import lightgbm as lgb
import numpy as np
import sklearn.datasets
import sklearn.metrics
from sklearn.model_selection import train_test_split
from ray import tune
from ray.tune.schedulers import ASHAScheduler
from ray.tune.integration.lightgbm import TuneReportCheckpointCallback
def train_breast_cancer(config):
data, target = sklearn.datasets.load_breast_cancer(return_X_y=True)
train_x, test_x, train_y, test_y = train_test_split(data, target, test_size=0.25)
train_set = lgb.Dataset(train_x, label=train_y)
test_set = lgb.Dataset(test_x, label=test_y)
gbm = lgb.train(
config,
train_set,
valid_sets=[test_set],
valid_names=["eval"],
verbose_eval=False,
callbacks=[
TuneReportCheckpointCallback(
{
"binary_error": "eval-binary_error",
"binary_logloss": "eval-binary_logloss",
}
)
],
)
preds = gbm.predict(test_x)
pred_labels = np.rint(preds)
tune.report(
mean_accuracy=sklearn.metrics.accuracy_score(test_y, pred_labels), done=True
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--server-address",
type=str,
default=None,
required=False,
help="The address of server to connect to if using " "Ray Client.",
)
args, _ = parser.parse_known_args()
if args.server_address:
import ray
ray.init(f"ray://{args.server_address}")
config = {
"objective": "binary",
"metric": ["binary_error", "binary_logloss"],
"verbose": -1,
"boosting_type": tune.grid_search(["gbdt", "dart"]),
"num_leaves": tune.randint(10, 1000),
"learning_rate": tune.loguniform(1e-8, 1e-1),
}
analysis = tune.run(
train_breast_cancer,
metric="binary_error",
mode="min",
config=config,
num_samples=2,
scheduler=ASHAScheduler(),
)
print("Best hyperparameters found were: ", analysis.best_config)