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Abstract
Walleye Sander vitreus and Yellow Perch Perca flavescens are culturally, economically, and ecologically signifi-

cant fish species in North America that are affected by drivers of global change. Here, we review and synthesize the
published literature documenting the effects of ecosystem changes on Walleye and Yellow Perch. We focus on four
drivers: climate (including temperature and precipitation), aquatic invasive species, land use and nutrient loading, and
water clarity. We identified 1,232 tests from 370 papers, split evenly between Walleye (n= 613) and Yellow Perch
(n= 619). Climate was the most frequently studied driver (n= 572), and growth or condition was the most frequently
studied response (n= 297). The most commonly reported relationship was “no effect” (42% of analyses), usually
because multiple variables were tested and only a few were found to be significant. Overall responses varied among
studies for most species-response–driver combinations. For example, the influence of invasive species on growth of
both Walleye and Yellow Perch was approximately equally likely to be positive, negative, or have no effect. Even
when results were variable, important patterns emerged; for example, growth responses of both species to temperature
were variable, but very few negative responses were observed. A few relationships were relatively consistent across
studies. Invasive species were negatively associated with Walleye recruitment and abundance, and higher water clarity
was negatively associated with Walleye abundance, biomass, and production. Some variability in responses may be
due to differences in methodology or the range of variables studied; others represent true context dependence, where
the effect of a driver depends on the influence of other variables. Using common metrics of impact, publishing negative
results, and robust analytical approaches could facilitate comparisons among systems and provide a more comprehen-
sive understanding of the responses of Walleye and Yellow Perch to ecosystem change.
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Freshwater fisheries are threatened by multiple drivers
of global change, including climate change, species inva-
sions, and nutrient loading (Carpenter et al. 2011; Reid
et al. 2019). Often, multiple ecosystem changes occur
concurrently, making it difficult or impossible to identify
causation using observational data alone—especially from
a single system (Hilborn and Stearns 1982; Hilborn 2016).
For example, climate change may increase habitat suit-
ability for invasive species (Rahel and Olden 2008), while
at the same time, warming temperatures and increased
precipitation may increase nutrient loading in lakes (Col-
lins et al. 2019; Ho and Michalak 2020), making it diffi-
cult to discern ultimate from proximate drivers of change.
Ecosystem change may also have differential effects at dif-
ferent life stages of fish as a result of ontogenetic shifts in
thermal tolerance, preferred prey, and other characteris-
tics. In a world of unprecedented environmental change, it
can be difficult to disentangle cause and effect from obser-
vational studies and messy data. Synthesizing information
and comparing across studies to illuminate common pat-
terns as well as differences in findings can help build com-
mon understanding and move beyond single-system
narratives (Biggs et al. 2009).

The term “context dependence” is frequently used in
ecology to describe variability in the existence, direction,
or magnitude of a given relationship depending on other
conditions (Catford et al. 2021). Relationships may vary
among studies or ecosystems due to true context depen-
dence (i.e., fundamentally different relationships under dif-
ferent ecological conditions) or due to apparent context
dependence (i.e., the relationship appears to differ due to
differences in statistical inference, sample size, range of
values studied, or methodological differences; Catford
et al. 2021). Higher-order interactions between variables
can produce different relationships between driver and
response variables, where the sign, magnitude, or func-
tional form of a relationship varies based on levels of
other environmental or biotic variables (Figure 1A). Addi-
tionally, unobserved system components, complexity, and
ongoing change can alter relationships between compo-
nents of a system (Figure 1B). These types of interactions
and dynamics represent true context dependence. Recog-
nizing and identifying the causes of context dependence
can lead to greater insight into ecological processes and
predictability of responses under changing conditions
while also identifying areas of future study required to
increase generalizability across systems (Catford et al.
2021). Conversely, observed effects can differ among eco-
systems or populations due to nonmonotonic relation-
ships, where a study encompassing one portion of the
range of predictor values might be expected to identify a
positive relationship, while at another range of variables
we might expect a negative relationship or no relationship
(Figure 1C). This apparent context dependence can be

resolved by studying relationships across a wide range of
driver variables. Finally, a study may also identify a sig-
nificant relationship between independent variables due to
random chance, and such spurious correlations are
unlikely to be consistent across studies (Figure 1D). The
problem of spurious correlations is of particular concern
when multiple relationships are tested. On the other hand,
when observed effects are similar between studies, they
may still have limited transferability to other systems if
multiple ranges of conditions, contexts, and interactions
have not been tested.

Here, we review the documented impacts of ecosystem
change on Walleye Sander vitreus and Yellow Perch Perca
flavescens—two economically, culturally, and ecologically
important coolwater fish species that occur throughout
North America (Bozek et al. 2011; Feiner and Höök
2015). We focus our review on four major drivers of eco-
system change: climate (including temperature and precipi-
tation effects), aquatic invasive species, land use and
nutrient loading, and water clarity. Although water clarity
is inherently related to nutrients and land use, we included
it as a separate driver for two reasons. First, water clarity
(e.g., Secchi depth) is frequently measured in lakes
throughout North America in the absence of nutrient or
land use information, making it difficult to assess what
might be causing differences in water clarity. Second,
Walleye are physiologically adapted to low-light condi-
tions (Ryder 1977) and the role of water clarity in deter-
mining Walleye abundance and production is well
documented (Lester et al. 2004; Tunney et al. 2018; Han-
sen et al. 2019). Walleye and Yellow Perch exist across a
wide range of climates, food webs, and productivity levels,
and their responses may differ among ecosystems—that is,
they may be truly context dependent. In this review we
attempt to differentiate true context dependence from
apparent context dependence, with the goal of identifying
interactions between drivers that could lead to greater
understanding of complex systems and the capacity to pre-
dict responses to future environmental change (Catford
et al. 2021). At the same time, we recognize that manage-
ment decisions cannot always wait for scientific certainty
(or even robust statistical inference), and therefore this lit-
erature review will provide an up-to-date resource regard-
ing the impacts of ecosystem change on Walleye and
Yellow Perch, even when that information is based on one
or a few studies.

METHODS
We used the Web of Science database to search for rel-

evant literature up to May 27, 2021. A list of search terms
was created for each major driver category for both Wall-
eye and Yellow Perch. We used common names and scien-
tific names for each species (including both Stizostedion

EFFECT OF ECOSYSTEM CHANGE ON WALLEYE AND YELLOW PERCH 485

 15488675, 2022, 3, D
ow

nloaded from
 https://afspubs.onlinelibrary.w

iley.com
/doi/10.1002/nafm

.10741 by U
N

IV
E

R
SIT

Y
 O

F M
IN

N
E

SO
T

A
 170 W

IL
SO

N
 L

IB
R

A
R

Y
, W

iley O
nline L

ibrary on [10/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



vitreum and Sander vitreus for Walleye) and excluded the
terms “Pollack” or “Pollock” to eliminate hits from Wall-
eye Pollock Gadus chalcogrammus. Searches were con-
ducted using species names in combination with terms
associated with our four categories of ecosystem change
(using the Boolean operator “AND”). Search terms for
climate change included any of the following (using the
Boolean operator “OR”): climate change, climate, global
warming, warming, or temperature. Search terms for
nutrients and land use included the following: nutrient,
nutrient loading, land use, land cover, pollute, run off,
eutrophic, phosphoric, nitrogen, DOC, or dissolved
organic carbon. Search terms for water clarity included
the following: water clarity, turbid, Secchi, transparency,
or light. Search terms for invasive species included the fol-
lowing: invasive species, AIS, invasive, non-native, non-
indigenous, or alien.

For all papers generated from our database search, we
reviewed each abstract to determine whether it included
our species of interest and was relevant to our driver cate-
gories and search terms in any way. We then removed all

duplicates between our four searches, which resulted in
880 total papers for our initial literature review. We read
each paper to identify if it was suitable for inclusion in the
review. Inclusion required that investigators tested a rela-
tionship between some measure of climate, invasive spe-
cies, nutrients and land use, or water clarity and some
measure of Walleye and/or Yellow Perch individuals,
populations, communities, or habitat (Figure 2). We also
excluded studies that reported only time series with no sta-
tistical analysis of relationships between drivers and
response.

For papers deemed suitable, we classified the direction
of response based on results of statistical tests and visual
examination of figures presented in the papers or supple-
mentary materials. Response directions were classified as
positive, negative, nonmonotonic or interactive, or no
effect based on estimated coefficients and statistical signifi-
cance based on the methods and interpretation of the orig-
inal authors. Responses were classified as nonmonotonic
or interactive only when identified as such by the original
authors or based on graphical presentation of results.

FIGURE 1. Documented responses to drivers of ecosystem change may vary across studies for many reasons. (A) Interactions among multiple drivers
can produce different responses depending on the levels of other variables, representing true context dependence. (B) Complex systems with multiple
interacting drivers that are frequently unobserved can produce different responses to the same drivers, and relationships themselves can change over
time. (C) Nonmonotonic responses can result in opposite directional effects observed across different ranges of predictor variables (e.g., studies 1, 2,
and 3 sample a different portion of the range of the driver variable and find different relationships). (D) Spurious correlations can produce statistically
significant relationships that differ in direction just by random chance (e.g., studies 1, 2, and 3 sample a different subset of points due to random
chance and find different relationships).
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When variables were selected for inclusion in a final model
based on information theoretical approaches (e.g., Akaike
1973), we considered predictors not selected for inclusion
in the final model to have no effect. We included studies
that quantified simple correlations between variables and
relied on the inference presented in the paper even if we
questioned statistical methods or conclusions. We excluded
review papers. We classified responses and drivers under
major themes (Figure 2; Table S1 in the Supplement in the
online version of this article) using Google Forms. Some
responses were further combined for presentation here; for
example, predator–prey interactions and diet studies were
combined as “trophic interactions” and sparsely studied
responses such as harvest, movement, diversity, and ther-
mal habitat were grouped under “other” (Table S1).
Results from studies with multiple drivers, responses, or
species were recorded individually, meaning that multiple
tests were often recorded from the same studies. This
included studies where multiple metrics within the same
category of driver were tested, for example, testing multi-
ple climate metrics.

RESULTS
We identified 1,232 tests from 370 papers to include

in our final literature review (Table S1). Results were
split fairly evenly between Walleye (n = 613) and Yel-
low Perch (n = 619). We identified relatively few results
prior to the late 1990s, and the majority of comparisons
came from 2016 (Figure 3). In part, this spike is due to
the publication of a book on systems change in Oneida
Lake (Rudstam et al. 2016). Studies on a few locations
were well represented in the literature; 11% of all ana-
lyses were from Lake Erie, and another 17% were from
Minnesota (including Red Lake, Mille Lacs, and all
other inland lakes; Figure 4). Climate change was the
most frequently studied driver (n = 572) and growth/
condition was the most frequently studied response (n
= 297). The most commonly reported relationship was
“no effect” (n = 522, or 42% of analyses), usually
because multiple variables were tested and only a few
were found to be significant. Overall responses varied
among studies for most species-response–driver combi-
nations, with approximately equal frequencies of

FIGURE 2. Drivers of ecosystem change included in each of the four major categories, and response variables recorded in the literature review.
Invasive species included the following: Alewife Alosa pseudoharengus, Bighead Carp Hypophthalmichthys nobilis, bloody-red shrimp Hemimysis
anomala, Chinese mystery snail Cipangopaludina chinensis, Common Carp Cyprinus carpio, dreissenid mussels, Rainbow Smelt Osmerus mordax,
Round Goby Neogobius melanostomus, Ruffe Gymnocephalus cernua, rusty crayfish Orconectes rusticus, Silver Carp Hypophthalmichthys molitrix,
Smallmouth Bass Micropterus dolomieu, spiny water flea Bythotrephes longimanus, and White Perch Morone americana.

EFFECT OF ECOSYSTEM CHANGE ON WALLEYE AND YELLOW PERCH 487

 15488675, 2022, 3, D
ow

nloaded from
 https://afspubs.onlinelibrary.w

iley.com
/doi/10.1002/nafm

.10741 by U
N

IV
E

R
SIT

Y
 O

F M
IN

N
E

SO
T

A
 170 W

IL
SO

N
 L

IB
R

A
R

Y
, W

iley O
nline L

ibrary on [10/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



positive and negative relationships documented in many
cases (Figure 5).

Climate Change
The effects of climate on Walleye and Yellow Perch

populations were highly variable (Figure 5) and differed
among systems. No single directional effect was documen-
ted in the majority of cases. Variability in some cases
stemmed from the use of different climate metrics across
studies. Summarizing climate variables in a way that is
ecologically meaningful is nontrivial and oftentimes not
straightforward (Sofaer et al. 2017). Metrics of tempera-
ture used in statistical analyses included annual measures
of temperature such as growing degree-days (e.g., Venture-
lli et al. 2010; Haxton 2015; Dembkowski et al. 2017),
temperature conditions related to specific months (e.g.,
Cyterski and Spangler 1996; Ward et al. 2004; Lyons and
Oele 2018), metrics related to temperature variability (e.g.,
Henderson and Nepszy 1988; Lyons and Welke 1996;
Eldridge et al. 2015), metrics related to winter severity or
ice cover (e.g., Farmer et al. 2015; Feiner et al. 2018;
Marcek et al. 2021), and many others (Figure 2). Numer-
ous studies tested multiple climate metrics as potential pre-
dictors, and frequently, many variables were found to
have no effect. For example, Cyterski and Spangler (1996)
conducted 57 statistical tests relating a number of climate
metrics to various measures of Walleye growth in Red
Lake, Minnesota. They identified 6 positive relationships,
while the other 51 relationships were not significant. Some
studies examined thermal habitat directly as a function of
climate—that is, quantified the amount of habitat area in
a lake that falls within a specified preferred temperature

range for Walleye or Yellow Perch. Perhaps counterintui-
tively, thermal habitat for coolwater fishes was generally
predicted to increase with warming temperatures through-
out much of North America due to the positive influence
of longer growing seasons outweighing the negative influ-
ence of high temperature exceeding upper thermal limits
(Fang et al. 2004; Cline et al. 2013; Hansen et al. 2019).

Recruitment.—Recruitment was the second most com-
monly studied response to climate drivers, with variable
results (Figure 5). Of the 88 analyses focusing on Walleye,
the majority (72%) documented no effect. The effects of
climate on Yellow Perch recruitment were less frequently
studied (33 tests), and here the most frequently documen-
ted response was positive (42% of tests), followed by no
effect (33% of tests). Recruitment was measured at differ-
ent life stages in different studies and thus comprises natu-
ral reproduction, growth, and survival to different age-
classes and in some cases includes stocked fish. Similarly,
climate and temperature can be summarized in nearly infi-
nite ways, and some variability in results may have been
due to different definitions of recruitment and/or climate.
Still, the influence of several climate variables on recruit-
ment were commonly tested.

Warmer winters and earlier ice-out dates were associ-
ated with lower recruitment of Walleye and Yellow Perch
in several populations in diverse systems, including
Nebraska reservoirs (DeBoer et al. 2013), inland lakes of
Minnesota (Schneider et al. 2010), and the Great Lakes
(Farmer et al. 2015; Bunnell et al. 2016; Dippold et al.
2020; Marcek et al. 2021). However, winter duration was
not significantly related to Walleye recruitment to age 0 in
Wisconsin lakes (Hansen et al. 2015a, 2017). In

FIGURE 3. Number of analyses identified in the literature review by year of publication. Fill colors represent focal species.

488 HANSEN ET AL.
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Minnesota’s large lakes, no relationship was observed
between recruitment and the severity of the winter preced-
ing Walleye hatching, but winter severity in the year
following hatching was negatively correlated with recruit-
ment (Honsey et al. 2020).

Fast-warming springs were associated with higher Wall-
eye recruitment in diverse ecosystems, including Lake Erie
(Shuter et al. 2002; Zhao et al. 2013; but see Dippold
et al. 2020), pools of the upper Mississippi River (Pitlo
2002), and South Dakota and Nebraska reservoirs (Graeb

et al. 2010; DeBoer et al. 2013). However, spring warming
was not related to Walleye recruitment in Indiana reser-
voirs (Doll et al. 2015) or Wisconsin lakes (Hansen et al.
2015a). For Yellow Perch, spring warming rates negatively
affected recruitment at swim-up larvae and pelagic juve-
nile life stages (Zhang et al. 2017), but overall, spring
warming rates did not impact Yellow Perch recruitment in
Lake Erie (Dippold et al. 2020). Variability in spring tem-
peratures can negatively affect Walleye and Yellow Perch
recruitment (Serns 1982; Hansen et al. 1998), although

FIGURE 4. Number of analyses identified in literature review by location. Note that some specific locations are counted separately from the total
from their state or province to highlight the number of studies on a single lake or river.
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again this effect appears to vary among systems (Kalle-
meyn 1987; Quist et al. 2003; Hansen et al. 2015a) and
even among time periods within a single lake (Shaw et al.
2018). Laboratory studies showed mixed results of vari-
ability in temperature during critical periods on larval sur-
vival and growth of both Walleye and Yellow Perch (e.g.,
Jansen et al. 2009; Coulter et al. 2016).

Recruitment was also impacted by summer tempera-
tures and growing degree-days, and this relationship var-
ied among locations. Warmer temperatures and longer
growing seasons positively affected Walleye recruitment in
Minnesota’s largest Walleye lakes (Schupp 2002; Honsey
et al. 2020) and negatively affected recruitment to the fall
of age-0 Walleye in small lakes (<500 ha) but had no
effect in large lakes in Wisconsin (Hansen et al. 2015a), in

Lake Escanaba (Shaw et al. 2018), or in the Wisconsin
River (Lyons and Oele 2018). Furthermore, the direction
of the correlation between degree-days and recruitment
varied depending on the abundance of Largemouth Bass
Micropterus salmoides (Hansen et al. 2018). Modeling sug-
gests that recruitment responses of Walleye in Lake Erie
to temperature could be positive, negative, or nonexistent
depending on other factors (Jones et al. 2006). Tempera-
ture was not related to Yellow Perch recruitment in Indi-
ana lakes (Feiner et al. 2019) or in southern Lake
Michigan (Beletsky et al. 2007; Redman et al. 2011; For-
sythe et al. 2012), although warmer temperatures related
to stronger Yellow Perch year-class strength in the St.
Lawrence River (Hudon et al. 2010), in Lake Erie (Jarrin
et al. 2015), in Lake Michigan (Bunnell et al. 2016), and

FIGURE 5. Summary of literature review results showing the number and direction of associations between ecosystem change drivers and various
population or individual responses for Walleye (top panels) and Yellow Perch (bottom panels). Note the different horizontal axis scales.
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in stocks throughout the Great Lakes (Honsey et al.
2016). Various aspects of precipitation, water levels, and
water flow were also related to recruitment for both Wall-
eye and Yellow Perch but were frequently hypothesized to
have modulating effects on the influence of temperature
and spring warming rates on recruitment (Hudon et al.
2010; Doll et al. 2015). Where precipitation or river flow
were reported to have more direct effects on recruitment,
the mechanism was largely related to water levels (Bunnell
et al. 2016; Dembkowski et al. 2017).

Abundance, biomass, and production.—As with recruit-
ment success, the relationship between temperature and
Walleye abundance, biomass, and/or production appears
to be nonlinear and potentially interactive. Interactions
among temperature, water clarity, dissolved oxygen, sys-
tem productivity, and prey availability, as well as the tem-
perature range studied, seemed especially important in
determining Walleye and Yellow Perch abundance or bio-
mass responses (e.g., Minns and Moore 1992; Pandit et al.
2013; Gutowsky et al. 2019; Hossain et al. 2019).

The most common response of Walleye biomass or
abundance to climate was no effect (39% of tests), while
positive and negative results were equally prevalent in the
literature (25% of tests, each). Higher summer tempera-
tures were associated with declining Walleye catch rates in
some systems (e.g., Robillard and Fox 2006; Haxton
2015; Kraus et al. 2017), but in other cases, warmer tem-
peratures led to higher Walleye catch rates (Schupp 2002;
Berger et al. 2012). Spring warming rates were positively
related to the abundance of age-0 Walleye in western Lake
Erie (Roseman et al. 1999), while other studies detected
no relationship between Walleye abundance and tempera-
ture, illustrating the complexity of this relationship (Han-
sen et al. 2019; Pennock and Gido 2021). Jarvis et al.
(2020) found that Walleye production was lower in lakes
with higher degree-days in Ontario, despite growth being
higher in these lakes. They hypothesized that lower pro-
duction and higher growth at high temperatures reflects a
trade-off in life history traits at warmer temperatures (Les-
ter et al. 2014). Walleye production in Ontario was also
higher in lakes with lower annual precipitation (Jarvis
et al. 2020), in contrast to earlier work relating Walleye
abundance to higher water levels (Chevalier 1977). These
differences may reflect the complex relationships among
precipitation, river flow, runoff, and thermal habitat (Jar-
vis et al. 2020).

For Yellow Perch, the majority of tests examining cli-
mate effects on abundance or biomass did not identify
any relationship (71%), though two-thirds of the tests
came from a single study focusing on glacial lakes of
South Dakota (Ward et al. 2004). When an effect of tem-
perature on abundance or biomass was documented, it
was more likely to be positive (21% of tests; e.g., Stacy-
Duffy et al. 2020) than negative (6% of tests; e.g., Magee

et al. 2018). In contrast, precipitation and water levels
were positively associated with Yellow Perch abundance
(Gaeta et al. 2015; McLean et al. 2016) and recruitment
(Bunnell et al. 2016).

Growth.—Growth and condition were the most com-
monly studied responses to climate change. Fish growth
responses to temperature were highly variable among stud-
ies, although very few negative responses were observed
for either species (Figure 5). For Walleye, the majority of
studies reported a nonexistent relationship (52% of tests
identified no effect; e.g., Hall and Rudstam 1999; Rud-
stam et al. 2016). When a relationship was present, it was
more frequently positive (29% of tests) than negative (9%
of tests). Some variability in results may be attributed to
growth being measured in different ways and for different
life stages. Furthermore, fish growth responses to tempera-
ture are decidedly nonmonotonic, with increasing positive
responses up to a threshold (optimal) value, above which
growth rapidly declines (Kitchell et al. 1977). Thus, we
would expect positive effects of temperature on growth at
temperatures below the optimum and negative effects
above the optimum. Indeed, temperature negatively
affected Walleye growth rate potential at very high tem-
peratures, such as those observed in Utah reservoirs (Budy
et al. 2011) and in power plant thermal discharges (Coul-
ter et al. 2014). Conversely, temperature positively affected
early life growth in diverse systems, including a reservoir
in Nebraska (Uphoff et al. 2013), multiple lakes across
Ontario (Shuter et al. 2002), and northern Wisconsin lakes
(Pedersen et al. 2017).

Yellow Perch growth was more frequently positively
than negatively related to temperature (34% and 5% of 61
tests, respectively), but again, many studies (44%) reported
no effect (Figure 5). Similar to Walleye, Yellow Perch
growth responses to temperature depended on life stage.
For example, in Lake Ontario, temperature explained var-
iation in growth of age-0 Yellow Perch but did not affect
growth rates at older life stages (O’Gorman and Burnett
2001). We also observed context dependence within a sin-
gle study. Summer temperature was negatively correlated
with Yellow Perch body condition in Lake Ontario but
positively correlated in Lake Erie during the same time
period (Crane et al. 2015). The range of temperatures
examined also influenced results. Manning et al. (2014)
found that temperature was the least influential predictor
of growth and starvation out of all predictors included in
a simulation model. They hypothesized that growth was
not sensitive to a 10% change in temperature because this
is within the bounds of normal fluctuations.

Many growth studies relied on bioenergetics models
(Kitchell et al. 1977; Hanson et al. 1997; Deslauriers et al.
2017), in which the effect of temperature on growth was,
by definition, nonmonotonic. In reality, growth responses
to temperature depend on behavioral thermoregulation,
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prey availability, magnitude of temperature increase, and
individual species tolerances. Growth response could be
positive or negative depending on prey availability and
whether species track preferred temperatures by changing
behavior (Kao et al. 2015). Madenjian et al. (2018) con-
cluded that temperature is less important than food avail-
ability in explaining variation in Walleye growth in Lakes
Erie and Huron. Bioenergetics models also predict sea-
sonal differences in responses of growth to temperature.
The overall response of fish growth to increasing tempera-
tures may depend on whether they can survive potential
periods of summer thermal stress in order to experience
the growth benefits of warming in other seasons (Quist et
al. 2002; Budnik et al. 2021).

Diet and trophic interactions.— Trophic interactions
were the most infrequently investigated responses to cli-
mate change (Figure 5). However, both direct and indirect
impacts of climate on Walleye and Yellow Perch were
described. Direct responses to changes in temperature
included shifts in prey type (Goto et al. 2017) and volume
consumed (Kocovsky and Carline 2001) as well as diges-
tion rates (Legler et al. 2010) of prey items. Increased
instances of predation on Yellow Perch (by Northern Pike
Esox lucius and Largemouth Bass) in response to
increased temperatures were also reported (Breeggemann
et al. 2016). However, climatic shifts were also found to
have a moderating effect on other driver relationships; for
example, changes in water levels and temperatures shifted
habitat availability for prey species that then increased in
Walleye diets due to opportunistic feeding (Bryan et al.
1995).

Mercury and other contaminants.—Climate affects mer-
cury concentrations in aquatic environments and bioaccu-
mulation rates in the tissues of fish (Macdonald 2005;
Balogh et al. 2006; Sumner et al. 2020). Both temperature
and precipitation or water levels were associated with mer-
cury concentrations in Walleye and Yellow Perch, once
again with variable results. Of the 11 tests that focused on
climate impacts on contaminants in Walleye, 45% found
positive relationships and 36% found no relationship. For
Yellow Perch, 47% of 19 analyses reported no relationship
between climate variables and contaminants, and positive
and negative relationships were reported at equal frequen-
cies (21% of tests, each). Higher temperatures were associ-
ated with higher mercury concentrations in both Walleye
and Yellow Perch in locations around the Nearctic (Evans
et al. 2005a; Chen et al. 2018; Sorensen 2019), but the
opposite was true in northern Minnesota lakes (Kolka
et al. 2019). The connection between temperature and fish
growth muddies the relationship between temperature and
mercury bioaccumulation. For example, warmer winters
can increase growth rates of Walleye, which results in
lower concentrations of mercury in their tissues (Lucotte
et al. 2016). However, higher summer temperatures can

increase mercury methylation and availability as well as
fish metabolic rates, thus increasing concentrations of mer-
cury in fish tissues (Harris and Bodaly 1998; Evans et al.
2005b).

Climate impacts include both precipitation/water levels
and temperature. Higher water levels were associated with
higher mercury in Walleye tissues across hundreds of
Wisconsin lakes (Watras 2020). Water level effects on
mercury concentrations in Yellow Perch were inconsistent.
Sorensen (2019) reported higher mercury concentrations at
higher water levels across Minnesota, contrary to findings
by Riggs et al. (2017). The relationship between water
levels and mercury concentrations in Yellow Perch was
inconsistent even within a single system (Larson et al.
2021).

Aquatic Invasive Species
The most consistent responses of Walleye and Yellow

Perch to ecosystem change were observed for aquatic
invasive species (Figure 5). Negative responses were com-
mon among diverse systems and invasive species. Many
different invasive species were studied (Figure 2), and as a
result, there are few cases of replication to assess context
dependence on an individual species level. We report
below on the most commonly studied invasive species and
responses.

Recruitment.—We documented relatively consistent
negative relationships (five of seven tests) between Walleye
recruitment and multiple different invasive species (e.g.,
dreissenid mussels [Hoyle et al. 2008], Rainbow Smelt
Osmerus mordax [Mercado-Silva et al. 2007]). Yellow
Perch recruitment responses to invasive species were more
variable among both invasive species and locations (40%
no effect, 30% negative, 20% positive, 10% nonmono-
tonic). For example, Yellow Perch recruitment in Lake
Michigan was negatively associated with invasive Alewife
Alosa pseudoharengus (Redman et al. 2011; Forsythe et al.
2012) but not related to Round Goby Neogobius melanos-
tomus (Forsythe et al. 2012). Variable responses to dreisse-
nid mussels were also observed in different basins of Lake
Erie (Zhang et al. 2018) and in Oneida Lake (Rutherford
and Rose 2016).

Abundance, biomass, and production.—Walleye abun-
dance, biomass, and/or production was negatively associ-
ated with the invasion of multiple invasive species (73% of
26 tests identified negative effects), including dreissenid
mussels (e.g., Hoyle et al. 2008; Nienhuis et al. 2014;
Irwin et al. 2016; Hossain et al. 2019), Rainbow Smelt
(Roth et al. 2010; McDonnell and Roth 2014), and Ale-
wife (Makarewicz et al. 2016). In some cases, the impacts
of the same invasive species varied among systems. The
occurrence of nonnative Smallmouth Bass Micropterus
dolomieu was negatively correlated with Walleye abun-
dance in Ontario lakes (Van Zuiden and Sharma 2016),
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though no effect of Smallmouth Bass on Walleye abun-
dance or other population parameters was found in South
Dakota lakes and reservoirs (Wuellner et al. 2011; Galster
et al. 2012).

Reported relationships between Yellow Perch abundance
and invasive species were more variable than those of Wall-
eye. Negative relationships between Yellow Perch abun-
dance and invasive species were reported in 53% of 36 tests
and included negative impacts of Alewife (O’Gorman and
Burnett 2001; Madenjian et al. 2002; Bunnell et al. 2006)
and dreissenid mussels (Irwin et al. 2016; Rutherford and
Rose 2016; Hossain et al. 2019). As with Walleye, the
impacts of some invasive species on Yellow Perch popula-
tions varied. For example, Round Goby influence on Yel-
low Perch abundance in Lake Michigan varied with life
stage (Stacy-Duffy et al. 2020), whereas the presence of
Round Goby led to increases in Yellow Perch abundance in
Lake Ontario (Hoyle et al. 2017). Similarly, in Oneida
Lake, both positive and negative effects of zebra mussels
Dreissena polymorpha were reported depending on measure
of impact, life stage, and time period (Rutherford et al.
1999; Mayer et al. 2001; Irwin et al. 2016). Invasive species
did not affect Yellow Perch abundance in 33% of tests,
including Common Carp Cyprinus carpio in South Dakota
(Weber and Brown 2011, 2018), White Perch Morone ameri-
cana in Lake Erie (Guzzo et al. 2013), and Round Goby in
St. Marys River (Schaeffer et al. 2017).

Growth.— The influence of invasive species on growth
was approximately equally likely to be positive, negative,
or have no effect for both Walleye and Yellow Perch (Fig-
ure 5). Negative effects were reported in 29% of the 24
tests examining the influence of invasive species on Wall-
eye growth, including slower growth of young Walleye in
the presence of dreissenid mussels (e.g., Roseman et al.
1999; Hansen et al. 2020). In 29% of tests, no effect was
reported on Walleye growth. The effects of some invasive
species varied by life stage and/or location. For example,
Walleye body condition was generally unaffected by
Round Goby invasion in Lakes Erie and Ontario, with
the exception of the largest Walleye in Lake Ontario, for
whom body condition increased (Crane et al. 2015).

The impacts of invasive species on Yellow Perch growth
exhibited a range of different responses, with a similar pro-
portion of the 23 tests showing a negative effect (30%), non-
monotonic/interactive effect (26%), or no effect at all (35%).
Studies that reported a negative or nonmonotonic relation-
ship mostly involved invasive fish (e.g., Ruffe Gymnocepha-
lus cernua [Fullerton et al. 2000] and Rainbow Smelt
[Hrabik et al. 2001]). The effects of invertebrate invasive
species, including dreissenid mussels and spiny water flea
Bythotrephes longimanus, on Yellow Perch growth were
documented to be negative (e.g., spiny water flea; Staples
et al. 2017), positive (e.g., dreissenid mussels; Mayer et al.
2000), or showed no effect (e.g., dreissenid mussels and

spiny water flea; Hansen et al. 2020). Only two studies (9%)
reported a positive relationship between species invasion
(i.e., zebra mussels) and Yellow Perch growth (Thayer et al.
1997; Rutherford and Rose 2016).

Diet and trophic interactions.—Diet, stable isotope com-
position, and trophic interactions (e.g., foraging success)
were by far the most frequently examined responses to spe-
cies invasion (Figure 5). As with other responses and
drivers, results varied, showing that Walleye and Yellow
Perch diets changed (e.g., Sheppard et al. 2015; Prestie et al.
2019) or did not change (e.g., Mayer et al. 2000; Kreps
et al. 2016) in the presence of invasive species. Diet changes
could result from direct consumption of the invasive species;
for example, Walleye diets in the north basin of Lake Win-
nipeg consisted almost entirely of invasive Rainbow Smelt
(Sheppard et al. 2015). In other cases, competition or exclu-
sion from certain habitats resulted in diet shifts. For exam-
ple, age-0 Yellow Perch decreased their consumption of
benthic prey items, such as chironomids and amphipods, in
the presence of Round Goby (Houghton and Janssen 2015).
In some cases, the presence and density of invasive species
also influenced foraging success (e.g., Cobb and Watzin
2002) or predation risk (Morbey et al. 2007) of Yellow
Perch. The wide variety in measures of impact and the
diversity of invasive species examined makes it difficult to
assess context dependence in this case.

Mercury and other contaminants.— Species invasions
were associated with changing contaminant loads in 7 out
of 10 cases for Walleye and in 3 out of 5 cases for Yellow
Perch (Figure 5). For Walleye, increased and decreased con-
taminants were associated with species invasions at equal
frequencies (30% of tests). For Yellow Perch, sample size
was low and no positive relationships were observed. The
relationship between species invasion and chemical contam-
ination in Walleye and Yellow Perch tissues appears to be a
function of bioaccumulation as invasive species contribute
to the diets of fishes at multiple trophic levels. For example,
PCB levels in Walleye decreased when their diets switched
from primarily higher-contaminated Alewife to lower-
contaminated Yellow Perch (Jude et al. 2010). However,
dreissenid mussels did not affect the bioaccumulation of
polybrominated diphenyl ethers (flame retardants) or
α- and γ-chlordane levels in Walleye and Yellow Perch in
Lake Erie (Azim et al. 2011; Perez-Fuentetaja et al. 2015).
In both cases, invasive prey were not found to accumulate
high levels of contaminants.

Nutrients and Land Use
We documented inconsistent responses of Walleye and

Yellow Perch to specific nutrient and land use drivers
(Figure 5). The effects of changing nutrient loading and
land use practices were difficult to summarize and to inter-
pret due to differences in metrics used to define them and
relationships between land use and nutrients. For example,
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increased forested land cover could influence phosphorus
or dissolved organic carbon (DOC) inputs and concentra-
tions in lakes and rivers, but measurements may not have
been taken for all parameters to determine the specific
mechanisms influencing Walleye and Yellow Perch.

Recruitment.—Documented relationships between land
use or nutrients and recruitment were rare, with low sam-
ple sizes for both Walleye and Yellow Perch (four and
three tests, respectively; Figure 5). No positive relation-
ships were observed between any nutrient or land use vari-
able and recruitment of either species. Of the information
available, external nutrient loading, specifically total phos-
phorus, was found to negatively impact Walleye and Yel-
low Perch year-class strength (Culver et al. 2009; Fielder
and Baker 2019). Agricultural land use in a watershed was
also linked to eutrophication and was found to have a
nonmonotonic (dome-shaped) relationship with Yellow
Perch recruitment in Lake Erie (Dippold et al. 2020).

Abundance, biomass, and production.— Land use and
nutrient loading effects on abundance, biomass, and/or pro-
duction were commonly studied, and the most common
result was no effect (41% and 37% of tests for Walleye and
Yellow Perch, respectively). Phosphorus, eutrophication,
and agricultural land use were commonly studied drivers,
and their effects on Walleye and Yellow Perch abundance
and biomass were variable depending on the range of values
studied and interactions with other drivers. When direc-
tional effects were observed, they were approximately
equally likely to be positive or negative for both species
(29% positive and 21% negative for Walleye; 22% positive
and 22% negative for Yellow Perch). The range of values
studied was important in determining results. For example,
phosphorus was positively associated with Walleye catch
rates within and across lakes in Ontario (Robillard and Fox
2006) but negatively associated with Walleye catch rates at
extremely hypereutrophic levels in Lake Moses, Washing-
ton (Welch 2009). Similarly, in Ontario lakes, DOC exhib-
ited a nonlinear relationship with Walleye production, with
production peaking at intermediate levels (Jarvis et al.
2020). The strength and direction of the relationship
between phosphorus and both Walleye and Yellow Perch
biomass varied based on life stage, nutrient management
regimes, and invasive species statuses in both Lake Ontario
and Lake Erie (Zhang et al. 2016; Hossain et al. 2019).

Other nutrients and measures of land use were also
related to Walleye and Yellow Perch abundance in variable
ways. Dissolved organic carbon concentrations were nega-
tively related to Walleye and weakly negatively related to
Yellow Perch relative abundance in Quebec lakes (Benoit
et al. 2016). Neither fire nor logging influenced Walleye or
Yellow Perch catch rates in Quebec lakes (St-Onge and
Magnan 2000). Land cover alone had no effect on Walleye
biomass, but declining forest cover amplified the effect of

climate change and decreased the negative effect of zebra
mussels in Ontario lakes (Gutowsky et al. 2019).

Growth.—Growth responses to nutrients and land use
were most frequently nonexistent for Walleye (46% of 13
tests) and Yellow Perch (56% of 27 tests; Figure 5). Overall,
the effects of nutrient loading and eutrophication on Wall-
eye growth appear to be nonmonotonic, such that growth
increases with increasing productivity to a point then
declines as hypereutrophic conditions are reached (Hay-
ward and Margraf 1987). For example, total phosphorus
was associated with increased lengths and weights of Wall-
eye in treatment groups with phosphorus additions (Fox
et al. 1992), yet Walleye growth was also negatively related
to phosphorus at very high levels (Budy et al. 2011).

The effects of nutrients and land use on growth were
more commonly studied for Yellow Perch than for Wall-
eye. Here, most tests showed no effect, though positive
responses were frequently identified (30% of tests). For
instance, Yellow Perch growth was positively related to
total phosphorus in Minnesota lakes (Kolka et al. 2019)
and in Lake Ontario (O’Gorman and Burnett 2001). The
effects of nutrients other than phosphorus on growth were
infrequently studied, but a few examples exist. Walleye
growth was negatively related to DOC concentrations in
Quebec lakes, but no such relationship was observed for
growth of Yellow Perch (Suns and Hitchin 1990; Benoit
et al. 2016). Reductions in forest and wetland land cover
were associated with reduced terrestrial inputs and subse-
quent reduced weight of age-0 Yellow Perch in Ontario
(St-Onge and Magnan 2000; Tanentzap et al. 2014).

Diets and trophic interactions.—Very few studies exam-
ined the impacts of nutrient loading on Walleye (n= 5) or
Yellow Perch (n= 8) trophic interactions, making general-
izations difficult. Nonmonotonic or interactive effects of
nutrients or land use on trophic interactions were most
commonly observed for Yellow Perch (62% of tests). Vari-
ous aspects of diet composition were impacted in Yellow
Perch, including larval and juvenile diet diversity decreas-
ing in logged versus unperturbed systems in Quebec lakes
(Leclerc et al. 2011). In Ontario lakes, the proportion of
offshore-derived carbon in Walleye diets was negatively
related to DOC but not related to total phosphorus (Tun-
ney et al. 2018). However, phosphorus was related to an
increase in prey biomass in Walleye stomach contents in
rearing ponds (Fox et al. 1992).

Mercury and other contaminants.—Mercury concentra-
tions were the most frequently documented response to
nutrients and land use for both Walleye (n= 33) and Yel-
low Perch (n= 95; Figure 5). Mercury methylation
depends on water chemistry, and specifically DOC, pH,
and oxygen availability (Korthals and Winfrey 1987; Gil-
mour and Henry 1991; Watras et al. 1995). For both spe-
cies, the most common relationship between nutrients or
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land use and contaminants was no effect (36% and 46% of
tests for Walleye and Yellow Perch, respectively). Positive
relationships between contaminants and nutrient levels
were frequently identified for Walleye (36% of tests),
whereas negative relationships were frequently observed
for Yellow Perch (36% of tests). Several papers quantified
positive correlations between DOC and mercury in fish tis-
sues (Wren et al. 1991; Parks et al. 1994; Rencz et al.
2003), though negative correlations were found between
DOC and mercury concentrations in Yellow Perch eggs in
Wisconsin lakes (Hammerschmidt et al. 1999). Nonmono-
tonic (quadratic) relationships between DOC and Walleye
mercury levels were also observed in northern Ontario
lakes (Sumner et al. 2020). To add further complexity,
Driscoll et al. (1995) found that very high concentrations
of DOC were associated with decreased mercury in Yel-
low Perch because mercury will bind better to DOC at
high concentrations, leading to decreased availability of
mercury in the system.

Separating the direct effects of nutrients and land use on
mercury per se from indirect effects via influences on fish
growth is challenging and requires innovative statistical
methods and experimental design. For example, Thomas
et al. (2020) used structural equation modeling and con-
cluded that in stratified lakes, DOC was directly positively
related to Walleye mercury levels but indirectly negatively
related to mercury concentrations due to negative effects on
fish weight. Decreased forest cover was associated with
increased DOC and higher mercury in Walleye in Quebec
lakes (Garcia and Carignan 2005). Greater wetland area
was found to be positively correlated with mercury for both
Walleye and Yellow Perch (Simonin et al. 2008; Dittman
and Driscoll 2009). Greenfield et al. (2001) found a similar
relationship between mercury and wetland area but also
found that water chemistry and fish growth had a greater
impact on mercury concentrations.

Phosphorus and eutrophication were related to mercury
concentrations of Walleye and Yellow Perch in variable
ways. For instance, mercury concentrations in Walleye
were highest in the least agricultural watersheds in Iowa,
suggesting a negative relationship between nutrient load-
ing and mercury (Mills et al. 2019). In contrast, system
phosphorus was not related to mercury concentrations in
fish tissues in a variety of systems (Parks et al. 1994;
Ethier et al. 2008; Stone et al. 2011; Kolka et al. 2019).
Indirect effects of nutrients on mercury via fish growth
may also confound these relationships as higher ecosystem
productivity can lead to higher fish weight or biomass and
therefore higher mercury concentrations (Essington and
Houser 2003; Miller et al. 2012).

Water Clarity
Water clarity was related to Walleye and Yellow Perch

populations through a variety of pathways, with few

positive effects of water transparency documented, espe-
cially for Walleye (Figure 5). Walleye are low-light special-
ists due to their specialized retinal structure, and these
structures develop when Walleye are approximately 60
mm long (Vandenbyllaardt et al. 1991). Therefore, direct
impacts of water clarity on Walleye populations are
expected to be stronger after they reach this size. Yellow
Perch do not have a similar retinal structure, and therefore
we expected fewer direct effects of water clarity on Yellow
Perch populations a priori. At high levels of water trans-
parency, exposure to UV radiation can cause significant
mortality at egg and larval stages of Yellow Perch (Huff
et al. 2004), although the effects of UV on Walleye and
Yellow Perch populations have not been widely studied
(but see Williamson et al. 1997).

Recruitment.— Investigations of the effects of water
clarity on recruitment were limited for both Walleye (n=
5) and Yellow Perch (n= 4; Figure 5). However, in every
case, water clarity was found to have no effect on Walleye
recruitment. The paucity of information on water clarity
and Walleye recruitment could be because the effects of
clarity have not been well studied or could reflect that the
foraging advantage of Walleye in turbid waters is not pre-
sent until later life stages (Vandenbyllaardt et al. 1991).
The only documented effects of water clarity on Yellow
Perch recruitment in our review came from three studies
documenting higher recruitment associated with the turbid
Maumee River plume in Lake Erie (Reichert et al. 2010;
Carreon-Martinez et al. 2015; Jarrin et al. 2015), which
may have limited transferability to other ecosystems.

Abundance, biomass, and production.— The documented
relationships between water clarity and abundance, bio-
mass, and/or production were among the most consistent
in our review (Figure 5). Walleye responses to water clar-
ity were primarily negative (65% of 17 tests). Increased
water clarity has been associated with reduced habitat
area and abundance of Walleye in large, productive lakes
such as Lake Erie (Roseman et al. 2005; Pandit et al.
2013) and Minnesota’s Mille Lacs (Hansen et al. 2019), as
well as smaller, inland lakes of varying productivity in
Ontario (Robillard and Fox 2006; Tunney et al. 2018). In
general, Walleye production is highest at low to moderate
Secchi depths, although the effect of clarity depends on
lake morphometry and temperature (Lester et al. 2004;
Geisler et al. 2016; Jarvis et al. 2020).

Yellow Perch abundance and production responses to
water clarity were more variable (Figure 5). In a majority
of cases (54%), water clarity had no effect on Yellow
Perch abundance or biomass (e.g., Tremblay and Richard
1993; Bertolo et al. 2012; Parker et al. 2012). Higher
water clarity was associated with higher abundance in
only two cases across both species; both were Yellow
Perch in Lake Erie (Reichert et al. 2010; Collingsworth
and Marschall 2011).
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Growth.—Water clarity influences on Walleye and Yel-
low Perch growth were inconsistent (Figure 5). Water clar-
ity was equally likely to negatively influence Walleye
growth or to have no effect (40% of tests in both cases).
Negative effects of water transparency on larval Walleye
growth were documented in several laboratory studies
(e.g., Bristow et al. 1996; Rieger and Summerfelt 1997;
Clayton et al. 2009); however, no effect of clarity on Wall-
eye growth was documented in several field-based studies
(Craig and Babaluk 1989; Uphoff et al. 2013; Pedersen et
al. 2017; but see Rudstam et al. 2016). Positive relation-
ships between water clarity and Yellow Perch growth were
somewhat more consistent across systems (50% of tests;
e.g., Manning et al. 2013, 2014; Withers et al. 2015),
although effects may depend on life stage and water clar-
ity (Boisclair and Rasmussen 1996; Manning et al. 2014).
The effects of water clarity on fish growth are not always
straightforward and it can be difficult to disentangle the
effects of nutrients, land use, invasive species (e.g., zebra
mussels), and water clarity on fish growth. To this end,
Giacomazzo et al. (2020) used structural equation model-
ing to separate direct from indirect effects and estimated a
positive relationship between water clarity and Yellow
Perch growth, despite no effect of nutrient loading on
growth.

Diet and trophic interactions.— The influence of water
clarity on diet and trophic interactions was once again
variable for both Walleye and Yellow Perch (Figure 5).
The specialized retinal structure in the eyes of Walleye
increases their visual acuity in dim light, and as a result,
Walleye feeding efficiency and foraging success increases
in turbid water (Vandenbyllaardt et al. 1991; Bristow et
al. 1996; Einfalt et al. 2012). Cannibalism was also
reported to be reduced in turbid waters (Bristow et al.
1996), but in another case, rates of cannibalism were not
affected by water clarity (Rieger and Summerfelt 1997).
The superior foraging capacity of Walleye in turbid water
can translate into differences in diet and resource use
across a clarity gradient (Tunney et al. 2018), but many
studies (58%) reported no differences in Walleye diets or
resource use as a function of water clarity (e.g., Stasko et
al. 2015; Edmunds et al. 2019; Nanayakkara et al. 2021).

Many different effects of water clarity on Yellow Perch
foraging and diets were reported, with context-dependent
results. Yellow Perch selected for smaller prey in both lab
and field studies in Oneida Lake as clarity increased (Mills
et al. 1986). Laboratory studies showed that different
types of turbidity (e.g., sediment versus algal) influenced
foraging in opposing directions: larval feeding rates
increased with increasing sediment-driven turbidity but
decreased with algal-driven turbidity (Manning et al.
2014). Other studies demonstrated that Yellow Perch diets
and foraging rates were nonlinearly related to turbidity
and depended on factors such as life stage, the presence of

predators, and zebra mussels (Mayer et al. 2001; Welling-
ton et al. 2010; Pangle et al. 2012).

Mercury and other contaminants.—Relatively few studies
examined the impacts of water clarity on contaminants—
only three tests were identified for both Walleye and
Yellow Perch (Figure 5). Two of the three studies on Wall-
eye identified negative relationships between mercury con-
tent of tissues and water clarity in inland lakes (Parks
et al. 1994; Simonin et al. 2008), although a positive corre-
lation was documented in the Laurentian Great Lakes
(Lepak et al. 2018). Mercury concentrations in Yellow
Perch were negatively correlated with water clarity in two
studies on Minnesota lakes (Riggs et al. 2017; Kolka
et al. 2019) but were not related in New York lakes
(Simonin et al. 2008).

DISCUSSION
The published literature assessing the effects of ecosys-

tem change on Walleye and Yellow Perch populations is
substantial. In the majority of driver–response combina-
tions, we documented positive, negative, nonlinear, and
no relationships, in many cases in roughly equal propor-
tions. However, a few relationships between ecosystem
change and Walleye and Yellow Perch populations were
relatively consistent. Invasive species were more negatively
associated with Walleye recruitment, abundance, and pro-
duction/biomass, despite the numerous different invasive
species considered. This could reflect publication or fund-
ing bias—researchers are perhaps more likely to examine
the effects of invasive species in scenarios where negative
impacts are suspected a priori. However, published Yellow
Perch responses to invasive species were more variable, so
it is possible that the consistent response of Walleye is a
reflection of their higher sensitivity to invasive species.
Water clarity effects on Walleye abundance, biomass, and
production were also consistently negative or nonlinear,
perhaps reflecting the physiological adaptation of Walleye
to turbid conditions (Braekevelt et al. 1989; Vandenbyl-
laardt et al. 1991).

Small sample sizes for many driver–response combina-
tions made it difficult to distinguish true context dependence
resulting from higher-order interactions from nonmono-
tonic responses across environmental gradients or from
apparent context dependence due to differences in statistical
methodology or spurious correlations. One challenge was
that ecosystem change drivers were defined and quantified
differently among studies. For example, the effect of tem-
perature or climate was assessed in different seasons and
was quantified using different metrics (e.g., maximum,
mean, variability). Of course there is no single measure of
“temperature” that an organism living in a fluctuating envi-
ronment experiences, and it is reasonable that different
researchers quantify temperature effects in different ways.
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However, such variability makes it difficult to assess simi-
larities and differences among systems. Our review suggests
that future investigators may want to choose metrics for
quantifying environmental change and species responses
that are consistent with those reported in the literature to
enable comparisons among studies and identification of true
context dependence. Commonly identified drivers and
responses are documented in our results, and we refer the
reader to the relevant driver–response combinations for spe-
cific metrics that have been commonly studied. For exam-
ple, degree-days are a common measure that were used in
many studies of temperature. For nutrients and land use,
direct measurements of nutrient concentrations are likely to
provide greater mechanistic understanding. Otherwise,
identifying plausible mechanisms to explain relationships as
they relate to water chemistry when land cover is used as a
surrogate may facilitate greater comparability. Responses
of Walleye and Yellow Perch were also quantified in numer-
ous ways. For example, abundance might be measured
using mark–recapture population estimates or population
estimates generated from statistical catch-at-age models or
as relative abundance quantified by catch per unit effort of
different gears. Such differences are in part due to variabil-
ity in monitoring programs and are unlikely to be standard-
ized across locations. In contrast, growth measurements are
more consistent across studies and also provide high statisti-
cal power for detecting the effects of ecosystem change
(Carpenter et al. 1995).

Some drivers of ecosystem change were consistently
defined and revealed nonlinear or context-dependent
responses of Walleye or Yellow Perch. Temperature effects
are especially variable in strength and magnitude even
when defined similarly, which may be indicative of the
nonlinear relationship between temperature and most pop-
ulation parameters. For example, growing degree-days are
an integrative measure of temperature that has been linked
to Walleye and Yellow Perch recruitment (e.g., Redman
et al. 2011; Hansen et al. 2015a; Honsey et al. 2020) and
growth (e.g., Post and McQueen 1994; Venturelli et al.
2010; Stacy-Duffy et al. 2021) across a variety of systems.
The effect of growing degree-days on Walleye recruitment
appears to be both nonmonotonic and context dependent
in that the direction of effect varies with lake size and
location (Hansen et al. 2015a; Honsey et al. 2020). Simi-
larly, the effects of nutrients, including total phosphorus
and DOC, on Walleye and Yellow Perch growth and
abundance vary in direction depending on nutrient con-
centrations and other factors such as invasive species (e.g.,
Zhang et al. 2016; Hossain et al. 2019).

Ecosystem change means that multiple components of
connected systems are changing simultaneously, and as a
result it can be difficult to disentangle the impacts of multi-
ple variables. Overwinter mortality can be negatively corre-
lated with winter severity, but this effect depends on size,

prey availability, and metabolic rate (Hurst 2007). Addi-
tionally, multiple stressors and their interactions can pro-
duce unexpected effects. For example, Gutowsky et al.
(2019) found that lower forested land cover in a watershed
reduced the negative impact of zebra mussels on Walleye
biomass but amplified the effect of climate change. Ecosys-
tem change might also impact different life stages differ-
ently. Total phosphorus and temperature influenced growth
of age-0 Yellow Perch but did not affect older life stages,
even for the same lake and years (O’Gorman and Burnett
2001). It is also important to consider interactions between
Walleye and Yellow Perch when evaluating the effects of
ecosystem change on either population. For example, pre-
dation by Walleye can be a major source of mortality for
juvenile Yellow Perch and Walleye (Chevalier 1973; Forney
1974), and the impacts of ecosystem change on Yellow
Perch may be either compounded or counterbalanced by
the impacts of the same change on Walleye (Rutherford
et al. 1999). Finally, the importance and impact of system
change may vary over time within a population, as was the
case for the impact of river discharge on Yellow Perch
recruitment in Lake Erie (Marcek et al. 2021).

As documented in this review, we may observe different
relationships in different locations or time periods, but it is
unclear whether these differences result from apparent con-
text dependence related to statistical methods, the range of
variables studied, or mechanistic context dependence due to
ecologically relevant interactions. In a recent review of con-
text dependence in ecological relationships, Catford et al.
(2021) offer several useful suggestions for designing experi-
ments to increase mechanistic understanding of context
dependence, including clearly identifying the range of vari-
ables studied, incorporating interactions into statistical
models, and focusing on effect sizes rather than statistical
significance. We add to those suggestions here, recognizing
that the bulk of our understanding of the effects of ecosys-
tem change on Walleye and Yellow Perch come from obser-
vational studies rather than controlled experiments. We
also recognize that in many cases, Walleye and Yellow
Perch fisheries are managed at the lake or stock level, and
understanding the dynamics of a single system and predict-
ing responses to management or environmental change is
the primary goal. Still, single-system studies frequently rely
on correlation, and the strength of inference can be much
improved by assessing the consistency of relationships
across systems (Hilborn 2016). Furthermore, in a rapidly
changing world, relationships themselves may be changing
(Walker and Salt 2006; Biggs et al. 2009), and what worked
for fisheries management in the past may not work under
these new conditions (Hilborn 1992).

Avoid Publication Bias
In order to assess the generalizability of relationships, it

is necessary to base conclusions on an unbiased assessment
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of relationships between environmental drivers and fish
populations. Publication bias, or the tendency to only
publish significant results, means that certain results are
not represented in the literature (Møller and Jennions
2001). Funding and research bias may also come into play
if studies are only conducted when negative relationships
are suspected. The use of P-hacking is a related phenome-
non whereby researchers repeatedly try different statistical
tests until a statistically significant result is produced
(Head et al. 2015). In both cases, statistically insignificant
results showing a lack of relationship are underrepresented
in the literature, potentially distorting our collective under-
standing of the strength, direction, and existence of
effects.

Investigators can commit to avoid P-hacking and publi-
cation bias by reporting nonsignificant results. This
includes reporting variables that were tested and deter-
mined to have no effect—sometimes the lack of relation-
ship can be important to understand. As documented in
this review, a lack of relationship (no effect) was the most
commonly observed effect across all drivers and responses.
In the review process, identifying which variables were
tested and found to have no effect was often not straight-
forward and required significant effort to track down.
Clearly documenting all variables that were tested (and
why) and reporting all results, even when no relationship
is found, could enable an unbiased assessment of the con-
sistency of relationships. For example, Honsey et al.
(2016) report that Yellow Perch recruitment in the Great
Lakes region is positively correlated with spring–summer
air temperatures but NOT correlated with winter air tem-
peratures, contrary to results from Lake Erie (Farmer
et al. 2015). In this case the lack of relationship is impor-
tant and it is noted in the abstract. Journal editors and
peer reviewers can also help reduce this potential bias by
supporting the publication (and clear reporting) of nega-
tive or nonsignificant results and by calling out P-hacking
when it is suspected.

Considering a Broader Context
Advancing our understanding of the effects of climate

and other drivers on fish populations will require scientists
and resource agencies to think about experimental design
in a larger context. In some instances, this may be accom-
plished by merely including and testing metrics that have
been used in previous assessments, allowing for easier
comparison and generalization among studies. Further-
more, researchers may acknowledge and highlight the
range of values studied of any given driver of ecosystem
change, relative to the range of values that exists (or could
exist) in the real world. For example, researchers docu-
menting the effects of temperature on Walleye or Yellow
Perch populations could interpret their results in the con-
text of the gradient of temperatures that the species

experience throughout their ranges, as nonmonotonic rela-
tionships are likely. At a larger scale, to fully understand
the effects of climate and other landscape-level drivers
across broad gradients will require greater collaboration
across jurisdictional boundaries, including more fluent
sharing of both project funding and data.

Interpret Correlations with Caution
Despite the general understanding that correlation does

not equal causation, in many cases correlation is the best
tool we have to understand fisheries systems (Hilborn
2016). Correlation can be interpreted as evidence for cau-
sation, albeit weak. Consistency of correlations across
multiple studies increases the evidence for causation (Hil-
born 2016), but publication bias clouds interpretation of
any observed consistency. We advise researchers to enter-
tain multiple working hypotheses when evaluating rela-
tionships in their data (Hilborn and Stearns 1982).
Furthermore, to increase the predictive capacity of ecolog-
ical models and attempts to avoid spurious correlations,
models can be validated using independent data (Hurvich
and Tsai 1990). When truly independent data are unavail-
able, withholding data nonrandomly for validation can
improve the transferability and generalizability of models
(Olden and Jackson 2000; Wenger and Olden 2012).
Results from model selection approaches that are known
to produce biased results, such as all-subsets regression
models for choosing between multiple predictors (Olden
and Jackson 2000), may be interpreted with caution.

Use Appropriate Analytical Methods
Although in fisheries we are often limited by data, we are

often not limited in our choice of statistical techniques. We
encourage investigators to consider methods other than sim-
ple linear regressions when evaluating relationships between
variables. Hierarchical Bayesian techniques are particularly
well suited for ecological questions because they account for
multiple sources of uncertainty and can identify cross-scale
interactions (Clark 2005; Wagner et al. 2007; Soranno et al.
2014). Multispecies models that account for species depen-
dencies are effective at quantifying responses of multiple
species to environmental change simultaneously (Clark
et al. 2014; Tikhonov et al. 2017; Wagner et al. 2020). Non-
linear models, such as generalized additive models, are use-
ful for modeling the frequently nonlinear relationships we
observe in fish responses to environmental change (Jacob-
son and Anderson 2007; Jacobson et al. 2017; Pedersen
et al. 2017). Fisheries data are often spatially or temporally
autocorrelated, and a number of methods exist for dealing
with such nonindependence, such as Bayesian integrated
nested Laplace approximation (Zuur et al. 2017) and auto-
regressive integrated and moving averages methods (e.g.,
Pang et al. 2018; Ryan et al. 2019). A recent analysis of
Walleye somatic growth across a landscape of lakes in
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Alberta, Canada, demonstrates the power of accounting for
both spatial and temporal correlations in a mechanistic
framework to avoid bias in interpretation of results (Cahill
et al. 2020). Structural equation modeling can account for
multicollinearity (Graham 2003) and identify interactions
and indirect effects (e.g., Hossain et al. 2019). Machine
learning methods, such as artificial neural networks and
random forest models, can handle multiple predictors with
less risk of overfitting and can identify complex relation-
ships and interactions (Olden et al. 2008; Hansen et al.
2017). Although these methods may be outside the expertise
of many fisheries scientists, collaboration with quantitative
ecologists and statisticians can facilitate greater learning
and stronger inference, enabling effective responses to
drivers of ecosystem change.

Benefits of Adaptive Management
Manipulation is the gold standard for understanding

causation. Management experiments can provide insight
into the effectiveness of management strategies as well as
key uncertainties in mechanisms underlying responses (Wal-
ters 1986). Lake-rich landscapes offer abundant opportuni-
ties for learning about system change effects on fisheries
systems across a gradient of conditions through adaptive
management (Hansen et al. 2015b). To avoid spurious cor-
relations and false certainty (Hilborn 1992), management
experiments can be replicated, evaluated against unmanipu-
lated reference systems, and applied as randomly as possible
(Hilborn 2016). Despite stated commitments to adaptive
management, adhering to these basic tenets of experimenta-
tion are difficult or impossible to achieve in complex socioe-
cological systems such as managed fisheries, where the
pressure to act often outweighs the desire to learn (Walters
2007). Still, even passive adaptive management can facili-
tate learning when systems are monitored following stan-
dardized protocols to facilitate comparisons among
systems. Particularly in regions where multiple stocks are
managed and cannot be monitored annually, standardized
data collection and stratified sampling can allow for robust
inference that would be impossible when relying on single
systems (Lester et al. 2003, 2021; Fayram et al. 2009) and
enable more robust understanding of Walleye and Yellow
Perch responses to ecosystem change.

Conclusion
The majority of documented effects of ecosystem change

on Walleye and Yellow Perch populations are inconsistent
across systems. We view these inconsistencies as opportuni-
ties for developing a greater mechanistic understanding of
responses to ecosystem change. Here, we provide an over-
view of the documented effects of climate, invasive species,
land use and nutrient concentrations, and water clarity on
Walleye and Yellow Perch populations via multiple path-
ways. We also provide ideas for distinguishing between true

context dependence that results from interactions among
environmental drivers and apparent context dependence
that is due to nonmonotonic relationships or methodologi-
cal choices (Catford et al. 2021). Cooperative studies and
synthesis may broaden understanding by identifying drivers
of context dependence (Biggs et al. 2009). We intend for this
review to stimulate synthesis and discussions across systems
to enable more rapid learning and effective management
responses to environmental change.
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