from __future__ import division, print_function
%matplotlib inline
import sys
sys.path.insert(0,'..') # allow us to format the book
sys.path.insert(0,'../kf_book')
# use same formattibng as rest of book so that the plots are
# consistant with that look and feel.
import book_format
book_format.load_style(directory='..')
import matplotlib.pyplot as plt
import numpy as np
from numpy.random import randn, random, uniform, seed
import scipy.stats
class ParticleFilter(object):
def __init__(self, N, x_dim, y_dim):
self.particles = np.empty((N, 3)) # x, y, heading
self.N = N
self.x_dim = x_dim
self.y_dim = y_dim
# distribute particles randomly with uniform weight
self.weights = np.empty(N)
self.weights.fill(1./N)
self.particles[:, 0] = uniform(0, x_dim, size=N)
self.particles[:, 1] = uniform(0, y_dim, size=N)
self.particles[:, 2] = uniform(0, 2*np.pi, size=N)
def predict(self, u, std):
""" move according to control input u with noise std"""
self.particles[:, 2] += u[0] + randn(self.N) * std[0]
self.particles[:, 2] %= 2 * np.pi
d = u[1] + randn(self.N)
self.particles[:, 0] += np.cos(self.particles[:, 2]) * d
self.particles[:, 1] += np.sin(self.particles[:, 2]) * d
self.particles[:, 0:2] += u + randn(self.N, 2) * std
def weight(self, z, var):
dist = np.sqrt((self.particles[:, 0] - z[0])**2 +
(self.particles[:, 1] - z[1])**2)
# simplification assumes variance is invariant to world projection
n = scipy.stats.norm(0, np.sqrt(var))
prob = n.pdf(dist)
# particles far from a measurement will give us 0.0 for a probability
# due to floating point limits. Once we hit zero we can never recover,
# so add some small nonzero value to all points.
prob += 1.e-12
self.weights += prob
self.weights /= sum(self.weights) # normalize
def neff(self):
return 1. / np.sum(np.square(self.weights))
def resample(self):
p = np.zeros((self.N, 3))
w = np.zeros(self.N)
cumsum = np.cumsum(self.weights)
for i in range(self.N):
index = np.searchsorted(cumsum, random())
p[i] = self.particles[index]
w[i] = self.weights[index]
self.particles = p
self.weights.fill(1.0 / self.N)
def estimate(self):
""" returns mean and variance """
pos = self.particles[:, 0:2]
mu = np.average(pos, weights=self.weights, axis=0)
var = np.average((pos - mu)**2, weights=self.weights, axis=0)
return mu, var
from pf_internal import plot_pf
seed(1234)
N = 3000
pf = ParticleFilter(N, 20, 20)
xs = np.linspace (1, 10, 20)
ys = np.linspace (1, 10, 20)
zxs = xs + randn(20)
zys = xs + randn(20)
def animatepf(i):
if i == 0:
plot_pf(pf, 10, 10, weights=False)
idx = int((i-1) / 3)
x, y = xs[idx], ys[idx]
z = [x + randn()*0.2, y + randn()*0.2]
step = (i % 3) + 1
if step == 2:
pf.predict((0.5, 0.5), (0.2, 0.2))
pf.weight(z=z, var=.6)
plot_pf(pf, 10, 10, weights=False)
plt.title('Step {}: Predict'.format(idx+1))
elif step == 3:
pf.resample()
plot_pf(pf, 10, 10, weights=False)
plt.title('Step {}: Resample'.format(idx+1))
else:
mu, var = pf.estimate()
plot_pf(pf, 10, 10, weights=False)
plt.scatter(mu[0], mu[1], color='g', s=100, label='PF')
plt.scatter(x, y, marker='x', color='r', s=180, lw=3, label='Robot')
plt.title('Step {}: Estimate'.format(idx+1))
#plt.scatter(mu[0], mu[1], color='g', s=100, label="PF")
#plt.scatter([x+1], [x+1], marker='x', color='r', s=180, label="True", lw=3)
plt.legend(scatterpoints=1, loc=2)
plt.tight_layout()
from gif_animate import animate
animate('particle_filter_anim.gif', animatepf,
frames=40, interval=800, figsize=(4, 4))