13. Tensor fields

This notebook is part of the Introduction to manifolds in SageMath by Andrzej Chrzeszczyk (Jan Kochanowski University of Kielce, Poland).

In [1]:
version()
Out[1]:
'SageMath version 9.6, Release Date: 2022-05-15'

Linear differential forms (1- forms, covector fields) on a manifold


Let $M$ be a smooth manifold. A linear differential form or 1-form or covector field $α$ on $M$ is a map that assigns to each $p ∈ M$ an element $α( p) ∈ T_p^∗M$ (the space $T_p^∗M$ was defined in notebook 9) . The 1-form $α( p)$ will also be denoted by $α_p$, it is smooth (of class $C^∞$ ) if for all $X ∈ \mathfrak{X}(M)$ the function $α(X)$ defined by\begin{equation} (α(X))( p) = α_p (X_p ),\quad\text{for }\ p\in M \label{}\tag{13.1} \end{equation} is smooth (of class $C^∞$ ).

The set of all smooth 1-forms on $M$ is denoted by $\Omega^1 (M)$. The set $\Omega^1(M)$ is a module over $C^∞ (M)$ with the algebraic operations given by \begin{equation} \begin{matrix} (α + β)_p ≡ α_p + β_p ,\\ ( f α)_p ≡ f ( p)α_p , \end{matrix} \label{}\tag{13.2} \end{equation} for $α, β ∈ \Omega^1 (M)$ and $f ∈ C^∞ (M).$


Example 13.1

Let us define a 1-form on a 3-dimensional manifold.

In [2]:
%display latex
N = 3                         # dimension of manifold M
M = Manifold(N, 'M')          # manifold M
a = M.diff_form(1)            # 1-form on M
a                             # print information on a
Out[2]:
\(\displaystyle \mbox{1-form on the 3-dimensional differentiable manifold M}\)
In [3]:
# mathematical object of which "a" is an element.
a.parent()
Out[3]:
\(\displaystyle \Omega^{1}\left(M\right)\)


Differential of scalar functions


If $f ∈ C^∞ (M)$, the differential of $f$ denoted by $d f$ is given by $$d f ( p) = d f_p,\quad\text{for}\ p\in M,$$ where $df_p$ is the differential at point defined in (9.1). The differential $df$ belongs to $\Omega^1(M).$ If $X ∈ \mathfrak{X}(M),$ then from (13.1),(11.1),(9.1) it follows that

$$(df(X))(p)=df_p(X_p)=X_p(f)=(Xf)(p),$$

for $p ∈ M$ i.e., \begin{equation} df(X)=X(f). \label{}\tag{13.3} \end{equation}


Example 13.2

Define a scalar function $f$ and its differential $df$. The differential is an example of 1-form.

In [4]:
# continuation
f = M.scalar_field()
f.differential()
Out[4]:
\(\displaystyle \mbox{1-form on the 3-dimensional differentiable manifold M}\)


The differential of function is a derivation


The map $d : C^∞ (M) →\Omega^1 (M)$, which sends $f$ into $df$, satisfies \begin{equation} \begin{matrix} d(a f + bg) = ad f + bdg,\\ d( f g) = f dg + gd f, \end{matrix} \label{}\tag{13.4} \end{equation} for $f, g ∈ C^∞ (M)$ and $a, b ∈ R.$

To check the first equality note, that for $X\in \mathfrak{X}(M)$

$$ d(a f + bg)(X) = X(a f + bg) = aX f + bXg = a\,d f (X) + b\,dg(X) = (a\,d f + b\,dg)(X). $$

The second one follows from

$$ d( f g)(X) = X( f g) = f Xg + gX f = f dg(X) + gd f (X) = ( f dg + gd f )(X). $$


Differentials of coordinate functions form local bases for $\Omega^1(M)$


If $(U, φ)$ is a chart on $M$, then as we have checked in notebook 9, the differentials of the coordinate functions $x^1 , x^2 , . . . , x^n$ computed at $p\in U$ form the basis of $T_p^*M$.
The formula (9.1') implies that on $U$ we have $$ dx^i(X)=X(x^i). $$

Since from (8.5) we have on $U$: $X=X(x^i)\frac{\partial}{\partial x^i},$ the covector field $dx^i$ assigns to the vector field $X$ its $i$-th component function $X(x^i)$ in the frame $\{\frac{\partial}{\partial x^j}\}_{j=1}^n$.
If $α\in\Omega^1(M)$, using (9.2), we obtain for $p\in M$ and $α(p) ∈ T_p^∗ (M)$

$$\alpha(p)=\alpha(p)\big(\frac{\partial}{\partial x^i}\Big|_p\big)dx^i_p=\Big[\alpha\big(\frac{\partial}{\partial x^i}\big) dx^i\Big](p).$$

Thus

\begin{equation} \alpha=\alpha\big(\frac{\partial}{\partial x^i}\big) dx^i. \label{}\tag{13.5} \end{equation}

If we denote $\alpha\big(\frac{\partial}{\partial x^i}\big)$ by $\alpha_i$ then in local coordinates every element of $\Omega^1(M)$ is of the form

$$\alpha_idx^i.$$

Remark. Let us underscore that the last expressions holds only locally (in the domain of a local chart).


Coframe


Recall that in notebook 11 we defined frames.


If $U$ is an open subset of a manifold $M$ (for example a coordinate neighborhood) then the coframe on $U$ is the sequence $e$ of covector fields on $U$ such that for each $p∈U, \ e(p)$ is a basis of the cotangent space $T^*_pU$.
From (13.5) it follows that the covectors $\ dx^1,\ldots,dx^n\ $ define a coframe on the coordinate neighborhood $U.\ $ Let us recall that the linear independence of $\ dx^1_p,\ldots,dx^n_p\ $ for every $p\in U$ was checked in notebook 9 (cf. the argument before the formula (9.2)).

In [5]:
N = 3
M = Manifold(N, 'M')                # manifold M
X = M.chart(' '.join(['x'+str(i)+':x^{'+str(i)+'}' for i in range(N)]))  # chart on M
X
Out[5]:
\(\displaystyle \left(M,({x^{0}}, {x^{1}}, {x^{2}})\right)\)
In [6]:
X.coframe()[:]
Out[6]:
\(\displaystyle \left(\mathrm{d} {x^{0}}, \mathrm{d} {x^{1}}, \mathrm{d} {x^{2}}\right)\)

Using the local representation we can give concrete examples of 1-forms/covector fields.


Example 13.3

Define 1-form $\ a=a_0dx^0+a_1dx^1+a_2dx^2\ $ in SageMath.

In [7]:
%display latex
N = 3                               # dimension of manifold M
M = Manifold(N, 'M')                # manifold M
X = M.chart(' '.join(['x'+str(i)+':x^{'+str(i)+'}' for i in range(N)]))   # chart on M
a = M.diff_form(1,name='a')           # 1-form a
ast = ['a'+str(j) for j in range(N)]  # list of component names 
af = [M.scalar_field(function(ast[j])(*X), name=ast[j]) 
      for j in range(N)]              # list of component functions
a[:] = af                             # define all components of a
a.disp()                              # show a
Out[7]:
\(\displaystyle a = a_{0}\left({x^{0}}, {x^{1}}, {x^{2}}\right) \mathrm{d} {x^{0}} + a_{1}\left({x^{0}}, {x^{1}}, {x^{2}}\right) \mathrm{d} {x^{1}} + a_{2}\left({x^{0}}, {x^{1}}, {x^{2}}\right) \mathrm{d} {x^{2}}\)

Function arguments can be omitted:

In [8]:
Manifold.options.omit_function_arguments=True
a.disp()                            # show abbreviated a
Out[8]:
\(\displaystyle a = a_{0} \mathrm{d} {x^{0}} + a_{1} \mathrm{d} {x^{1}} + a_{2} \mathrm{d} {x^{2}}\)


Example 13.4

Now use the local coordinates to show the differential of a scalar function.

In [9]:
# continuation               # scalar function f:
f = M.scalar_field(function('f')(*X), name='f')
df = f.differential()        # differential of f
print(df)                    # show information on df
df.disp()                    # show df
1-form df on the 3-dimensional differentiable manifold M
Out[9]:
\(\displaystyle \mathrm{d}f = \frac{\partial\,f}{\partial {x^{0}}} \mathrm{d} {x^{0}} + \frac{\partial\,f}{\partial {x^{1}}} \mathrm{d} {x^{1}} + \frac{\partial\,f}{\partial {x^{2}}} \mathrm{d} {x^{2}}\)

To explain the last formula let us note that by (13.5) $\ d f = d f (\frac{∂}{∂ x^i} )dx^i,\ $ but, by virtue of (13.3), $\ d f (\frac{\partial}{\partial x^i})= \frac{∂}{∂ x^i} f,\ $ so that \begin{equation} d f = \frac{\partial f}{\partial x^i}dx^i. \label{}\tag{13.6} \end{equation}

Tensor fields


Tensor fields of type $\mathbf{(0,k)}$ (covariant tensor fields)


A tensor field $t$ of type $(0,k)$ or a covariant tensor field of rank $k$ on a manifold $M$ is a map $t$ that associates with each point $p∈M$ a tensor $t(p)=t_p\in T^{(0,k)}_pM\ \ \ $ ($T^{(0,k)}_pM$ was defined in notebook 9).
If $t$ is a tensor field of type $(0, k)$ and $X_1 , . . . , X_k$ are vector fields on $M$, then $t (X_1 , . . . , X_k)$ is the real-valued function given by

$$[t (X_1 , . . . , X _k )]( p) = t_p (X_1 ( p), . . . , X_k ( p)).$$

We say that $t$ is smooth if $t (X_1 , . . . , X_k )$ is a smooth function for all $X_1 , . . . , X_k ∈ \mathfrak{X}(M)$.
One can prove that if $x^1,\ldots,x^n$ are local coordinates on $U$ and $t_{i_1\ldots i_k}=t(\frac{\partial}{\partial x^{i_1}},\ldots,\frac{\partial}{\partial x^{i_k}})$, then $t$ is smooth iff for arbitrary $p\in M$ there is a coordinate map $(U,(x^1,\ldots,x^n))$ around $p$ such that the real functions $t_{i_1\ldots i_k}$ are smooth.

The operations of tensor addition, scalar multiplication and tensor product are defined pointwise:

$$ \begin{matrix} (at + bs)_p = at_p + bs_p,\\ ( f t)_p = f ( p)t_p,\\ (t ⊗ s)_p = t_p ⊗ s_p, \end{matrix} $$

for $a, b ∈ R\ $, $s, t$ -covariant tensor fields on $M$ and $f : M → R.$

Using these formulas and (9.5) we can check that arbitrary tensor field of type $(0,k)$ can be expressed in local coordinates as follows

\begin{equation} \begin{matrix} t=t_{i_1\ldots i_k}dx^{i_1}\otimes\dots\otimes dx^{i_k},\\ t_{i_1\ldots i_k}=t\big(\frac{\partial}{\partial x^{i_1}},\ldots,\frac{\partial}{\partial x^{i_k}}\big). \end{matrix} \tag{13.7} \end{equation}


If $X_1 , . . . , X_k$ are vector fields on $M$ and $f\in C^\infty(M)$, then from the multi-linearity of $t_p$ on $T_pM$ for $p\in M$ it follows that

$$[t (X_1 , . . . , f X_i , . . . , X_k )]( p) = t_p (X_1 ( p), . . . , ( f X_i )( p), . . . , X_k ( p))\\ = t_p (X_1 ( p), . . . , f ( p)X_i ( p), . . . , X_k ( p))\\ = f ( p)t_p( X_1 ( p), . . . , X_i ( p), . . . , X_k ( p))\\ = f ( p)[t (X_1 , . . . , X_i , . . . , X_k )]( p), $$

for $p ∈ M$. We have checked that

$$t (X_1 , . . . , f X_i , . . . , X_k )=ft (X_1 , . . . , X_i , . . . , X_k ),\quad i=1,\ldots,k,$$

for $X_i\in \mathfrak{X}(M)$ and $f\in C^\infty(M).$

Similarly for $X_i,Y_i\in\mathfrak{X}(M)$ we can check that for $i=1,\ldots,k$

$$t (X_1 , . . . , X_i + Y_i , . . . , X_k ) = t (X_1 , . . . , X_i , . . . , X_k ) + t (X_1 , . . . , Y_i , . . . , X_k ).$$


Tensorial property


If $t$ is a map that to each set of $k$ vector fields $X_i\in\mathfrak{X}(M)\ $ on $M$ associates a function $t(X_1,\ldots,X_k):M\to R$ with the property that for functions $f,g\in C^\infty(M),\ $ $X_i,Y_i\in\mathfrak{X}(M)\ $ and $i=1,\ldots,k$

$$t (X_1 , . . . , fX_i + gY_i , . . . , X_k ) = ft (X_1 , . . . , X_i , . . . , X_k ) +gt (X_1 , . . . , Y_i , . . . , X_k ),$$

then $t$ is a tensor field of type $(0,k).$


Note that the last property means that covariant tensor fields of rank $k$ are just multilinear functions on the Cartesian product $\underbrace{\mathfrak{X}(M)\times\cdots\times \mathfrak{X}(M)}_{k\ \; \mbox{times}}$ of $k$ copies of the module $\mathfrak{X}(M)$ over the ring $C^\infty(M)$.

The module of covariant tensor fields of type $(0,k)\ $ on a manifold $M$ will be denoted by $T^{(0,k)}M$.

Warning. If $M$ is a module -not a manifold, in notebook 9a the same notations denote the space of covariant tensors of rank $k$ on the module $M$.


Covariant tensor fields in components


Using this property we can give another proof of (13.7). If the vector fields are expressed in the form $\quad X_i = dx^j (X_i ) \frac{∂}{∂ x^j} ,\quad i = 1, . . . , k,$ then $$t (X_1 , . . . , X_k ) = t(dx^i(X_1 )\frac{∂}{∂ x^i} , . . . , dx^m (X_k )\frac{∂}{∂ x^m})\\ = dx^i (X_1 ) · · · dx^m (X_k )\;t( \frac{∂}{∂ x^i},\ldots \frac{∂}{∂ x^m})\\ =\Big[t(\frac{∂}{∂ x^i},\ldots \frac{∂}{∂ x^m})dx^i \otimes · · · \otimes dx^m\Big] (X_1 , . . . , X_k ).$$


Example 13.5

Define a general (0,2)-type tensor field on a 2-dimensional manifold (4 scalar functions as components).

In [10]:
N = 2                              # dimension of manifold
M = Manifold(N, 'M')               # manifold M of dim. N
X = M.chart(' '.join(['x'+str(i)+':x^{'+str(i)+'}' for i in range(N)]))  # chart on M
t = M.tensor_field(0, 2, name='t')     # tensor field of type (0,2)
print(t)                           # show information on t
Tensor field t of type (0,2) on the 2-dimensional differentiable manifold M

The components of the tensor field $t$ are scalar functions

In [11]:
x0, x1 = X[:]    # coordinates x^0 and x^1 of chart X as the Python variables x0 and x1
f00 = M.scalar_field(function('f00')(x0, x1), name='f00')   # scalar functions
f01 = M.scalar_field(function('f01')(x0, x1), name='f01')   # defining components
f10 = M.scalar_field(function('f10')(x0, x1), name='f10')
f11 = M.scalar_field(function('f11')(x0, x1), name='f11')
t[0,0] = f00; t[0,1] = f01                      # components of tensor field t
t[1,0] = f10; t[1,1] = f11     
t.disp()                                        # show t
Out[11]:
\(\displaystyle t = f_{00} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + f_{01} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + f_{10} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + f_{11} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\)

Let us check that $t_{ij}=t(\frac{\partial}{\partial x_i},\frac{\partial}{\partial x_j})$

In [12]:
fr = X.frame();fr[:]                             # local frame on M
Out[12]:
\(\displaystyle \left(\frac{\partial}{\partial {x^{0}} }, \frac{\partial}{\partial {x^{1}} }\right)\)
In [13]:
matrix(2,2,lambda i,j: t(fr[i],fr[j]).expr())  # compute t(d/dxi,d/dxj)
Out[13]:
\(\displaystyle \left(\begin{array}{rr} f_{00}\left({x^{0}}, {x^{1}}\right) & f_{01}\left({x^{0}}, {x^{1}}\right) \\ f_{10}\left({x^{0}}, {x^{1}}\right) & f_{11}\left({x^{0}}, {x^{1}}\right) \end{array}\right)\)
In [14]:
X.coframe()[:]                                 # local coframe
Out[14]:
\(\displaystyle \left(\mathrm{d} {x^{0}}, \mathrm{d} {x^{1}}\right)\)


Example 13.6

Let us define a more concrete example with variable components (upper indices and powers do not mix well).

In [15]:
# continuation
t[:] = matrix(2, 2, lambda i,j: X[i]*X[j])  # t_{ij}=x_i*x_j
t.disp()
Out[15]:
\(\displaystyle t = {x^{0}}^{2} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + {x^{0}} {x^{1}} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + {x^{0}} {x^{1}} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + {x^{1}}^{2} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\)


Example 13.7

An example of a (0,4)-type tensor field (* denotes the tensor product):

In [16]:
(t*t).disp()
Out[16]:
\(\displaystyle t\otimes t = {x^{0}}^{4} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + {x^{0}}^{3} {x^{1}} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + {x^{0}}^{3} {x^{1}} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + {x^{0}}^{2} {x^{1}}^{2} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + {x^{0}}^{3} {x^{1}} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + {x^{0}}^{2} {x^{1}}^{2} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + {x^{0}}^{2} {x^{1}}^{2} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + {x^{0}} {x^{1}}^{3} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + {x^{0}}^{3} {x^{1}} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + {x^{0}}^{2} {x^{1}}^{2} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + {x^{0}}^{2} {x^{1}}^{2} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + {x^{0}} {x^{1}}^{3} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + {x^{0}}^{2} {x^{1}}^{2} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + {x^{0}} {x^{1}}^{3} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + {x^{0}} {x^{1}}^{3} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + {x^{1}}^{4} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\)


Example 13.8

Defining tensor fields with symbolic components we can use shorter and more general notation.

Let us define a tensor field of type (0,2) in a more compact way.

In [17]:
N = 2                             # dimension of manifold M
M = Manifold(N, 'M')              # manifold M
X = M.chart(' '.join(['x'+str(i)+':x^{'+str(i)+'}' for i in range(N)]))  # chart on M
t = M.tensor_field(0,2, name='t') # tensor field of type (0,2)
def fn(i,j): return 'f'+str(i)+str(j)  # names for components
def fl(i,j): return 'f'+'_'+'{'+str(i)+str(j)+'}'  # latex comp.names 
ff=[[M.scalar_field(function(fn(i,j),latex_name=fl(i,j))(*X)) 
     for j in range(N)] for i in range(N)]    # nested list of comp.
t[:] = ff                         # define all components
t.disp()                          # show the result
Out[17]:
\(\displaystyle t = f_{00} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + f_{01} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + f_{10} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + f_{11} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\)

As we can see, the result is the same as previously.

The functions arguments can be omitted.

In [18]:
Manifold.options.omit_function_arguments=True
t.disp()
Out[18]:
\(\displaystyle t = f_{00} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + f_{01} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + f_{10} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + f_{11} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\)
In [19]:
(t*t).disp()
Out[19]:
\(\displaystyle t\otimes t = f_{00}^{2} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + f_{00} f_{01} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + f_{00} f_{10} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + f_{00} f_{11} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + f_{00} f_{01} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + f_{01}^{2} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + f_{01} f_{10} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + f_{01} f_{11} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + f_{00} f_{10} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + f_{01} f_{10} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + f_{10}^{2} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + f_{10} f_{11} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + f_{00} f_{11} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + f_{01} f_{11} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + f_{10} f_{11} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + f_{11}^{2} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\)
In [20]:
Manifold.options.omit_function_arguments=False

Remark. If we want to make purely algebraic operations on tensor fields, then we can use symbols, not functions as components (this will not work if we want to use derivatives!).


Example 13.9

Define (0,3) type tensor field on a two dimensional manifold.

In [21]:
N = 2                              # dimension of manifold M
M = Manifold(N, 'M')               # manifold M
X = M.chart(' '.join(['x'+str(i)+':x^{'+str(i)+'}' for i in range(N)]))  # chart on M
t3 = M.tensor_field(0,3, name='t3')# tensor field of type (0,3)
print(t3)                          # information on t3
Tensor field t3 of type (0,3) on the 2-dimensional differentiable manifold M

We define a three-dimensional table of symbols $a_{ijk}$

In [22]:
a3  =[[[SR('a'+str(i)+str(j)+str(k)) for k in range(N)] 
        for j in range(N)] for i in range(N)]   # nested list of components

and all components define with one equality.

In [23]:
t3[:] = a3                         # define all components as symbols
t3[:]                              # show components of t3 
Out[23]:
\(\displaystyle \left[\left[\left[a_{000}, a_{001}\right], \left[a_{010}, a_{011}\right]\right], \left[\left[a_{100}, a_{101}\right], \left[a_{110}, a_{111}\right]\right]\right]\)
In [24]:
t3.disp()                          # show the tensor
Out[24]:
\(\displaystyle t3 = a_{000} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + a_{001} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + a_{010} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + a_{011} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + a_{100} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + a_{101} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + a_{110} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + a_{111} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\)

Remember that the components in this example do not depend on coordinates.


Example 13.10

If we need a proper tensor field, with components depending on coordinates, the previous example should be modified.

The first cell remains the same:

In [25]:
N = 2                              # dimension of manifold
M = Manifold(N, 'M')               # manifold M
X = M.chart(' '.join(['x'+str(i)+':x^{'+str(i)+'}' for i in range(N)]))  # chart on M
t3 = M.tensor_field(0,3, name='t3');print(t3)  # tensor field
Tensor field t3 of type (0,3) on the 2-dimensional differentiable manifold M

but to define components we need scalar fields:

In [26]:
def fn(i,j,k): return 'f'+str(i)+str(j)+str(k)      # names of components
def fl(i,j,k): return 'f'+'_'+'{'+str(i)+str(j)+str(k)+'}'  # latex names
                                    # nested list of component functions
ff = [[[M.scalar_field(function(fn(i,j,k),latex_name=fl(i,j,k))(*X)) 
        for k in range(N)] for j in range(N)] for i in range(N)]
t3[:] = ff                          # define all components
t3.disp()                           # show t3
Out[26]:
\(\displaystyle t3 = f_{000}\left({x^{0}}, {x^{1}}\right) \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + f_{001}\left({x^{0}}, {x^{1}}\right) \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + f_{010}\left({x^{0}}, {x^{1}}\right) \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + f_{011}\left({x^{0}}, {x^{1}}\right) \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + f_{100}\left({x^{0}}, {x^{1}}\right) \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + f_{101}\left({x^{0}}, {x^{1}}\right) \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + f_{110}\left({x^{0}}, {x^{1}}\right) \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + f_{111}\left({x^{0}}, {x^{1}}\right) \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\)

The functions argument can be omitted:

In [27]:
Manifold.options.omit_function_arguments=True
t3.disp()                           # output without component arguments
Out[27]:
\(\displaystyle t3 = f_{000} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + f_{001} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + f_{010} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + f_{011} \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + f_{100} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + f_{101} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + f_{110} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + f_{111} \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\)
In [28]:
Manifold.options.omit_function_arguments=False

Unfortunately, (in our system) latex encounters problems if the outputs are to long.

If the latex formatted output is not needed, the %display plain method works properly.

In [29]:
#(t3*t3).disp()   returns latex code string
#(t3*t3)[:]       works OK
Manifold.options.omit_function_arguments=True
tt = t3*t3
%display plain
tt.disp()
Out[29]:
t3⊗t3 = f000^2 dx0⊗dx0⊗dx0⊗dx0⊗dx0⊗dx0 + f000*f001 dx0⊗dx0⊗dx0⊗dx0⊗dx0⊗dx1 + f000*f010 dx0⊗dx0⊗dx0⊗dx0⊗dx1⊗dx0 + f000*f011 dx0⊗dx0⊗dx0⊗dx0⊗dx1⊗dx1 + f000*f100 dx0⊗dx0⊗dx0⊗dx1⊗dx0⊗dx0 + f000*f101 dx0⊗dx0⊗dx0⊗dx1⊗dx0⊗dx1 + f000*f110 dx0⊗dx0⊗dx0⊗dx1⊗dx1⊗dx0 + f000*f111 dx0⊗dx0⊗dx0⊗dx1⊗dx1⊗dx1 + f000*f001 dx0⊗dx0⊗dx1⊗dx0⊗dx0⊗dx0 + f001^2 dx0⊗dx0⊗dx1⊗dx0⊗dx0⊗dx1 + f001*f010 dx0⊗dx0⊗dx1⊗dx0⊗dx1⊗dx0 + f001*f011 dx0⊗dx0⊗dx1⊗dx0⊗dx1⊗dx1 + f001*f100 dx0⊗dx0⊗dx1⊗dx1⊗dx0⊗dx0 + f001*f101 dx0⊗dx0⊗dx1⊗dx1⊗dx0⊗dx1 + f001*f110 dx0⊗dx0⊗dx1⊗dx1⊗dx1⊗dx0 + f001*f111 dx0⊗dx0⊗dx1⊗dx1⊗dx1⊗dx1 + f000*f010 dx0⊗dx1⊗dx0⊗dx0⊗dx0⊗dx0 + f001*f010 dx0⊗dx1⊗dx0⊗dx0⊗dx0⊗dx1 + f010^2 dx0⊗dx1⊗dx0⊗dx0⊗dx1⊗dx0 + f010*f011 dx0⊗dx1⊗dx0⊗dx0⊗dx1⊗dx1 + f010*f100 dx0⊗dx1⊗dx0⊗dx1⊗dx0⊗dx0 + f010*f101 dx0⊗dx1⊗dx0⊗dx1⊗dx0⊗dx1 + f010*f110 dx0⊗dx1⊗dx0⊗dx1⊗dx1⊗dx0 + f010*f111 dx0⊗dx1⊗dx0⊗dx1⊗dx1⊗dx1 + f000*f011 dx0⊗dx1⊗dx1⊗dx0⊗dx0⊗dx0 + f001*f011 dx0⊗dx1⊗dx1⊗dx0⊗dx0⊗dx1 + f010*f011 dx0⊗dx1⊗dx1⊗dx0⊗dx1⊗dx0 + f011^2 dx0⊗dx1⊗dx1⊗dx0⊗dx1⊗dx1 + f011*f100 dx0⊗dx1⊗dx1⊗dx1⊗dx0⊗dx0 + f011*f101 dx0⊗dx1⊗dx1⊗dx1⊗dx0⊗dx1 + f011*f110 dx0⊗dx1⊗dx1⊗dx1⊗dx1⊗dx0 + f011*f111 dx0⊗dx1⊗dx1⊗dx1⊗dx1⊗dx1 + f000*f100 dx1⊗dx0⊗dx0⊗dx0⊗dx0⊗dx0 + f001*f100 dx1⊗dx0⊗dx0⊗dx0⊗dx0⊗dx1 + f010*f100 dx1⊗dx0⊗dx0⊗dx0⊗dx1⊗dx0 + f011*f100 dx1⊗dx0⊗dx0⊗dx0⊗dx1⊗dx1 + f100^2 dx1⊗dx0⊗dx0⊗dx1⊗dx0⊗dx0 + f100*f101 dx1⊗dx0⊗dx0⊗dx1⊗dx0⊗dx1 + f100*f110 dx1⊗dx0⊗dx0⊗dx1⊗dx1⊗dx0 + f100*f111 dx1⊗dx0⊗dx0⊗dx1⊗dx1⊗dx1 + f000*f101 dx1⊗dx0⊗dx1⊗dx0⊗dx0⊗dx0 + f001*f101 dx1⊗dx0⊗dx1⊗dx0⊗dx0⊗dx1 + f010*f101 dx1⊗dx0⊗dx1⊗dx0⊗dx1⊗dx0 + f011*f101 dx1⊗dx0⊗dx1⊗dx0⊗dx1⊗dx1 + f100*f101 dx1⊗dx0⊗dx1⊗dx1⊗dx0⊗dx0 + f101^2 dx1⊗dx0⊗dx1⊗dx1⊗dx0⊗dx1 + f101*f110 dx1⊗dx0⊗dx1⊗dx1⊗dx1⊗dx0 + f101*f111 dx1⊗dx0⊗dx1⊗dx1⊗dx1⊗dx1 + f000*f110 dx1⊗dx1⊗dx0⊗dx0⊗dx0⊗dx0 + f001*f110 dx1⊗dx1⊗dx0⊗dx0⊗dx0⊗dx1 + f010*f110 dx1⊗dx1⊗dx0⊗dx0⊗dx1⊗dx0 + f011*f110 dx1⊗dx1⊗dx0⊗dx0⊗dx1⊗dx1 + f100*f110 dx1⊗dx1⊗dx0⊗dx1⊗dx0⊗dx0 + f101*f110 dx1⊗dx1⊗dx0⊗dx1⊗dx0⊗dx1 + f110^2 dx1⊗dx1⊗dx0⊗dx1⊗dx1⊗dx0 + f110*f111 dx1⊗dx1⊗dx0⊗dx1⊗dx1⊗dx1 + f000*f111 dx1⊗dx1⊗dx1⊗dx0⊗dx0⊗dx0 + f001*f111 dx1⊗dx1⊗dx1⊗dx0⊗dx0⊗dx1 + f010*f111 dx1⊗dx1⊗dx1⊗dx0⊗dx1⊗dx0 + f011*f111 dx1⊗dx1⊗dx1⊗dx0⊗dx1⊗dx1 + f100*f111 dx1⊗dx1⊗dx1⊗dx1⊗dx0⊗dx0 + f101*f111 dx1⊗dx1⊗dx1⊗dx1⊗dx0⊗dx1 + f110*f111 dx1⊗dx1⊗dx1⊗dx1⊗dx1⊗dx0 + f111^2 dx1⊗dx1⊗dx1⊗dx1⊗dx1⊗dx1


Tensor fields of type $(k,0)$ (contravariant tensor fields of rank $k$)


A tensor field of type $(k, 0)$ (or a contravariant tensor field of rank $k$) on a manifold $M$ is a map $t$ that associates to each point $p ∈ M$ a tensor $t(p)=t_p\in T^{(k,0)}_pM\ \ \ $ ($T^{(k,0)}_pM$ was defined in notebook 9).
The tensor field $t$ is smooth if for arbitrary 1-forms $α_1 , . . . , α_k$ , the function $t(α_1 , . . . , α_k )$, defined by $[t (α_1, . . . , α_k )]( p) = t_p( α_1(p), . . . , α_k(p))$ , is smooth.

The operations of tensor addition, scalar multiplication and tensor product are defined pointwise as in the case of covariant tensor fields.


Tensorial property


A map $t$ is a tensor field of type $(k,0)$ iff it associates to each set of $k$ covector fields $α_1 , . . . , α_k$ on $M$ a function $t(α_1 , . . . , α_k):M\to R$ with the property that for functions $f,g:M\to R$, $\alpha_1,\ldots,\alpha_k,\beta_1,\ldots,\beta_k\in T^*(M)$, and $i=1,\ldots,k$

$$t (\alpha_1 , . . . , f\alpha_i + g\beta_i , . . . , \alpha_k ) = ft (\alpha_1 , . . . , \alpha_i , . . . , \alpha_k ) +gt (\alpha_1 , . . . , \beta_i , . . . , \alpha_k ).$$


Note that the last property means that contravariant tensor fields of rank $k$ are just multilinear functions on the Cartesian product $\underbrace{\Omega^1(M)\times\cdots\times \Omega^1(M)}_{k\ \; \mbox{times}}$ of $k$ copies of the module $\Omega^1(M)$ over the ring $C^\infty(M)$.

The module of contravariant tensor fields of type $(k,0)$ on a manifold $M$ will be denoted by $T^{(𝑘,0)}M.$

Warning. If $M$ is a module -not a manifold, in notebook 9a the same notations denote the space of contravariant tensors of rank 𝑘 on the module $M$.


Contravariant tensor fields in components


Using (9.7) we can check that any tensor field of type $(k,0)$ on $M$ is expressed locally as

\begin{equation} t = t (dx^{i_1} , . . . , dx^{i_k} )\frac{\partial}{\partial x^{i_1}}\otimes\dots\otimes \frac{\partial}{\partial x^{i_k}}. \label{}\tag{13.8} \end{equation}

One can prove that if $x^1,\ldots,x^n$ are local coordinates on $U$ and $\ t^{i_1\ldots i_k}=t(dx^{i_1} , . . . , dx^{i_k} )\ $, then $t$ is smooth iff for arbitrary $p\in M$ there is a coordinate map $(U,(x^1,\ldots,x^n))$ around $p$ such that the real functions $\ t^{i_1\ldots i_k}\ $ are smooth.


Example 13.11

Let us show an example of tensor field $t\in T^{(2,0)}M$.

In [30]:
%display latex
N = 2                               # dimension of manifold M
M = Manifold(N, 'M')                # manifold M
X = M.chart(' '.join(['x'+str(i)+':x^{'+str(i)+'}' for i in range(N)]))  # chart on M
t = M.tensor_field(2,0, name='t'); print(t)  # tensor field (2,0) type
Tensor field t of type (2,0) on the 2-dimensional differentiable manifold M

Below, we use superscripts to show that the contravariant tensor fields may look in SageMath Manifolds as in textbooks.

In [31]:
def fn(i,j): return 'f'+str(i)+str(j)          # component names
def fl(i,j): return 'f'+'^'+'{'+str(i)+str(j)+'}'   # latex names
ff = [[M.scalar_field(function(fn(i,j),latex_name=fl(i,j))(*X)) 
       for j in range(N)] for i in range(N)]   # nested list of comp.
t[:] = ff                                      # define all components
Manifold.options.omit_function_arguments=True  # output without comp. arguments
t.disp()                                       # show t
Out[31]:
\(\displaystyle t = f^{00} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} } + f^{01} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} } + f^{10} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} } + f^{11} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\)

Using tensor products it is easy to obtain large outputs.

In [32]:
Manifold.options.omit_function_arguments=False  # output with comp. arguments
(t*t).disp()                                    # show tensor product
Out[32]:
\(\displaystyle t\otimes t = f^{00}\left({x^{0}}, {x^{1}}\right)^{2} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} } + f^{00}\left({x^{0}}, {x^{1}}\right) f^{01}\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} } + f^{00}\left({x^{0}}, {x^{1}}\right) f^{10}\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} } + f^{00}\left({x^{0}}, {x^{1}}\right) f^{11}\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} } + f^{00}\left({x^{0}}, {x^{1}}\right) f^{01}\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} } + f^{01}\left({x^{0}}, {x^{1}}\right)^{2} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} } + f^{01}\left({x^{0}}, {x^{1}}\right) f^{10}\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} } + f^{01}\left({x^{0}}, {x^{1}}\right) f^{11}\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} } + f^{00}\left({x^{0}}, {x^{1}}\right) f^{10}\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} } + f^{01}\left({x^{0}}, {x^{1}}\right) f^{10}\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} } + f^{10}\left({x^{0}}, {x^{1}}\right)^{2} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} } + f^{10}\left({x^{0}}, {x^{1}}\right) f^{11}\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} } + f^{00}\left({x^{0}}, {x^{1}}\right) f^{11}\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} } + f^{01}\left({x^{0}}, {x^{1}}\right) f^{11}\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} } + f^{10}\left({x^{0}}, {x^{1}}\right) f^{11}\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} } + f^{11}\left({x^{0}}, {x^{1}}\right)^{2} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\)
In [33]:
Manifold.options.omit_function_arguments=True   # output without comp. arguments
%display plain
(t*t).disp()                                    # show tensor product
Out[33]:
t⊗t = f00^2 ∂/∂x0⊗∂/∂x0⊗∂/∂x0⊗∂/∂x0 + f00*f01 ∂/∂x0⊗∂/∂x0⊗∂/∂x0⊗∂/∂x1 + f00*f10 ∂/∂x0⊗∂/∂x0⊗∂/∂x1⊗∂/∂x0 + f00*f11 ∂/∂x0⊗∂/∂x0⊗∂/∂x1⊗∂/∂x1 + f00*f01 ∂/∂x0⊗∂/∂x1⊗∂/∂x0⊗∂/∂x0 + f01^2 ∂/∂x0⊗∂/∂x1⊗∂/∂x0⊗∂/∂x1 + f01*f10 ∂/∂x0⊗∂/∂x1⊗∂/∂x1⊗∂/∂x0 + f01*f11 ∂/∂x0⊗∂/∂x1⊗∂/∂x1⊗∂/∂x1 + f00*f10 ∂/∂x1⊗∂/∂x0⊗∂/∂x0⊗∂/∂x0 + f01*f10 ∂/∂x1⊗∂/∂x0⊗∂/∂x0⊗∂/∂x1 + f10^2 ∂/∂x1⊗∂/∂x0⊗∂/∂x1⊗∂/∂x0 + f10*f11 ∂/∂x1⊗∂/∂x0⊗∂/∂x1⊗∂/∂x1 + f00*f11 ∂/∂x1⊗∂/∂x1⊗∂/∂x0⊗∂/∂x0 + f01*f11 ∂/∂x1⊗∂/∂x1⊗∂/∂x0⊗∂/∂x1 + f10*f11 ∂/∂x1⊗∂/∂x1⊗∂/∂x1⊗∂/∂x0 + f11^2 ∂/∂x1⊗∂/∂x1⊗∂/∂x1⊗∂/∂x1


Example 13.12

The superscripts in contravariant tensor components are not obligatory. Let us modify the previous example using subscripts.

In [34]:
reset()
N = 2                                # dimension of manifold M
M = Manifold(N, 'M')                 # manifold M
X = M.chart(' '.join(['x'+str(i)+':x^{'+str(i)+'}' for i in range(N)]))  # chart on M
t2 = M.tensor_field(2,0, name='t2')  # tensor field (2,0) type
def hn(i,j): return 'h'+str(i)+str(j)       # names for components
def hl(i,j): return 'h'+'_'+'{'+str(i)+str(j)+'}'   # latex names
ff = [[M.scalar_field(function(hn(i,j), latex_name=hl(i,j))(*X)) 
       for j in range(N)] for i in range(N)]  # component functions
t2[:] = ff                                    # define all components
Manifold.options.omit_function_arguments=True  # output without comp.arg
%display latex
t2.disp()                            # show the tensor field
Out[34]:
\(\displaystyle t2 = h_{00} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} } + h_{01} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} } + h_{10} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} } + h_{11} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\)
In [35]:
tt2 = t2*t2
tt2.disp()                           # show tensor product
Out[35]:
\(\displaystyle t2\otimes t2 = h_{00}^{2} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} } + h_{00} h_{01} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} } + h_{00} h_{10} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} } + h_{00} h_{11} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} } + h_{00} h_{01} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} } + h_{01}^{2} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} } + h_{01} h_{10} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} } + h_{01} h_{11} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} } + h_{00} h_{10} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} } + h_{01} h_{10} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} } + h_{10}^{2} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} } + h_{10} h_{11} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} } + h_{00} h_{11} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} } + h_{01} h_{11} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} } + h_{10} h_{11} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} } + h_{11}^{2} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\)


Example 13.13

Let us show an example of (3,0) type tensor field, using superscripts.

In [36]:
%display latex                                   
N = 2                                 # dimension of manifold M
M = Manifold(N, 'M')                  # manifold M
X = M.chart(' '.join(['x'+str(i)+':x^{'+str(i)+'}' for i in range(N)]))  # chart on M
s3 = M.tensor_field(3,0, name='s3');  # tensor field of type (3,0)
In [37]:
def fn(i,j,k): return 'f'+str(i)+str(j)+str(k)      # components names
def fl(i,j,k): return 'f'+'^'+'{'+str(i)+str(j)+str(k)+'}'  # latex names
ff = [[[M.scalar_field(function(fn(i,j,k),latex_name=fl(i,j,k))(*X)) 
        for k in range(N)] for j in range(N)] for i in range(N)]  # components
s3[:] = ff                                       # define all components
Manifold.options.omit_function_arguments=True  # output without comp. args
s3.disp()                                      # show the tensor
Out[37]:
\(\displaystyle s3 = f^{000} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} } + f^{001} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} } + f^{010} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} } + f^{011} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} } + f^{100} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} } + f^{101} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} } + f^{110} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} } + f^{111} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\)
In [38]:
# check tensor product 
ss3 = s3*s3
print(ss3)
Tensor field s3⊗s3 of type (6,0) on the 2-dimensional differentiable manifold M


Tensor fields of type $(𝑘,m)$ (mixed tensor fields)


A tensor field of type $(k,m)$ (a mixed tensor field) on $M$ is a map $t$ that to each point $p ∈ M$ associates a tensor $t(p)=t_p\in T^{(k,m)}_pM\ \ \ $ ($T^{(k,m)}_pM$ was defined in notebook 9.


A tensor field of type $(0,0)$ on $M$ is a scalar function $M\to R$.

A tensor field $t$ of type $(k,m)$ is smooth if for $X_1 , . . . , X_m ∈ \mathfrak{X}(M)$ and $α_1 , . . . , α_k ∈ \Omega^1 (M)$, the function $M \to R$ that to each point $p ∈ M$ associates the value $t_p(α_1 ( p), . . . , α_k ( p),X_1 ( p), . . . , X_m ( p) )$ is smooth.
The sum, the product by scalars, the product by real-valued functions, and the tensor product of mixed tensor fields are defined pointwise as in the case of covariant and contravariant tensors.

$$ \begin{matrix} (at + bs)_p = at_p + bs_p,\\ ( f t)_p = f ( p)t_p,\\ (t ⊗ s)_p = t_p ⊗ s_p, \end{matrix} $$

for $a, b ∈ R$, $s, t$ mixed tensor fields on $M$ and $f : M → R$ (addition is defined only for tensors of the same type).

The set of smooth tensor fields of type $(k,m)$ on a manifold $M$, will be denoted by $T^{(k,m)}M$.
$T^{(k,m)}M$ is a module over the ring $C^∞(M)$.

Warning. Recall, that in notebook 9a, the same symbol $\ T^{(k,m)}M\ $ denotes the space of mixed tensors on a module $M$.


Tensorial property


As previously, we can check, that tensor fields of type $(k,m)$ are just multilinear functions on the Cartesian product $\underbrace{\Omega^1(M)\times\cdots\times \Omega^1(M)}_{k\ \; \mbox{times}} \times \underbrace{\mathfrak{X}(M)\times\cdots\times \mathfrak{X}(M)}_{m\ \; \mbox{times}} $ of $k$ copies of the module $\Omega^1(M)$ and $m$ copies of the module $\mathfrak{X}(M)$ over the ring $C^\infty(M)$.


General tensor fields in components


Generalizing the formulas (13.7) and (13.8) we obtain the following expression for the general tensor field $t\in T^{(k,m)}M$ in local components

\begin{equation} t= t\big(dx^{i_1},..,dx^{i_k},\frac{\partial}{\partial x^{j_1}},..,\frac{\partial}{\partial x^{j_m}}\big) \frac{\partial}{\partial x^{i_1}}\otimes\dots\otimes\frac{\partial}{\partial x^{i_k}}\otimes dx^{j_1}\otimes\ldots\otimes dx^{j_m}. \label{}\tag{13.9} \end{equation}

Very often the notation $$t^{i_1\ldots i_k}_{j_1\ldots j_m}=t\big(dx^{i_1},..,dx^{i_k},\frac{\partial}{\partial x^{j_1}},..,\frac{\partial}{\partial x^{j_m}}\big) $$ is used and then $$t=t^{i_1\ldots i_k}_{j_1\ldots j_m}\frac{\partial}{\partial x^{i_1}}\otimes\dots\otimes\frac{\partial}{\partial x^{i_k}}\otimes dx^{j_1}\otimes\ldots\otimes dx^{j_m}. $$

One can prove that if $x^1,\ldots,x^n$ are local coordinates on $U$ and $t^{i_1\ldots i_k}_{j_1\ldots j_m}$ are defined as above, then $t$ is smooth iff for arbitrary $p\in M$ there is a coordinate map $(U,(x^1,\ldots,x^n))$ around $p$ such that the real functions $t^{i_1\ldots i_k}_{j_1\ldots j_m}$ are smooth.


Example 13.14

Consider a 2-dimensional manifold with global coordinates $x^0,x^1$:

In [39]:
%display latex
N = 2                        # dimension of manifold M
M = Manifold(N, 'M')         # manifold M
X = M.chart(' '.join(['x'+str(i)+':x^{'+str(i)+'}' for i in range(N)]))  # chart on M

Define a general tensor field of type (1,1).

In the case of mixed type tensor fields it is important to distinguish the lower and upper indices!

In [40]:
def fn(i,j): return 't'+str(i)+str(j)          # component names
def fl(i,j): return 't'+'^'+str(i)+'_'+str(j)  # latex names
ff = [[M.scalar_field(function(fn(i,j),latex_name=fl(i,j))(*X)) 
       for j in range(N)] for i in range(N)]   # list of components
t = M.tensor_field(1,1, name='t')              # tensor of (1,1) type
t[:] = ff                                      # define all components
t.disp()                                       # show the tensor
Out[40]:
\(\displaystyle t = t^0_0 \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{0}} + t^0_1 \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{1}} + t^1_0 \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{0}} + t^1_1 \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{1}}\)

With this notations, the tensor product can be computed without problems:

In [41]:
#t*t works
Manifold.options.omit_function_arguments=False # output with comp.args
tt = t*t                                       # tensor product
tt.disp()                                      # show tensor product
Out[41]:
\(\displaystyle t\otimes t = t^0_0\left({x^{0}}, {x^{1}}\right)^{2} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + t^0_0\left({x^{0}}, {x^{1}}\right) t^0_1\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + t^0_0\left({x^{0}}, {x^{1}}\right) t^0_1\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + t^0_1\left({x^{0}}, {x^{1}}\right)^{2} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + t^0_0\left({x^{0}}, {x^{1}}\right) t^1_0\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + t^0_0\left({x^{0}}, {x^{1}}\right) t^1_1\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + t^0_1\left({x^{0}}, {x^{1}}\right) t^1_0\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + t^0_1\left({x^{0}}, {x^{1}}\right) t^1_1\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + t^0_0\left({x^{0}}, {x^{1}}\right) t^1_0\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + t^0_1\left({x^{0}}, {x^{1}}\right) t^1_0\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + t^0_0\left({x^{0}}, {x^{1}}\right) t^1_1\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + t^0_1\left({x^{0}}, {x^{1}}\right) t^1_1\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + t^1_0\left({x^{0}}, {x^{1}}\right)^{2} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + t^1_0\left({x^{0}}, {x^{1}}\right) t^1_1\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + t^1_0\left({x^{0}}, {x^{1}}\right) t^1_1\left({x^{0}}, {x^{1}}\right) \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + t^1_1\left({x^{0}}, {x^{1}}\right)^{2} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\)


Example 13.15

Now let us try to define (2,2)-type tensor field on the same two-dimensional manifold

In [42]:
# continuation; first define names and latex names of components
def fl(i0,i1,i2,i3): return 't'+'^'+'{'+str(i0)+str(i1)+'}'+'_'+'{'+str(i2)+str(i3)+'}'
def fn(i0,i1,i2,i3): return 't'+str(i0)+str(i1)+str(i2)+str(i3)
# define nested list of components of the tensor
ff = [[[[M.scalar_field(function(fn(i0,i1,i2,i3),latex_name=fl(i0,i1,i2,i3))(*X)) 
         for i3 in range(N)] for i2 in range(N)] for i1 in range(N)] for i0 in range(N)]
t = M.tensor_field(2,2, name='t')        # tensor field of type (2,2)
t[:] = ff                                # define all components#
Manifold.options.omit_function_arguments=True   # output without comp. args
t.disp()                                        # show the tensor
Out[42]:
\(\displaystyle t = t^{00}_{00} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + t^{00}_{01} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + t^{00}_{10} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + t^{00}_{11} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + t^{01}_{00} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + t^{01}_{01} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + t^{01}_{10} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + t^{01}_{11} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + t^{10}_{00} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + t^{10}_{01} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + t^{10}_{10} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + t^{10}_{11} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + t^{11}_{00} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + t^{11}_{01} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + t^{11}_{10} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + t^{11}_{11} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\)

Tensor product works with this notations (but the output is very long).

In [43]:
#t*t works
tt = t*t
In [44]:
# tt.disp() -latex code
# tt[:]  very long output after very long time
In [45]:
# %display plain
# tt.disp()  # very-very long output

It is easier to check that the linear operations work:

In [46]:
Manifold.options.omit_function_arguments=True    # output without comp.args
(t + 2*t).disp()                                   # show t+2*t
Out[46]:
\(\displaystyle 3 \, t^{00}_{00} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + 3 \, t^{00}_{01} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + 3 \, t^{00}_{10} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + 3 \, t^{00}_{11} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + 3 \, t^{01}_{00} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + 3 \, t^{01}_{01} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + 3 \, t^{01}_{10} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + 3 \, t^{01}_{11} \frac{\partial}{\partial {x^{0}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + 3 \, t^{10}_{00} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + 3 \, t^{10}_{01} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + 3 \, t^{10}_{10} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + 3 \, t^{10}_{11} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{0}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}} + 3 \, t^{11}_{00} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{0}} + 3 \, t^{11}_{01} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{0}}\otimes \mathrm{d} {x^{1}} + 3 \, t^{11}_{10} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{0}} + 3 \, t^{11}_{11} \frac{\partial}{\partial {x^{1}} }\otimes \frac{\partial}{\partial {x^{1}} }\otimes \mathrm{d} {x^{1}}\otimes \mathrm{d} {x^{1}}\)

What's next?

Take a look at the notebook Differential k-forms.