Mokbel Karam, and Prof. Tony Saad (www.tsaad.net)
Department of Chemical Engineering
University of Utah
from IPython.display import Image
from IPython.core.display import HTML
In this Jupyter notebook we will execute the code presented in the paper.
from buckinghampy import BuckinghamPi
Pressure_Drop = BuckinghamPi()
Pressure_Drop.add_variable(name='{\\Delta}p',dimensions='M*L^(-1)*T^(-2)') # pressure drop
Pressure_Drop.add_variable(name='R',dimensions='L') # length of the pipe
Pressure_Drop.add_variable(name='d',dimensions='L') # diameter of the pipe
Pressure_Drop.add_variable(name='\\mu',dimensions='M*L^(-1)*T^(-1)') # viscosity
Pressure_Drop.add_variable(name='Q',dimensions='L^(3)*T^(-1)') # volumetic flow rate
Pressure_Drop.generate_pi_terms()
Pressure_Drop.print_all()
Using mass, length, time and temperature as fundamental dimensions:
from buckinghampy import BuckinghamPi
Virus_Infection = BuckinghamPi()
Virus_Infection.add_variable(name='V_{p}',dimensions='L*T^(-1)', non_repeating=True) # virus spread rate
Virus_Infection.add_variable(name='P_{r}',dimensions='L') # precipitation
Virus_Infection.add_variable(name='{\\theta}',dimensions='C') # temperature
Virus_Infection.add_variable(name='C_{a}',dimensions='L^(3)/T') # airflow
Virus_Infection.add_variable(name='C_{e}',dimensions='T') # seasonal changes
Virus_Infection.add_variable(name='E_{fs}',dimensions='L^(-2)') # social structures
Virus_Infection.add_variable(name='H',dimensions='M*L^(-3)') # humidity
Virus_Infection.generate_pi_terms()
Virus_Infection.print_all()
from buckinghampy import BuckinghamPi
Economic_Growth = BuckinghamPi()
Economic_Growth.add_variable(name='P',dimensions='K', non_repeating=True) # capital
Economic_Growth.add_variable(name='L',dimensions='Q/T') # labor per period of time
Economic_Growth.add_variable(name='{\\omega_{L}}',dimensions='K/Q') # wages per labor
Economic_Growth.add_variable(name='Y',dimensions='K/T') # profit per period of time
Economic_Growth.add_variable(name='r',dimensions='1/T') # rental rate period of time
Economic_Growth.add_variable(name='{\\delta}',dimensions='1/T') # depreciation rate
Economic_Growth.generate_pi_terms()
Economic_Growth.print_all()
Using mass, length and time as fundamental physical dimensions:
from buckinghampy import BuckinghamPi
Pressure_In_Bubble = BuckinghamPi()
Pressure_In_Bubble.add_variable(name='{\\Delta}p',dimensions='M*L^(-1)*T^(-2)') # pressure
Pressure_In_Bubble.add_variable(name='R',dimensions='L') # diameter
Pressure_In_Bubble.add_variable(name='\\sigma',dimensions='M*T^(-2)') # surface tension
try:
Pressure_In_Bubble.generate_pi_terms()
Pressure_In_Bubble.print_all()
except Exception as e:
print(e)
The number of variables has to be greater than the number of physical dimensions.
Using force and length as fundamental physical dimensions:
from buckinghampy import BuckinghamPi
Pressure_In_Bubble = BuckinghamPi()
Pressure_In_Bubble.add_variable(name='{\\Delta}p',dimensions='F*L^(-2)') # pressure
Pressure_In_Bubble.add_variable(name='R',dimensions='L') # diameter
Pressure_In_Bubble.add_variable(name='\\sigma',dimensions='F*L^(-1)') # surface tension
Pressure_In_Bubble.generate_pi_terms()
Pressure_In_Bubble.print_all()