texts due to encoding issues. Typically, Python's default encoding is set to 'utf-8'
, which shouldn't cause troubles when running this IPython notebook. You can simply check the encoding on your machine by firing up a new Python interpreter from the command line terminal and execute
>>> import sys
>>> sys.getdefaultencoding()
If the returned result is not 'utf-8'
, you probably need to change your Python's encoding to 'utf-8'
, for example by typing export PYTHONIOENCODING=utf8
in your terminal shell prior to running this IPython notebook. (Note that this is a temporary change, and it needs to be executed in the same shell that you'll use to launch ipython notebook
.
Alternatively, you can replace the lines
with open(os.path.join(path, file), 'r') as infile:
...
pd.read_csv('./movie_data.csv')
...
df.to_csv('./movie_data.csv', index=False)
by
with open(os.path.join(path, file), 'r', encoding='utf-8') as infile:
...
pd.read_csv('./movie_data.csv', encoding='utf-8')
...
df.to_csv('./movie_data.csv', index=False, encoding='utf-8')
in the following cells to achieve the desired effect.
import pyprind
import pandas as pd
import os
# change the `basepath` to the directory of the
# unzipped movie dataset
#basepath = '/Users/Sebastian/Desktop/aclImdb/'
basepath = './aclImdb'
labels = {'pos':1, 'neg':0}
pbar = pyprind.ProgBar(50000)
df = pd.DataFrame()
for s in ('test', 'train'):
for l in ('pos', 'neg'):
path = os.path.join(basepath, s, l)
for file in os.listdir(path):
with open(os.path.join(path, file), 'r', encoding='utf-8') as infile:
txt = infile.read()
df = df.append([[txt, labels[l]]], ignore_index=True)
pbar.update()
df.columns = ['review', 'sentiment']
0% 100% [##############################] | ETA: 00:00:00 Total time elapsed: 00:06:23
Shuffling the DataFrame:
import numpy as np
np.random.seed(0)
df = df.reindex(np.random.permutation(df.index))
Optional: Saving the assembled data as CSV file:
df.to_csv('./movie_data.csv', index=False)
import pandas as pd
df = pd.read_csv('./movie_data.csv')
df.head(3)
review | sentiment | |
---|---|---|
0 | In 1974, the teenager Martha Moxley (Maggie Gr... | 1 |
1 | OK... so... I really like Kris Kristofferson a... | 0 |
2 | ***SPOILER*** Do not read this, if you think a... | 0 |
If you have problems with creating the movie_data.csv
file in the previous chapter, you can find a download a zip archive at
https://github.com/rasbt/python-machine-learning-book/tree/master/code/datasets/movie
...
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
count = CountVectorizer()
docs = np.array([
'The sun is shining',
'The weather is sweet',
'The sun is shining and the weather is sweet'])
bag = count.fit_transform(docs)
print(count.vocabulary_)
{'sweet': 4, 'and': 0, 'is': 1, 'shining': 2, 'sun': 3, 'the': 5, 'weather': 6}
print(bag.toarray())
[[0 1 1 1 0 1 0] [0 1 0 0 1 1 1] [1 2 1 1 1 2 1]]
np.set_printoptions(precision=2)
from sklearn.feature_extraction.text import TfidfTransformer
tfidf = TfidfTransformer(use_idf=True, norm='l2', smooth_idf=True)
print(tfidf.fit_transform(count.fit_transform(docs)).toarray())
[[ 0. 0.43 0.56 0.56 0. 0.43 0. ] [ 0. 0.43 0. 0. 0.56 0.43 0.56] [ 0.4 0.48 0.31 0.31 0.31 0.48 0.31]]
tf_is = 2
n_docs = 3
idf_is = np.log((n_docs+1) / (3+1) )
tfidf_is = tf_is * (idf_is + 1)
print('tf-idf of term "is" = %.2f' % tfidf_is)
tf-idf of term "is" = 2.00
tfidf = TfidfTransformer(use_idf=True, norm=None, smooth_idf=True)
raw_tfidf = tfidf.fit_transform(count.fit_transform(docs)).toarray()[-1]
raw_tfidf
array([ 1.69, 2. , 1.29, 1.29, 1.29, 2. , 1.29])
l2_tfidf = raw_tfidf / np.sqrt(np.sum(raw_tfidf**2))
l2_tfidf
array([ 0.4 , 0.48, 0.31, 0.31, 0.31, 0.48, 0.31])
df.loc[0, 'review'][-50:]
'is seven.<br /><br />Title (Brazil): Not Available'
import re
def preprocessor(text):
text = re.sub('<[^>]*>', '', text)
emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text)
text = re.sub('[\W]+', ' ', text.lower()) + \
' '.join(emoticons).replace('-', '')
return text
preprocessor(df.loc[0, 'review'][-50:])
'is seven title brazil not available'
preprocessor("</a>This :) is :( a test :-)!")
'this is a test :) :( :)'
df['review'] = df['review'].apply(preprocessor)
from nltk.stem.porter import PorterStemmer
porter = PorterStemmer()
def tokenizer(text):
return text.split()
def tokenizer_porter(text):
return [porter.stem(word) for word in text.split()]
tokenizer('runners like running and thus they run')
['runners', 'like', 'running', 'and', 'thus', 'they', 'run']
tokenizer_porter('runners like running and thus they run')
['runner', 'like', 'run', 'and', 'thu', 'they', 'run']
import nltk
nltk.download('stopwords')
[nltk_data] Downloading package stopwords to [nltk_data] /Users/Sebastian/nltk_data... [nltk_data] Package stopwords is already up-to-date!
True
from nltk.corpus import stopwords
stop = stopwords.words('english')
[w for w in tokenizer_porter('a runner likes running and runs a lot')[-10:] if w not in stop]
['runner', 'like', 'run', 'run', 'lot']
Strip HTML and punctuation to speed up the GridSearch later:
X_train = df.loc[:25000, 'review'].values
y_train = df.loc[:25000, 'sentiment'].values
X_test = df.loc[25000:, 'review'].values
y_test = df.loc[25000:, 'sentiment'].values
from sklearn.grid_search import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf = TfidfVectorizer(strip_accents=None,
lowercase=False,
preprocessor=None)
param_grid = [{'vect__ngram_range': [(1,1)],
'vect__stop_words': [stop, None],
'vect__tokenizer': [tokenizer, tokenizer_porter],
'clf__penalty': ['l1', 'l2'],
'clf__C': [1.0, 10.0, 100.0]},
{'vect__ngram_range': [(1,1)],
'vect__stop_words': [stop, None],
'vect__tokenizer': [tokenizer, tokenizer_porter],
'vect__use_idf':[False],
'vect__norm':[None],
'clf__penalty': ['l1', 'l2'],
'clf__C': [1.0, 10.0, 100.0]},
]
lr_tfidf = Pipeline([('vect', tfidf),
('clf', LogisticRegression(random_state=0))])
gs_lr_tfidf = GridSearchCV(lr_tfidf, param_grid,
scoring='accuracy',
cv=5, verbose=1,
n_jobs=-1)
gs_lr_tfidf.fit(X_train, y_train)
Fitting 5 folds for each of 48 candidates, totalling 240 fits
[Parallel(n_jobs=-1)]: Done 42 tasks | elapsed: 12.0min [Parallel(n_jobs=-1)]: Done 192 tasks | elapsed: 53.2min [Parallel(n_jobs=-1)]: Done 240 out of 240 | elapsed: 69.4min finished
GridSearchCV(cv=5, error_score='raise', estimator=Pipeline(steps=[('vect', TfidfVectorizer(analyzer='word', binary=False, decode_error='strict', dtype=<class 'numpy.int64'>, encoding='utf-8', input='content', lowercase=False, max_df=1.0, max_features=None, min_df=1, ngram_range=(1, 1), norm='l2', preprocessor=None, smooth_idf=True, ...nalty='l2', random_state=0, solver='liblinear', tol=0.0001, verbose=0, warm_start=False))]), fit_params={}, iid=True, n_jobs=-1, param_grid=[{'vect__tokenizer': [<function tokenizer at 0x111594400>, <function tokenizer_porter at 0x111594488>], 'vect__ngram_range': [(1, 1)], 'clf__C': [1.0, 10.0, 100.0], 'clf__penalty': ['l1', 'l2'], 'vect__stop_words': [['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'you...kenizer at 0x111594400>, <function tokenizer_porter at 0x111594488>], 'clf__penalty': ['l1', 'l2']}], pre_dispatch='2*n_jobs', refit=True, scoring='accuracy', verbose=1)
print('Best parameter set: %s ' % gs_lr_tfidf.best_params_)
print('CV Accuracy: %.3f' % gs_lr_tfidf.best_score_)
Best parameter set: {'vect__tokenizer': <function tokenizer at 0x111594400>, 'vect__ngram_range': (1, 1), 'clf__C': 10.0, 'clf__penalty': 'l2', 'vect__stop_words': None} CV Accuracy: 0.897
clf = gs_lr_tfidf.best_estimator_
print('Test Accuracy: %.3f' % clf.score(X_test, y_test))
Test Accuracy: 0.899
Please note that gs_lr_tfidf.best_score_
is the average k-fold cross-validation score. I.e., if we have a GridSearchCV
object with 5-fold cross-validation (like the one above), the best_score_
attribute returns the average score over the 5-folds of the best model. To illustrate this with an example:
from sklearn.cross_validation import StratifiedKFold, cross_val_score
from sklearn.linear_model import LogisticRegression
import numpy as np
np.random.seed(0)
np.set_printoptions(precision=6)
y = [np.random.randint(3) for i in range(25)]
X = (y + np.random.randn(25)).reshape(-1, 1)
cv5_idx = list(StratifiedKFold(y, n_folds=5, shuffle=False, random_state=0))
cross_val_score(LogisticRegression(random_state=123), X, y, cv=cv5_idx)
array([ 0.6, 0.4, 0.6, 0.2, 0.6])
By executing the code above, we created a simple data set of random integers that shall represent our class labels. Next, we fed the indices of 5 cross-validation folds (cv3_idx
) to the cross_val_score
scorer, which returned 5 accuracy scores -- these are the 5 accuracy values for the 5 test folds.
Next, let us use the GridSearchCV
object and feed it the same 5 cross-validation sets (via the pre-generated cv3_idx
indices):
from sklearn.grid_search import GridSearchCV
gs = GridSearchCV(LogisticRegression(), {}, cv=cv5_idx, verbose=3).fit(X, y)
Fitting 5 folds for each of 1 candidates, totalling 5 fits [CV] ................................................................ [CV] ....................................... , score=0.600000 - 0.0s [CV] ................................................................ [CV] ....................................... , score=0.400000 - 0.0s [CV] ................................................................ [CV] ....................................... , score=0.600000 - 0.0s [CV] ................................................................ [CV] ....................................... , score=0.200000 - 0.0s [CV] ................................................................ [CV] ....................................... , score=0.600000 - 0.0s
[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.0s finished
As we can see, the scores for the 5 folds are exactly the same as the ones from cross_val_score
earlier.
Now, the best_score_ attribute of the GridSearchCV
object, which becomes available after fit
ting, returns the average accuracy score of the best model:
gs.best_score_
0.47999999999999998
As we can see, the result above is consistent with the average score computed the cross_val_score
.
cross_val_score(LogisticRegression(), X, y, cv=cv5_idx).mean()
0.47999999999999998
import numpy as np
import re
from nltk.corpus import stopwords
stop = stopwords.words('english')
def tokenizer(text):
text = re.sub('<[^>]*>', '', text)
emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text.lower())
text = re.sub('[\W]+', ' ', text.lower()) + ' '.join(emoticons).replace('-', '')
tokenized = [w for w in text.split() if w not in stop]
return tokenized
def stream_docs(path):
with open(path, 'r', encoding='utf-8') as csv:
next(csv) # skip header
for line in csv:
text, label = line[:-3], int(line[-2])
yield text, label
next(stream_docs(path='./movie_data.csv'))
('"In 1974, the teenager Martha Moxley (Maggie Grace) moves to the high-class area of Belle Haven, Greenwich, Connecticut. On the Mischief Night, eve of Halloween, she was murdered in the backyard of her house and her murder remained unsolved. Twenty-two years later, the writer Mark Fuhrman (Christopher Meloni), who is a former LA detective that has fallen in disgrace for perjury in O.J. Simpson trial and moved to Idaho, decides to investigate the case with his partner Stephen Weeks (Andrew Mitchell) with the purpose of writing a book. The locals squirm and do not welcome them, but with the support of the retired detective Steve Carroll (Robert Forster) that was in charge of the investigation in the 70\'s, they discover the criminal and a net of power and money to cover the murder.<br /><br />""Murder in Greenwich"" is a good TV movie, with the true story of a murder of a fifteen years old girl that was committed by a wealthy teenager whose mother was a Kennedy. The powerful and rich family used their influence to cover the murder for more than twenty years. However, a snoopy detective and convicted perjurer in disgrace was able to disclose how the hideous crime was committed. The screenplay shows the investigation of Mark and the last days of Martha in parallel, but there is a lack of the emotion in the dramatization. My vote is seven.<br /><br />Title (Brazil): Not Available"', 1)
def get_minibatch(doc_stream, size):
docs, y = [], []
try:
for _ in range(size):
text, label = next(doc_stream)
docs.append(text)
y.append(label)
except StopIteration:
return None, None
return docs, y
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear_model import SGDClassifier
vect = HashingVectorizer(decode_error='ignore',
n_features=2**21,
preprocessor=None,
tokenizer=tokenizer)
clf = SGDClassifier(loss='log', random_state=1, n_iter=1)
doc_stream = stream_docs(path='./movie_data.csv')
import pyprind
pbar = pyprind.ProgBar(45)
classes = np.array([0, 1])
for _ in range(45):
X_train, y_train = get_minibatch(doc_stream, size=1000)
if not X_train:
break
X_train = vect.transform(X_train)
clf.partial_fit(X_train, y_train, classes=classes)
pbar.update()
0% 100% [##############################] | ETA: 00:00:00 Total time elapsed: 00:00:33
X_test, y_test = get_minibatch(doc_stream, size=5000)
X_test = vect.transform(X_test)
print('Accuracy: %.3f' % clf.score(X_test, y_test))
Accuracy: 0.868
clf = clf.partial_fit(X_test, y_test)