In this tutorial we introduce ZOOpt, while running a simple Ray Tune experiment. Tune’s Search Algorithms integrate with ZOOpt and, as a result, allow you to seamlessly scale up a ZOOpt optimization process - without sacrificing performance.
Zeroth-order optimization (ZOOpt) does not rely on the gradient of the objective function, but instead, learns from samples of the search space. It is suitable for optimizing functions that are nondifferentiable, with many local minima, or even unknown but only testable. Therefore, zeroth-order optimization is commonly referred to as "derivative-free optimization" and "black-box optimization". In this example we minimize a simple objective to briefly demonstrate the usage of ZOOpt with Ray Tune via ZOOptSearch
. It's useful to keep in mind that despite the emphasis on machine learning experiments, Ray Tune optimizes any implicit or explicit objective. Here we assume zoopt==0.4.1
library is installed. To learn more, please refer to the ZOOpt website.
# !pip install ray[tune]
!pip install zoopt==0.4.1
Requirement already satisfied: zoopt==0.4.1 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (0.4.1) Requirement already satisfied: matplotlib in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from zoopt==0.4.1) (3.5.0) Requirement already satisfied: numpy in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from zoopt==0.4.1) (1.21.6) Requirement already satisfied: cycler>=0.10 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (0.11.0) Requirement already satisfied: python-dateutil>=2.7 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (2.8.2) Requirement already satisfied: fonttools>=4.22.0 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (4.28.2) Requirement already satisfied: packaging>=20.0 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (21.3) Requirement already satisfied: pillow>=6.2.0 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (9.1.0) Requirement already satisfied: setuptools-scm>=4 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (6.3.2) Requirement already satisfied: kiwisolver>=1.0.1 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (1.3.2) Requirement already satisfied: pyparsing>=2.2.1 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (2.4.7) Requirement already satisfied: six>=1.5 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from python-dateutil>=2.7->matplotlib->zoopt==0.4.1) (1.16.0) Requirement already satisfied: setuptools in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from setuptools-scm>=4->matplotlib->zoopt==0.4.1) (59.5.0) Requirement already satisfied: tomli>=1.0.0 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from setuptools-scm>=4->matplotlib->zoopt==0.4.1) (1.2.3) WARNING: There was an error checking the latest version of pip.
Click below to see all the imports we need for this example. You can also launch directly into a Binder instance to run this notebook yourself. Just click on the rocket symbol at the top of the navigation.
import time
import ray
from ray import tune
from ray.air import session
from ray.tune.search.zoopt import ZOOptSearch
from zoopt import ValueType
Let's start by defining a simple evaluation function.
We artificially sleep for a bit (0.1
seconds) to simulate a long-running ML experiment.
This setup assumes that we're running multiple step
s of an experiment and try to tune two hyperparameters,
namely width
and height
, and activation
.
def evaluate(step, width, height):
time.sleep(0.1)
return (0.1 + width * step / 100) ** (-1) + height * 0.1
Next, our objective
function takes a Tune config
, evaluates the score
of your experiment in a training loop,
and uses session.report
to report the score
back to Tune.
def objective(config):
for step in range(config["steps"]):
score = evaluate(step, config["width"], config["height"])
session.report({"iterations": step, "mean_loss": score})
ray.init(configure_logging=False)
Python version: | 3.7.7 |
Ray version: | 3.0.0.dev0 |
Dashboard: | http://127.0.0.1:8266 |
Next we define a search space. The critical assumption is that the optimal hyperparameters live within this space. Yet, if the space is very large, then those hyperparameters may be difficult to find in a short amount of time.
search_config = {
"steps": 100,
"width": tune.randint(0, 10),
"height": tune.quniform(-10, 10, 1e-2),
"activation": tune.choice(["relu, tanh"])
}
The number of samples is the number of hyperparameter combinations that will be tried out. This Tune run is set to 1000
samples.
(you can decrease this if it takes too long on your machine).
num_samples = 1000
# If 1000 samples take too long, you can reduce this number.
# We override this number here for our smoke tests.
num_samples = 10
Next we define the search algorithm built from ZOOptSearch
, constrained to a maximum of 8
concurrent trials via ZOOpt's internal "parallel_num"
.
zoopt_config = {
"parallel_num": 8
}
algo = ZOOptSearch(
algo="Asracos", # only supports ASRacos currently
budget=num_samples,
**zoopt_config,
)
Finally, we run the experiment to "min"
imize the "mean_loss" of the objective
by searching search_config
via algo
, num_samples
times. This previous sentence is fully characterizes the search problem we aim to solve. With this in mind, notice how efficient it is to execute tuner.fit()
.
tuner = tune.Tuner(
objective,
tune_config=tune.TuneConfig(
metric="mean_loss",
mode="min",
search_alg=algo,
num_samples=num_samples,
),
param_space=search_config,
)
results = tuner.fit()
Function checkpointing is disabled. This may result in unexpected behavior when using checkpointing features or certain schedulers. To enable, set the train function arguments to be `func(config, checkpoint_dir=None)`.
Trial name | status | loc | activation | height | width | loss | iter | total time (s) | iterations | neg_mean_loss |
---|---|---|---|---|---|---|---|---|---|---|
objective_8c72f588 | TERMINATED | 127.0.0.1:47662 | relu, tanh | -3.94 | 0 | 9.606 | 100 | 10.9102 | 99 | -9.606 |
objective_8e2f11ae | TERMINATED | 127.0.0.1:47667 | relu, tanh | -0.68 | 6 | 0.0975629 | 100 | 10.7479 | 99 | -0.0975629 |
objective_8e30a596 | TERMINATED | 127.0.0.1:47668 | relu, tanh | -5.84 | 0 | 9.416 | 100 | 10.7724 | 99 | -9.416 |
objective_8e32324e | TERMINATED | 127.0.0.1:47669 | relu, tanh | -2.15 | 3 | 0.110733 | 100 | 10.7684 | 99 | -0.110733 |
objective_963faf2a | TERMINATED | 127.0.0.1:47689 | relu, tanh | -5.64 | 6 | -0.398437 | 100 | 10.8267 | 99 | 0.398437 |
objective_96417df0 | TERMINATED | 127.0.0.1:47690 | relu, tanh | 2.84 | 6 | 0.449563 | 100 | 10.821 | 99 | -0.449563 |
objective_96435da0 | TERMINATED | 127.0.0.1:47691 | relu, tanh | 2.6 | 6 | 0.425563 | 100 | 10.7694 | 99 | -0.425563 |
Result for objective_8c72f588: date: 2022-07-22_15-35-38 done: false experiment_id: 3eb9bcef55e341b0970abd6c1f97eda7 hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 9.606 neg_mean_loss: -9.606 node_ip: 127.0.0.1 pid: 47662 time_since_restore: 0.10410094261169434 time_this_iter_s: 0.10410094261169434 time_total_s: 0.10410094261169434 timestamp: 1658500538 timesteps_since_restore: 0 training_iteration: 1 trial_id: 8c72f588 warmup_time: 0.003092050552368164 Result for objective_8e30a596: date: 2022-07-22_15-35-41 done: false experiment_id: d58453075b71453ab615e10ae9713072 hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 9.416 neg_mean_loss: -9.416 node_ip: 127.0.0.1 pid: 47668 time_since_restore: 0.1051950454711914 time_this_iter_s: 0.1051950454711914 time_total_s: 0.1051950454711914 timestamp: 1658500541 timesteps_since_restore: 0 training_iteration: 1 trial_id: 8e30a596 warmup_time: 0.004169940948486328 Result for objective_8e32324e: date: 2022-07-22_15-35-41 done: false experiment_id: 22c7ba8baa2644479b661e6d91e5fae8 hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 9.785 neg_mean_loss: -9.785 node_ip: 127.0.0.1 pid: 47669 time_since_restore: 0.10500001907348633 time_this_iter_s: 0.10500001907348633 time_total_s: 0.10500001907348633 timestamp: 1658500541 timesteps_since_restore: 0 training_iteration: 1 trial_id: 8e32324e warmup_time: 0.004729032516479492 Result for objective_8e2f11ae: date: 2022-07-22_15-35-41 done: false experiment_id: c4d325574058491c8af3a0c869f0ebe5 hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 9.932 neg_mean_loss: -9.932 node_ip: 127.0.0.1 pid: 47667 time_since_restore: 0.10310196876525879 time_this_iter_s: 0.10310196876525879 time_total_s: 0.10310196876525879 timestamp: 1658500541 timesteps_since_restore: 0 training_iteration: 1 trial_id: 8e2f11ae warmup_time: 0.0029730796813964844 Result for objective_8c72f588: date: 2022-07-22_15-35-43 done: false experiment_id: 3eb9bcef55e341b0970abd6c1f97eda7 hostname: Kais-MacBook-Pro.local iterations: 45 iterations_since_restore: 46 mean_loss: 9.606 neg_mean_loss: -9.606 node_ip: 127.0.0.1 pid: 47662 time_since_restore: 5.112913131713867 time_this_iter_s: 0.10695910453796387 time_total_s: 5.112913131713867 timestamp: 1658500543 timesteps_since_restore: 0 training_iteration: 46 trial_id: 8c72f588 warmup_time: 0.003092050552368164 Result for objective_8e30a596: date: 2022-07-22_15-35-46 done: false experiment_id: d58453075b71453ab615e10ae9713072 hostname: Kais-MacBook-Pro.local iterations: 47 iterations_since_restore: 48 mean_loss: 9.416 neg_mean_loss: -9.416 node_ip: 127.0.0.1 pid: 47668 time_since_restore: 5.1615166664123535 time_this_iter_s: 0.10595178604125977 time_total_s: 5.1615166664123535 timestamp: 1658500546 timesteps_since_restore: 0 training_iteration: 48 trial_id: 8e30a596 warmup_time: 0.004169940948486328 Result for objective_8e2f11ae: date: 2022-07-22_15-35-46 done: false experiment_id: c4d325574058491c8af3a0c869f0ebe5 hostname: Kais-MacBook-Pro.local iterations: 47 iterations_since_restore: 48 mean_loss: 0.2744657534246575 neg_mean_loss: -0.2744657534246575 node_ip: 127.0.0.1 pid: 47667 time_since_restore: 5.1498119831085205 time_this_iter_s: 0.10741090774536133 time_total_s: 5.1498119831085205 timestamp: 1658500546 timesteps_since_restore: 0 training_iteration: 48 trial_id: 8e2f11ae warmup_time: 0.0029730796813964844 Result for objective_8e32324e: date: 2022-07-22_15-35-46 done: false experiment_id: 22c7ba8baa2644479b661e6d91e5fae8 hostname: Kais-MacBook-Pro.local iterations: 47 iterations_since_restore: 48 mean_loss: 0.44725165562913916 neg_mean_loss: -0.44725165562913916 node_ip: 127.0.0.1 pid: 47669 time_since_restore: 5.166383981704712 time_this_iter_s: 0.1064291000366211 time_total_s: 5.166383981704712 timestamp: 1658500546 timesteps_since_restore: 0 training_iteration: 48 trial_id: 8e32324e warmup_time: 0.004729032516479492 Result for objective_8c72f588: date: 2022-07-22_15-35-48 done: false experiment_id: 3eb9bcef55e341b0970abd6c1f97eda7 hostname: Kais-MacBook-Pro.local iterations: 92 iterations_since_restore: 93 mean_loss: 9.606 neg_mean_loss: -9.606 node_ip: 127.0.0.1 pid: 47662 time_since_restore: 10.156940937042236 time_this_iter_s: 0.10845208168029785 time_total_s: 10.156940937042236 timestamp: 1658500548 timesteps_since_restore: 0 training_iteration: 93 trial_id: 8c72f588 warmup_time: 0.003092050552368164 Result for objective_8c72f588: date: 2022-07-22_15-35-49 done: true experiment_id: 3eb9bcef55e341b0970abd6c1f97eda7 experiment_tag: 1_activation=relu_tanh,height=-3.9400,steps=100,width=0 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: 9.606 neg_mean_loss: -9.606 node_ip: 127.0.0.1 pid: 47662 time_since_restore: 10.910246133804321 time_this_iter_s: 0.1059122085571289 time_total_s: 10.910246133804321 timestamp: 1658500549 timesteps_since_restore: 0 training_iteration: 100 trial_id: 8c72f588 warmup_time: 0.003092050552368164 Result for objective_8e2f11ae: date: 2022-07-22_15-35-51 done: false experiment_id: c4d325574058491c8af3a0c869f0ebe5 hostname: Kais-MacBook-Pro.local iterations: 94 iterations_since_restore: 95 mean_loss: 0.10621602787456447 neg_mean_loss: -0.10621602787456447 node_ip: 127.0.0.1 pid: 47667 time_since_restore: 10.211436986923218 time_this_iter_s: 0.10804891586303711 time_total_s: 10.211436986923218 timestamp: 1658500551 timesteps_since_restore: 0 training_iteration: 95 trial_id: 8e2f11ae warmup_time: 0.0029730796813964844 Result for objective_8e32324e: date: 2022-07-22_15-35-51 done: false experiment_id: 22c7ba8baa2644479b661e6d91e5fae8 hostname: Kais-MacBook-Pro.local iterations: 94 iterations_since_restore: 95 mean_loss: 0.12746575342465752 neg_mean_loss: -0.12746575342465752 node_ip: 127.0.0.1 pid: 47669 time_since_restore: 10.228847980499268 time_this_iter_s: 0.10761308670043945 time_total_s: 10.228847980499268 timestamp: 1658500551 timesteps_since_restore: 0 training_iteration: 95 trial_id: 8e32324e warmup_time: 0.004729032516479492 Result for objective_8e30a596: date: 2022-07-22_15-35-51 done: false experiment_id: d58453075b71453ab615e10ae9713072 hostname: Kais-MacBook-Pro.local iterations: 94 iterations_since_restore: 95 mean_loss: 9.416 neg_mean_loss: -9.416 node_ip: 127.0.0.1 pid: 47668 time_since_restore: 10.231056928634644 time_this_iter_s: 0.10677409172058105 time_total_s: 10.231056928634644 timestamp: 1658500551 timesteps_since_restore: 0 training_iteration: 95 trial_id: 8e30a596 warmup_time: 0.004169940948486328 Result for objective_8e2f11ae: date: 2022-07-22_15-35-52 done: true experiment_id: c4d325574058491c8af3a0c869f0ebe5 experiment_tag: 2_activation=relu_tanh,height=-0.6800,steps=100,width=6 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: 0.09756291390728478 neg_mean_loss: -0.09756291390728478 node_ip: 127.0.0.1 pid: 47667 time_since_restore: 10.747868061065674 time_this_iter_s: 0.10819792747497559 time_total_s: 10.747868061065674 timestamp: 1658500552 timesteps_since_restore: 0 training_iteration: 100 trial_id: 8e2f11ae warmup_time: 0.0029730796813964844 Result for objective_8e32324e: date: 2022-07-22_15-35-52 done: true experiment_id: 22c7ba8baa2644479b661e6d91e5fae8 experiment_tag: 4_activation=relu_tanh,height=-2.1500,steps=100,width=3 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: 0.11073289902280128 neg_mean_loss: -0.11073289902280128 node_ip: 127.0.0.1 pid: 47669 time_since_restore: 10.768368005752563 time_this_iter_s: 0.10648989677429199 time_total_s: 10.768368005752563 timestamp: 1658500552 timesteps_since_restore: 0 training_iteration: 100 trial_id: 8e32324e warmup_time: 0.004729032516479492 Result for objective_8e30a596: date: 2022-07-22_15-35-52 done: true experiment_id: d58453075b71453ab615e10ae9713072 experiment_tag: 3_activation=relu_tanh,height=-5.8400,steps=100,width=0 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: 9.416 neg_mean_loss: -9.416 node_ip: 127.0.0.1 pid: 47668 time_since_restore: 10.7723867893219 time_this_iter_s: 0.10686278343200684 time_total_s: 10.7723867893219 timestamp: 1658500552 timesteps_since_restore: 0 training_iteration: 100 trial_id: 8e30a596 warmup_time: 0.004169940948486328 Result for objective_96417df0: date: 2022-07-22_15-35-54 done: false experiment_id: e98b245717b4423d8917589cf5d42088 hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 10.284 neg_mean_loss: -10.284 node_ip: 127.0.0.1 pid: 47690 time_since_restore: 0.10359907150268555 time_this_iter_s: 0.10359907150268555 time_total_s: 0.10359907150268555 timestamp: 1658500554 timesteps_since_restore: 0 training_iteration: 1 trial_id: 96417df0 warmup_time: 0.003325939178466797 Result for objective_96435da0: date: 2022-07-22_15-35-54 done: false experiment_id: 8680a80a099c452dadd3be44d3457ca5 hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 10.26 neg_mean_loss: -10.26 node_ip: 127.0.0.1 pid: 47691 time_since_restore: 0.10206389427185059 time_this_iter_s: 0.10206389427185059 time_total_s: 0.10206389427185059 timestamp: 1658500554 timesteps_since_restore: 0 training_iteration: 1 trial_id: 96435da0 warmup_time: 0.002891063690185547 Result for objective_963faf2a: date: 2022-07-22_15-35-54 done: false experiment_id: f28968c2634348c2ae4b0118cc844687 hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 9.436 neg_mean_loss: -9.436 node_ip: 127.0.0.1 pid: 47689 time_since_restore: 0.10424089431762695 time_this_iter_s: 0.10424089431762695 time_total_s: 0.10424089431762695 timestamp: 1658500554 timesteps_since_restore: 0 training_iteration: 1 trial_id: 963faf2a warmup_time: 0.002835988998413086 Result for objective_96417df0: date: 2022-07-22_15-35-59 done: false experiment_id: e98b245717b4423d8917589cf5d42088 hostname: Kais-MacBook-Pro.local iterations: 46 iterations_since_restore: 47 mean_loss: 0.6336503496503496 neg_mean_loss: -0.6336503496503496 node_ip: 127.0.0.1 pid: 47690 time_since_restore: 5.134061098098755 time_this_iter_s: 0.1091001033782959 time_total_s: 5.134061098098755 timestamp: 1658500559 timesteps_since_restore: 0 training_iteration: 47 trial_id: 96417df0 warmup_time: 0.003325939178466797 Result for objective_96435da0: date: 2022-07-22_15-35-59 done: false experiment_id: 8680a80a099c452dadd3be44d3457ca5 hostname: Kais-MacBook-Pro.local iterations: 47 iterations_since_restore: 48 mean_loss: 0.6024657534246576 neg_mean_loss: -0.6024657534246576 node_ip: 127.0.0.1 pid: 47691 time_since_restore: 5.1902501583099365 time_this_iter_s: 0.10941314697265625 time_total_s: 5.1902501583099365 timestamp: 1658500559 timesteps_since_restore: 0 training_iteration: 48 trial_id: 96435da0 warmup_time: 0.002891063690185547 Result for objective_963faf2a: date: 2022-07-22_15-35-59 done: false experiment_id: f28968c2634348c2ae4b0118cc844687 hostname: Kais-MacBook-Pro.local iterations: 46 iterations_since_restore: 47 mean_loss: -0.21434965034965026 neg_mean_loss: 0.21434965034965026 node_ip: 127.0.0.1 pid: 47689 time_since_restore: 5.137102127075195 time_this_iter_s: 0.10854196548461914 time_total_s: 5.137102127075195 timestamp: 1658500559 timesteps_since_restore: 0 training_iteration: 47 trial_id: 963faf2a warmup_time: 0.002835988998413086 Result for objective_96417df0: date: 2022-07-22_15-36-04 done: false experiment_id: e98b245717b4423d8917589cf5d42088 hostname: Kais-MacBook-Pro.local iterations: 93 iterations_since_restore: 94 mean_loss: 0.46005633802816903 neg_mean_loss: -0.46005633802816903 node_ip: 127.0.0.1 pid: 47690 time_since_restore: 10.175445079803467 time_this_iter_s: 0.10581207275390625 time_total_s: 10.175445079803467 timestamp: 1658500564 timesteps_since_restore: 0 training_iteration: 94 trial_id: 96417df0 warmup_time: 0.003325939178466797 Result for objective_96435da0: date: 2022-07-22_15-36-05 done: false experiment_id: 8680a80a099c452dadd3be44d3457ca5 hostname: Kais-MacBook-Pro.local iterations: 94 iterations_since_restore: 95 mean_loss: 0.4342160278745645 neg_mean_loss: -0.4342160278745645 node_ip: 127.0.0.1 pid: 47691 time_since_restore: 10.23218584060669 time_this_iter_s: 0.10732793807983398 time_total_s: 10.23218584060669 timestamp: 1658500565 timesteps_since_restore: 0 training_iteration: 95 trial_id: 96435da0 warmup_time: 0.002891063690185547 Result for objective_963faf2a: date: 2022-07-22_15-36-05 done: false experiment_id: f28968c2634348c2ae4b0118cc844687 hostname: Kais-MacBook-Pro.local iterations: 93 iterations_since_restore: 94 mean_loss: -0.38794366197183094 neg_mean_loss: 0.38794366197183094 node_ip: 127.0.0.1 pid: 47689 time_since_restore: 10.181179761886597 time_this_iter_s: 0.10726284980773926 time_total_s: 10.181179761886597 timestamp: 1658500565 timesteps_since_restore: 0 training_iteration: 94 trial_id: 963faf2a warmup_time: 0.002835988998413086 Result for objective_96417df0: date: 2022-07-22_15-36-05 done: true experiment_id: e98b245717b4423d8917589cf5d42088 experiment_tag: 6_activation=relu_tanh,height=2.8400,steps=100,width=6 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: 0.44956291390728476 neg_mean_loss: -0.44956291390728476 node_ip: 127.0.0.1 pid: 47690 time_since_restore: 10.820996046066284 time_this_iter_s: 0.10588788986206055 time_total_s: 10.820996046066284 timestamp: 1658500565 timesteps_since_restore: 0 training_iteration: 100 trial_id: 96417df0 warmup_time: 0.003325939178466797 Result for objective_96435da0: date: 2022-07-22_15-36-05 done: true experiment_id: 8680a80a099c452dadd3be44d3457ca5 experiment_tag: 7_activation=relu_tanh,height=2.6000,steps=100,width=6 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: 0.4255629139072848 neg_mean_loss: -0.4255629139072848 node_ip: 127.0.0.1 pid: 47691 time_since_restore: 10.769440174102783 time_this_iter_s: 0.10849618911743164 time_total_s: 10.769440174102783 timestamp: 1658500565 timesteps_since_restore: 0 training_iteration: 100 trial_id: 96435da0 warmup_time: 0.002891063690185547 Result for objective_963faf2a: date: 2022-07-22_15-36-05 done: true experiment_id: f28968c2634348c2ae4b0118cc844687 experiment_tag: 5_activation=relu_tanh,height=-5.6400,steps=100,width=6 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: -0.39843708609271516 neg_mean_loss: 0.39843708609271516 node_ip: 127.0.0.1 pid: 47689 time_since_restore: 10.826673984527588 time_this_iter_s: 0.10800504684448242 time_total_s: 10.826673984527588 timestamp: 1658500565 timesteps_since_restore: 0 training_iteration: 100 trial_id: 963faf2a warmup_time: 0.002835988998413086
Here are the hyperparamters found to minimize the mean loss of the defined objective.
print("Best hyperparameters found were: ", results.get_best_result().config)
Best hyperparameters found were: {'steps': 100, 'width': 6, 'height': -5.64, 'activation': 'relu, tanh'}
We can also pass the parameter space ourselves in the following formats:
space = {
"height": (ValueType.CONTINUOUS, [-10, 10], 1e-2),
"width": (ValueType.DISCRETE, [0, 10], True),
"layers": (ValueType.GRID, [4, 8, 16])
}
ZOOpt again handles constraining the amount of concurrent trials with "parallel_num"
.
zoopt_search_config = {
"parallel_num": 8,
"metric": "mean_loss",
"mode": "min"
}
algo = ZOOptSearch(
algo="Asracos",
budget=num_samples,
dim_dict=space,
**zoopt_search_config
)
This time we pass only "steps"
and "activation"
to the Tune config
because "height"
and "width"
have been passed into ZOOptSearch
to create the search_algo
.
Again, we run the experiment to "min"
imize the "mean_loss" of the objective
by searching search_config
via algo
, num_samples
times.
tuner = tune.Tuner(
objective,
tune_config=tune.TuneConfig(
metric="mean_loss",
mode="min",
search_alg=algo,
num_samples=num_samples,
),
param_space={"steps": 100},
)
results = tuner.fit()
Trial name | status | loc | height | layers | width | loss | iter | total time (s) | iterations | neg_mean_loss |
---|---|---|---|---|---|---|---|---|---|---|
objective_9e64c92e | TERMINATED | 127.0.0.1:47713 | -8.08 | 16 | 0 | 9.192 | 100 | 10.7118 | 99 | -9.192 |
objective_9ff31930 | TERMINATED | 127.0.0.1:47718 | 0.38 | 16 | 7 | 0.180248 | 100 | 10.7315 | 99 | -0.180248 |
objective_9ff47d0c | TERMINATED | 127.0.0.1:47719 | 5.09 | 4 | 10 | 0.609 | 100 | 10.7924 | 99 | -0.609 |
objective_9ff5c2b6 | TERMINATED | 127.0.0.1:47720 | 5.26 | 16 | 1 | 1.44343 | 100 | 10.7868 | 99 | -1.44343 |
objective_a7f414d6 | TERMINATED | 127.0.0.1:47737 | 0.38 | 4 | 7 | 0.180248 | 100 | 10.7232 | 99 | -0.180248 |
objective_a7f5c682 | TERMINATED | 127.0.0.1:47738 | -2.38 | 16 | 7 | -0.0957525 | 100 | 10.7337 | 99 | 0.0957525 |
objective_a7f7c162 | TERMINATED | 127.0.0.1:47739 | 0.38 | 8 | 7 | 0.180248 | 100 | 10.7452 | 99 | -0.180248 |
objective_a7f96fda | TERMINATED | 127.0.0.1:47740 | 0.38 | 16 | 4 | 0.284305 | 100 | 10.7079 | 99 | -0.284305 |
objective_a7fb1844 | TERMINATED | 127.0.0.1:47741 | 0.38 | 8 | 7 | 0.180248 | 100 | 10.7157 | 99 | -0.180248 |
objective_a7fcf02e | TERMINATED | 127.0.0.1:47742 | -8.88 | 16 | 7 | -0.745752 | 100 | 10.7305 | 99 | 0.745752 |
Result for objective_9e64c92e: date: 2022-07-22_15-36-08 done: false experiment_id: fafb7d88360d408286e616de3dcd4407 hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 9.192 neg_mean_loss: -9.192 node_ip: 127.0.0.1 pid: 47713 time_since_restore: 0.1042020320892334 time_this_iter_s: 0.1042020320892334 time_total_s: 0.1042020320892334 timestamp: 1658500568 timesteps_since_restore: 0 training_iteration: 1 trial_id: 9e64c92e warmup_time: 0.0030999183654785156 Result for objective_9ff47d0c: date: 2022-07-22_15-36-11 done: false experiment_id: de33a45d0c344d3aa344d8cff20b6c37 hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 10.509 neg_mean_loss: -10.509 node_ip: 127.0.0.1 pid: 47719 time_since_restore: 0.10373878479003906 time_this_iter_s: 0.10373878479003906 time_total_s: 0.10373878479003906 timestamp: 1658500571 timesteps_since_restore: 0 training_iteration: 1 trial_id: 9ff47d0c warmup_time: 0.003734111785888672 Result for objective_9ff31930: date: 2022-07-22_15-36-11 done: false experiment_id: 404b066d5e154070b5a3f6f6ef3acb33 hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 10.038 neg_mean_loss: -10.038 node_ip: 127.0.0.1 pid: 47718 time_since_restore: 0.10415983200073242 time_this_iter_s: 0.10415983200073242 time_total_s: 0.10415983200073242 timestamp: 1658500571 timesteps_since_restore: 0 training_iteration: 1 trial_id: 9ff31930 warmup_time: 0.0033788681030273438 Result for objective_9ff5c2b6: date: 2022-07-22_15-36-11 done: false experiment_id: aeb7cb0b0c7c4f6692d47dcd1fe36462 hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 10.526 neg_mean_loss: -10.526 node_ip: 127.0.0.1 pid: 47720 time_since_restore: 0.10468196868896484 time_this_iter_s: 0.10468196868896484 time_total_s: 0.10468196868896484 timestamp: 1658500571 timesteps_since_restore: 0 training_iteration: 1 trial_id: 9ff5c2b6 warmup_time: 0.0027132034301757812 Result for objective_9e64c92e: date: 2022-07-22_15-36-13 done: false experiment_id: fafb7d88360d408286e616de3dcd4407 hostname: Kais-MacBook-Pro.local iterations: 47 iterations_since_restore: 48 mean_loss: 9.192 neg_mean_loss: -9.192 node_ip: 127.0.0.1 pid: 47713 time_since_restore: 5.111851215362549 time_this_iter_s: 0.10771799087524414 time_total_s: 5.111851215362549 timestamp: 1658500573 timesteps_since_restore: 0 training_iteration: 48 trial_id: 9e64c92e warmup_time: 0.0030999183654785156 Result for objective_9ff47d0c: date: 2022-07-22_15-36-16 done: false experiment_id: de33a45d0c344d3aa344d8cff20b6c37 hostname: Kais-MacBook-Pro.local iterations: 47 iterations_since_restore: 48 mean_loss: 0.7173333333333334 neg_mean_loss: -0.7173333333333334 node_ip: 127.0.0.1 pid: 47719 time_since_restore: 5.179923057556152 time_this_iter_s: 0.12629103660583496 time_total_s: 5.179923057556152 timestamp: 1658500576 timesteps_since_restore: 0 training_iteration: 48 trial_id: 9ff47d0c warmup_time: 0.003734111785888672 Result for objective_9ff31930: date: 2022-07-22_15-36-16 done: false experiment_id: 404b066d5e154070b5a3f6f6ef3acb33 hostname: Kais-MacBook-Pro.local iterations: 47 iterations_since_restore: 48 mean_loss: 0.3329852507374631 neg_mean_loss: -0.3329852507374631 node_ip: 127.0.0.1 pid: 47718 time_since_restore: 5.155292749404907 time_this_iter_s: 0.10897374153137207 time_total_s: 5.155292749404907 timestamp: 1658500576 timesteps_since_restore: 0 training_iteration: 48 trial_id: 9ff31930 warmup_time: 0.0033788681030273438 Result for objective_9ff5c2b6: date: 2022-07-22_15-36-16 done: false experiment_id: aeb7cb0b0c7c4f6692d47dcd1fe36462 hostname: Kais-MacBook-Pro.local iterations: 47 iterations_since_restore: 48 mean_loss: 2.2803859649122806 neg_mean_loss: -2.2803859649122806 node_ip: 127.0.0.1 pid: 47720 time_since_restore: 5.177261829376221 time_this_iter_s: 0.10725784301757812 time_total_s: 5.177261829376221 timestamp: 1658500576 timesteps_since_restore: 0 training_iteration: 48 trial_id: 9ff5c2b6 warmup_time: 0.0027132034301757812 Result for objective_9e64c92e: date: 2022-07-22_15-36-18 done: false experiment_id: fafb7d88360d408286e616de3dcd4407 hostname: Kais-MacBook-Pro.local iterations: 94 iterations_since_restore: 95 mean_loss: 9.192 neg_mean_loss: -9.192 node_ip: 127.0.0.1 pid: 47713 time_since_restore: 10.170606136322021 time_this_iter_s: 0.10434508323669434 time_total_s: 10.170606136322021 timestamp: 1658500578 timesteps_since_restore: 0 training_iteration: 95 trial_id: 9e64c92e warmup_time: 0.0030999183654785156 Result for objective_9e64c92e: date: 2022-07-22_15-36-19 done: true experiment_id: fafb7d88360d408286e616de3dcd4407 experiment_tag: 1_height=-8.0800,layers=16,steps=100,width=0 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: 9.192 neg_mean_loss: -9.192 node_ip: 127.0.0.1 pid: 47713 time_since_restore: 10.711803197860718 time_this_iter_s: 0.10728001594543457 time_total_s: 10.711803197860718 timestamp: 1658500579 timesteps_since_restore: 0 training_iteration: 100 trial_id: 9e64c92e warmup_time: 0.0030999183654785156 Result for objective_9ff31930: date: 2022-07-22_15-36-21 done: false experiment_id: 404b066d5e154070b5a3f6f6ef3acb33 hostname: Kais-MacBook-Pro.local iterations: 94 iterations_since_restore: 95 mean_loss: 0.18770059880239523 neg_mean_loss: -0.18770059880239523 node_ip: 127.0.0.1 pid: 47718 time_since_restore: 10.197859048843384 time_this_iter_s: 0.10710310935974121 time_total_s: 10.197859048843384 timestamp: 1658500581 timesteps_since_restore: 0 training_iteration: 95 trial_id: 9ff31930 warmup_time: 0.0033788681030273438 Result for objective_9ff47d0c: date: 2022-07-22_15-36-21 done: false experiment_id: de33a45d0c344d3aa344d8cff20b6c37 hostname: Kais-MacBook-Pro.local iterations: 94 iterations_since_restore: 95 mean_loss: 0.6142631578947368 neg_mean_loss: -0.6142631578947368 node_ip: 127.0.0.1 pid: 47719 time_since_restore: 10.256150722503662 time_this_iter_s: 0.11135077476501465 time_total_s: 10.256150722503662 timestamp: 1658500581 timesteps_since_restore: 0 training_iteration: 95 trial_id: 9ff47d0c warmup_time: 0.003734111785888672 Result for objective_9ff5c2b6: date: 2022-07-22_15-36-21 done: false experiment_id: aeb7cb0b0c7c4f6692d47dcd1fe36462 hostname: Kais-MacBook-Pro.local iterations: 94 iterations_since_restore: 95 mean_loss: 1.4875384615384615 neg_mean_loss: -1.4875384615384615 node_ip: 127.0.0.1 pid: 47720 time_since_restore: 10.24931287765503 time_this_iter_s: 0.10830807685852051 time_total_s: 10.24931287765503 timestamp: 1658500581 timesteps_since_restore: 0 training_iteration: 95 trial_id: 9ff5c2b6 warmup_time: 0.0027132034301757812 Result for objective_9ff31930: date: 2022-07-22_15-36-21 done: true experiment_id: 404b066d5e154070b5a3f6f6ef3acb33 experiment_tag: 2_height=0.3800,layers=16,steps=100,width=7 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: 0.18024751066856332 neg_mean_loss: -0.18024751066856332 node_ip: 127.0.0.1 pid: 47718 time_since_restore: 10.731510877609253 time_this_iter_s: 0.1073448657989502 time_total_s: 10.731510877609253 timestamp: 1658500581 timesteps_since_restore: 0 training_iteration: 100 trial_id: 9ff31930 warmup_time: 0.0033788681030273438 Result for objective_9ff47d0c: date: 2022-07-22_15-36-21 done: true experiment_id: de33a45d0c344d3aa344d8cff20b6c37 experiment_tag: 3_height=5.0900,layers=4,steps=100,width=10 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: 0.609 neg_mean_loss: -0.609 node_ip: 127.0.0.1 pid: 47719 time_since_restore: 10.792427778244019 time_this_iter_s: 0.10576391220092773 time_total_s: 10.792427778244019 timestamp: 1658500581 timesteps_since_restore: 0 training_iteration: 100 trial_id: 9ff47d0c warmup_time: 0.003734111785888672 Result for objective_9ff5c2b6: date: 2022-07-22_15-36-21 done: true experiment_id: aeb7cb0b0c7c4f6692d47dcd1fe36462 experiment_tag: 4_height=5.2600,layers=16,steps=100,width=1 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: 1.4434311926605505 neg_mean_loss: -1.4434311926605505 node_ip: 127.0.0.1 pid: 47720 time_since_restore: 10.786811828613281 time_this_iter_s: 0.10388994216918945 time_total_s: 10.786811828613281 timestamp: 1658500581 timesteps_since_restore: 0 training_iteration: 100 trial_id: 9ff5c2b6 warmup_time: 0.0027132034301757812 Result for objective_a7fb1844: date: 2022-07-22_15-36-24 done: false experiment_id: 668080a52a3f4c4fad2258177b1fb755 hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 10.038 neg_mean_loss: -10.038 node_ip: 127.0.0.1 pid: 47741 time_since_restore: 0.10408973693847656 time_this_iter_s: 0.10408973693847656 time_total_s: 0.10408973693847656 timestamp: 1658500584 timesteps_since_restore: 0 training_iteration: 1 trial_id: a7fb1844 warmup_time: 0.004377126693725586 Result for objective_a7f5c682: date: 2022-07-22_15-36-24 done: false experiment_id: 4449a3ef690c4b76a0cfbf7c4de7df43 hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 9.762 neg_mean_loss: -9.762 node_ip: 127.0.0.1 pid: 47738 time_since_restore: 0.10507631301879883 time_this_iter_s: 0.10507631301879883 time_total_s: 0.10507631301879883 timestamp: 1658500584 timesteps_since_restore: 0 training_iteration: 1 trial_id: a7f5c682 warmup_time: 0.003899097442626953 Result for objective_a7f414d6: date: 2022-07-22_15-36-24 done: false experiment_id: 20575f602c234dd7a167a93ff353299b hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 10.038 neg_mean_loss: -10.038 node_ip: 127.0.0.1 pid: 47737 time_since_restore: 0.10182499885559082 time_this_iter_s: 0.10182499885559082 time_total_s: 0.10182499885559082 timestamp: 1658500584 timesteps_since_restore: 0 training_iteration: 1 trial_id: a7f414d6 warmup_time: 0.0046689510345458984 Result for objective_a7f7c162: date: 2022-07-22_15-36-24 done: false experiment_id: f4b185b58be045f594bf127addecbace hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 10.038 neg_mean_loss: -10.038 node_ip: 127.0.0.1 pid: 47739 time_since_restore: 0.10427188873291016 time_this_iter_s: 0.10427188873291016 time_total_s: 0.10427188873291016 timestamp: 1658500584 timesteps_since_restore: 0 training_iteration: 1 trial_id: a7f7c162 warmup_time: 0.004554033279418945 Result for objective_a7fcf02e: date: 2022-07-22_15-36-24 done: false experiment_id: 5646116e3b69493b920c031d27eeb11b hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 9.112 neg_mean_loss: -9.112 node_ip: 127.0.0.1 pid: 47742 time_since_restore: 0.10358119010925293 time_this_iter_s: 0.10358119010925293 time_total_s: 0.10358119010925293 timestamp: 1658500584 timesteps_since_restore: 0 training_iteration: 1 trial_id: a7fcf02e warmup_time: 0.003072977066040039 Result for objective_a7f96fda: date: 2022-07-22_15-36-25 done: false experiment_id: 1983d487678f485a8a8ae7da4b7495a0 hostname: Kais-MacBook-Pro.local iterations: 0 iterations_since_restore: 1 mean_loss: 10.038 neg_mean_loss: -10.038 node_ip: 127.0.0.1 pid: 47740 time_since_restore: 0.10406088829040527 time_this_iter_s: 0.10406088829040527 time_total_s: 0.10406088829040527 timestamp: 1658500585 timesteps_since_restore: 0 training_iteration: 1 trial_id: a7f96fda warmup_time: 0.0031909942626953125 Result for objective_a7fb1844: date: 2022-07-22_15-36-29 done: false experiment_id: 668080a52a3f4c4fad2258177b1fb755 hostname: Kais-MacBook-Pro.local iterations: 47 iterations_since_restore: 48 mean_loss: 0.3329852507374631 neg_mean_loss: -0.3329852507374631 node_ip: 127.0.0.1 pid: 47741 time_since_restore: 5.134153842926025 time_this_iter_s: 0.10844898223876953 time_total_s: 5.134153842926025 timestamp: 1658500589 timesteps_since_restore: 0 training_iteration: 48 trial_id: a7fb1844 warmup_time: 0.004377126693725586 Result for objective_a7f5c682: date: 2022-07-22_15-36-29 done: false experiment_id: 4449a3ef690c4b76a0cfbf7c4de7df43 hostname: Kais-MacBook-Pro.local iterations: 47 iterations_since_restore: 48 mean_loss: 0.05698525073746313 neg_mean_loss: -0.05698525073746313 node_ip: 127.0.0.1 pid: 47738 time_since_restore: 5.151050090789795 time_this_iter_s: 0.10810613632202148 time_total_s: 5.151050090789795 timestamp: 1658500589 timesteps_since_restore: 0 training_iteration: 48 trial_id: a7f5c682 warmup_time: 0.003899097442626953 Result for objective_a7fcf02e: date: 2022-07-22_15-36-29 done: false experiment_id: 5646116e3b69493b920c031d27eeb11b hostname: Kais-MacBook-Pro.local iterations: 47 iterations_since_restore: 48 mean_loss: -0.593014749262537 neg_mean_loss: 0.593014749262537 node_ip: 127.0.0.1 pid: 47742 time_since_restore: 5.1300742626190186 time_this_iter_s: 0.10815715789794922 time_total_s: 5.1300742626190186 timestamp: 1658500589 timesteps_since_restore: 0 training_iteration: 48 trial_id: a7fcf02e warmup_time: 0.003072977066040039 Result for objective_a7f414d6: date: 2022-07-22_15-36-29 done: false experiment_id: 20575f602c234dd7a167a93ff353299b hostname: Kais-MacBook-Pro.local iterations: 47 iterations_since_restore: 48 mean_loss: 0.3329852507374631 neg_mean_loss: -0.3329852507374631 node_ip: 127.0.0.1 pid: 47737 time_since_restore: 5.151458024978638 time_this_iter_s: 0.10657620429992676 time_total_s: 5.151458024978638 timestamp: 1658500589 timesteps_since_restore: 0 training_iteration: 48 trial_id: a7f414d6 warmup_time: 0.0046689510345458984 Result for objective_a7f7c162: date: 2022-07-22_15-36-29 done: false experiment_id: f4b185b58be045f594bf127addecbace hostname: Kais-MacBook-Pro.local iterations: 47 iterations_since_restore: 48 mean_loss: 0.3329852507374631 neg_mean_loss: -0.3329852507374631 node_ip: 127.0.0.1 pid: 47739 time_since_restore: 5.154465675354004 time_this_iter_s: 0.1063377857208252 time_total_s: 5.154465675354004 timestamp: 1658500589 timesteps_since_restore: 0 training_iteration: 48 trial_id: a7f7c162 warmup_time: 0.004554033279418945 Result for objective_a7f96fda: date: 2022-07-22_15-36-30 done: false experiment_id: 1983d487678f485a8a8ae7da4b7495a0 hostname: Kais-MacBook-Pro.local iterations: 47 iterations_since_restore: 48 mean_loss: 0.5430505050505051 neg_mean_loss: -0.5430505050505051 node_ip: 127.0.0.1 pid: 47740 time_since_restore: 5.135071039199829 time_this_iter_s: 0.10689830780029297 time_total_s: 5.135071039199829 timestamp: 1658500590 timesteps_since_restore: 0 training_iteration: 48 trial_id: a7f96fda warmup_time: 0.0031909942626953125 Result for objective_a7fb1844: date: 2022-07-22_15-36-35 done: false experiment_id: 668080a52a3f4c4fad2258177b1fb755 hostname: Kais-MacBook-Pro.local iterations: 94 iterations_since_restore: 95 mean_loss: 0.18770059880239523 neg_mean_loss: -0.18770059880239523 node_ip: 127.0.0.1 pid: 47741 time_since_restore: 10.180493831634521 time_this_iter_s: 0.10809183120727539 time_total_s: 10.180493831634521 timestamp: 1658500595 timesteps_since_restore: 0 training_iteration: 95 trial_id: a7fb1844 warmup_time: 0.004377126693725586 Result for objective_a7f414d6: date: 2022-07-22_15-36-35 done: false experiment_id: 20575f602c234dd7a167a93ff353299b hostname: Kais-MacBook-Pro.local iterations: 94 iterations_since_restore: 95 mean_loss: 0.18770059880239523 neg_mean_loss: -0.18770059880239523 node_ip: 127.0.0.1 pid: 47737 time_since_restore: 10.188506126403809 time_this_iter_s: 0.10684013366699219 time_total_s: 10.188506126403809 timestamp: 1658500595 timesteps_since_restore: 0 training_iteration: 95 trial_id: a7f414d6 warmup_time: 0.0046689510345458984 Result for objective_a7f5c682: date: 2022-07-22_15-36-35 done: false experiment_id: 4449a3ef690c4b76a0cfbf7c4de7df43 hostname: Kais-MacBook-Pro.local iterations: 94 iterations_since_restore: 95 mean_loss: -0.08829940119760477 neg_mean_loss: 0.08829940119760477 node_ip: 127.0.0.1 pid: 47738 time_since_restore: 10.20038390159607 time_this_iter_s: 0.10745882987976074 time_total_s: 10.20038390159607 timestamp: 1658500595 timesteps_since_restore: 0 training_iteration: 95 trial_id: a7f5c682 warmup_time: 0.003899097442626953 Result for objective_a7f7c162: date: 2022-07-22_15-36-35 done: false experiment_id: f4b185b58be045f594bf127addecbace hostname: Kais-MacBook-Pro.local iterations: 94 iterations_since_restore: 95 mean_loss: 0.18770059880239523 neg_mean_loss: -0.18770059880239523 node_ip: 127.0.0.1 pid: 47739 time_since_restore: 10.203772783279419 time_this_iter_s: 0.1077718734741211 time_total_s: 10.203772783279419 timestamp: 1658500595 timesteps_since_restore: 0 training_iteration: 95 trial_id: a7f7c162 warmup_time: 0.004554033279418945 Result for objective_a7fcf02e: date: 2022-07-22_15-36-35 done: false experiment_id: 5646116e3b69493b920c031d27eeb11b hostname: Kais-MacBook-Pro.local iterations: 94 iterations_since_restore: 95 mean_loss: -0.738299401197605 neg_mean_loss: 0.738299401197605 node_ip: 127.0.0.1 pid: 47742 time_since_restore: 10.187027215957642 time_this_iter_s: 0.10881304740905762 time_total_s: 10.187027215957642 timestamp: 1658500595 timesteps_since_restore: 0 training_iteration: 95 trial_id: a7fcf02e warmup_time: 0.003072977066040039 Result for objective_a7f96fda: date: 2022-07-22_15-36-35 done: false experiment_id: 1983d487678f485a8a8ae7da4b7495a0 hostname: Kais-MacBook-Pro.local iterations: 94 iterations_since_restore: 95 mean_loss: 0.29706735751295343 neg_mean_loss: -0.29706735751295343 node_ip: 127.0.0.1 pid: 47740 time_since_restore: 10.170713901519775 time_this_iter_s: 0.10522603988647461 time_total_s: 10.170713901519775 timestamp: 1658500595 timesteps_since_restore: 0 training_iteration: 95 trial_id: a7f96fda warmup_time: 0.0031909942626953125 Result for objective_a7fb1844: date: 2022-07-22_15-36-35 done: true experiment_id: 668080a52a3f4c4fad2258177b1fb755 experiment_tag: 9_height=0.3800,layers=8,steps=100,width=7 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: 0.18024751066856332 neg_mean_loss: -0.18024751066856332 node_ip: 127.0.0.1 pid: 47741 time_since_restore: 10.715673923492432 time_this_iter_s: 0.10643696784973145 time_total_s: 10.715673923492432 timestamp: 1658500595 timesteps_since_restore: 0 training_iteration: 100 trial_id: a7fb1844 warmup_time: 0.004377126693725586 Result for objective_a7f414d6: date: 2022-07-22_15-36-35 done: true experiment_id: 20575f602c234dd7a167a93ff353299b experiment_tag: 5_height=0.3800,layers=4,steps=100,width=7 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: 0.18024751066856332 neg_mean_loss: -0.18024751066856332 node_ip: 127.0.0.1 pid: 47737 time_since_restore: 10.723177909851074 time_this_iter_s: 0.1052548885345459 time_total_s: 10.723177909851074 timestamp: 1658500595 timesteps_since_restore: 0 training_iteration: 100 trial_id: a7f414d6 warmup_time: 0.0046689510345458984 Result for objective_a7f5c682: date: 2022-07-22_15-36-35 done: true experiment_id: 4449a3ef690c4b76a0cfbf7c4de7df43 experiment_tag: 6_height=-2.3800,layers=16,steps=100,width=7 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: -0.09575248933143668 neg_mean_loss: 0.09575248933143668 node_ip: 127.0.0.1 pid: 47738 time_since_restore: 10.733658075332642 time_this_iter_s: 0.10680294036865234 time_total_s: 10.733658075332642 timestamp: 1658500595 timesteps_since_restore: 0 training_iteration: 100 trial_id: a7f5c682 warmup_time: 0.003899097442626953 Result for objective_a7f7c162: date: 2022-07-22_15-36-35 done: true experiment_id: f4b185b58be045f594bf127addecbace experiment_tag: 7_height=0.3800,layers=8,steps=100,width=7 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: 0.18024751066856332 neg_mean_loss: -0.18024751066856332 node_ip: 127.0.0.1 pid: 47739 time_since_restore: 10.745207786560059 time_this_iter_s: 0.10880804061889648 time_total_s: 10.745207786560059 timestamp: 1658500595 timesteps_since_restore: 0 training_iteration: 100 trial_id: a7f7c162 warmup_time: 0.004554033279418945 Result for objective_a7fcf02e: date: 2022-07-22_15-36-35 done: true experiment_id: 5646116e3b69493b920c031d27eeb11b experiment_tag: 10_height=-8.8800,layers=16,steps=100,width=7 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: -0.7457524893314368 neg_mean_loss: 0.7457524893314368 node_ip: 127.0.0.1 pid: 47742 time_since_restore: 10.730549097061157 time_this_iter_s: 0.11018085479736328 time_total_s: 10.730549097061157 timestamp: 1658500595 timesteps_since_restore: 0 training_iteration: 100 trial_id: a7fcf02e warmup_time: 0.003072977066040039 Result for objective_a7f96fda: date: 2022-07-22_15-36-35 done: true experiment_id: 1983d487678f485a8a8ae7da4b7495a0 experiment_tag: 8_height=0.3800,layers=16,steps=100,width=4 hostname: Kais-MacBook-Pro.local iterations: 99 iterations_since_restore: 100 mean_loss: 0.2843054187192119 neg_mean_loss: -0.2843054187192119 node_ip: 127.0.0.1 pid: 47740 time_since_restore: 10.707929849624634 time_this_iter_s: 0.10735177993774414 time_total_s: 10.707929849624634 timestamp: 1658500595 timesteps_since_restore: 0 training_iteration: 100 trial_id: a7f96fda warmup_time: 0.0031909942626953125
Here are the hyperparamters found to minimize the mean loss of the defined objective.
print("Best hyperparameters found were: ", results.get_best_result().config)
Best hyperparameters found were: {'steps': 100, 'height': -8.88, 'width': 7, 'layers': 16}
ray.shutdown()