# doex - Design and Analysis of Experiments¶

In [2]:
!pip install doex --upgrade

Requirement already up-to-date: doex in /Users/rohitsanjay/miniconda3/lib/python3.8/site-packages (0.0.2)


## 1. Completely Randomized Design¶

In [3]:
import doex

exp = doex.CompletelyRandomizedDesign(
[24, 28, 37, 30], # Treatment 1
[37, 44, 31, 35], # Treatment 2
[42, 47, 52, 38], # Treatment 3
)

+---------------------+-----+----------------+---------------------+-------------+---------+
| Source of Variation | DOF | Sum of Squares | Mean Sum of Squares | F statistic | p value |
+---------------------+-----+----------------+---------------------+-------------+---------+
|      Treatments     |  2  |    450.6667    |       225.3333      |    7.0356   |  0.0145 |
|        Error        |  9  |    288.2500    |       32.0278       |             |         |
|        Total        |  11 |    738.9167    |                     |             |         |
+---------------------+-----+----------------+---------------------+-------------+---------+


## 2. One Way ANOVA¶

In [5]:
import doex

exp = doex.OneWayANOVA(
[24, 28, 37, 30], # Treatment 1
[37, 44, 31, 35], # Treatment 2
[42, 47, 52, 38], # Treatment 3
)

+---------------------+-----+----------------+---------------------+-------------+---------+
| Source of Variation | DOF | Sum of Squares | Mean Sum of Squares | F statistic | p value |
+---------------------+-----+----------------+---------------------+-------------+---------+
|      Treatments     |  2  |    450.6667    |       225.3333      |    7.0356   |  0.0145 |
|        Error        |  9  |    288.2500    |       32.0278       |             |         |
|        Total        |  11 |    738.9167    |                     |             |         |
+---------------------+-----+----------------+---------------------+-------------+---------+


## 3. Randomized Complete Block Design¶

In [6]:
import doex

exp = doex.RandomizedCompleteBlockDesign(
[
[73, 68, 74, 71, 67],
[73, 67, 75, 72, 70],
[75, 68, 78, 73, 68],
[73, 71, 75, 75, 69],
]
)

+---------------------+-----+----------------+---------------------+-------------+---------+
| Source of Variation | DOF | Sum of Squares | Mean Sum of Squares | F statistic | p value |
+---------------------+-----+----------------+---------------------+-------------+---------+
|      Treatments     |  3  |    12.9500     |        4.3167       |    2.3761   |  0.1211 |
|        Blocks       |  4  |    157.0000    |       39.2500       |   21.6055   |  0.0000 |
|        Error        |  12 |    21.8000     |        1.8167       |             |         |
|        Total        |  19 |    191.7500    |                     |             |         |
+---------------------+-----+----------------+---------------------+-------------+---------+


## 4. Two Way ANOVA¶

In [7]:
import doex

exp = doex.TwoWayANOVA(
[
[9.3, 9.4, 9.6, 10.0],
[9.4, 9.3, 9.8, 9.9],
[9.2, 9.4, 9.5, 9.7],
[9.7, 9.6, 10.0, 10.2],
]
)

+---------------------+-----+----------------+---------------------+-------------+---------+
| Source of Variation | DOF | Sum of Squares | Mean Sum of Squares | F statistic | p value |
+---------------------+-----+----------------+---------------------+-------------+---------+
|      Treatments     |  3  |     0.3850     |        0.1283       |   14.4375   |  0.0009 |
|        Blocks       |  3  |     0.8250     |        0.2750       |   30.9375   |  0.0000 |
|        Error        |  9  |     0.0800     |        0.0089       |             |         |
|        Total        |  15 |     1.2900     |                     |             |         |
+---------------------+-----+----------------+---------------------+-------------+---------+


## 5. Latin Square Design¶

In [8]:
import doex

exp = doex.LatinSquare(
[
["A", "B", "D", "C", "E"],
["C", "E", "A", "D", "B"],
["B", "A", "C", "E", "D"],
["D", "C", "E", "B", "A"],
["E", "D", "B", "A", "C"],
],
[
[8, 7, 1, 7, 3],
[11, 2, 7, 3, 8],
[4, 9, 10, 1, 5],
[6, 8, 6, 6, 10],
[4, 2, 3, 8, 8],
],
)

+---------------------+-----+----------------+---------------------+-------------+---------+
| Source of Variation | DOF | Sum of Squares | Mean Sum of Squares | F statistic | p value |
+---------------------+-----+----------------+---------------------+-------------+---------+
|      Treatments     |  4  |    141.4400    |       35.3600       |   11.3092   |  0.0005 |
|         Rows        |  4  |    15.4400     |        3.8600       |    1.2345   |  0.3476 |
|       Columns       |  4  |    12.2400     |        3.0600       |    0.9787   |  0.4550 |
|        Error        |  12 |    37.5200     |        3.1267       |             |         |
|        Total        |  24 |    206.6400    |                     |             |         |
+---------------------+-----+----------------+---------------------+-------------+---------+

In [ ]: