
A Role Based Model Template for Specifying
Virtual Reality Software

Sai Anirudh Karre
Software Engineering Research Center

IIIT Hyderabad, India
saianirudh.karri@research.iiit.ac.in

Vivek Pareek
Software Engineering Research Center

IIIT Hyderabad, India
vivek.pareek@research.iiit.ac.in

Raghav Mittal
Software Engineering Research Center

IIIT Hyderabad, India
raghav.mittal@research.iiit.ac.in

Y. Raghu Reddy
Software Engineering Research Center

IIIT Hyderabad, India
raghu.reddy@iiit.ac.in

ABSTRACT
Research in hardware and software support for Virtual Reality (VR)
has significantly increased over the last decade. Given the software
platform fragmentation and hardware volatility, there is an apparent
disconnect among practitioners while building applications in the
VR domain. This paper proposes a role-based model template as a
meta-model to specify the bare minimum VR software system. We
conducted a grounded-theory-based qualitative study on prevailing
and phased-out VR SDKs and standards to propose this meta-model.
This model template can help VR practitioners build open-source
tools to develop, design, and test VR software systems.

CCS CONCEPTS
• Software and its engineering → Software system models;

KEYWORDS
Virtual Reality; VR SDK; VRModel Template;Metamodel; Grounded-
theory
ACM Reference Format:
Sai Anirudh Karre, Vivek Pareek, Raghav Mittal, and Y. Raghu Reddy. 2022.
A Role Based Model Template for Specifying Virtual Reality Software. In
37th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’22), October 10–14, 2022 . Rochester, MI, USA, 5 pages. https://doi.org/
10.1145/3551349.3560514

1 MOTIVATION
A Virtual Reality (VR) software system strives to induce a targeted
behavior in an organism (predominantly a human or an animal)
using artificial sensory simulation [15]. VR hardware and software
have evolved independently, causing disparity in the overall evolu-
tion of VR as a domain. Consequently, it has become difficult for
VR Practitioners’ to build portable and cross-platform VR products.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14,2022, Rochester,MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3560514

Several attempts are made to standardize VR as a domain through
standards like VRML (Virtual Reality Modeling Language) by W3C
- 1997 [23], COLLADA (COLLAborative Design Activity) by Sony
- 2004 [11], O3D by Google - 2010 [10] etc. These standards have
failed due to a lack of interoperability support of VR software with
VR Hardware [7]. Recently attempts were made to support interop-
erability between VR software and hardware using OpenXR stan-
dard APIs [8]. However, these new standards are still in draft and
require more comprehensive usage/feedback within the VR prac-
titioner community. Various commercial VR providers proposed
and practiced variants of the VR conceptual model. These models
are open-ended and do not permit interoperability to meet the ne-
cessities of a bare-minimum VR software system. At a minimum,
a VR software system should depict the components like scene,
scene-objects, camera, action-responses, and behavior outcomes.
However, the existing conceptual models do not provide common
control and data flow to facilitate constructing a bare-minimum VR
software system. In this paper, we address the following research
questions:

RQ: What constitutes a meta-model of a bare minimum VR soft-
ware system?

The paper presents the study setup, data analysis, and our the-
ory on creating a role-based model template as a meta-model for
VR software systems to avoid platform fragmentation.

2 METHODOLOGY
Conceptualizing a meta-model for VR systems requires a thorough
understanding of VR as a domain in addition to understanding VR
systems in application domains like health care, banking, etc. We
made an unsuccessful attempt by conducting a systematic litera-
ture review on understanding what constitutes a bare-minimum
VR software system. The results were obsolete and no longer sig-
nificant to comprehend contemporary VR software systems. Most
of the primary and secondary studies [16] [17] suggested superfi-
cial information on the working of a typical VR software system.
We found studies that explain VR as a software system applied
in various fields like education, tourism, simulation, healthcare,
and design applications with no underlying information about us-
ing the constructs of a bare-minimum VR software system. Given
the limited academic literature, we adopted the Socio-Technical

https://doi.org/10.1145/3551349.3560514
https://doi.org/10.1145/3551349.3560514
https://doi.org/10.1145/3551349.3560514

ASE ’22, October 10–14,2022, Rochester,MI, USA S. Karre et al.

Grounded Theory (STGT) approach [9] to investigate components
of bare-minimum VR software systems. It is an iterative and incre-
mental research method using available resources with abductive
reasoning for theory development.

2.1 Data Collection
We relied on the following resources to gather the required data to
establish the theory for constructing a meta-model for VR software
systems.

Informal Interviews We conducted informal interviews with de-
veloper communities of UNITY Technologies, Epic Games, Khronos
Group (OpenXR), and the VR/AR Association (UK/APAC) for nearly
four months (Oct-2021 to Jan-2022). The interviews aimed to under-
stand practitioners’ perspectives of a bare-minimum VR software
system in practice. Participants with a minimum of five years of VR
development experience were considered for interviews. In total,
39 VR practitioners participated. The following questions were the
basis for the informal interviews.

• What do you consider elements of a meta-model for VR
software system?

• Do current VR Development tools explain elements of a
bare-minimum VR software system?

• Did you build any supporting tools for VR? If yes, How did
they gather meta-information about a bare-minimum VR
System?

VR SDKs Selection: Our interactions with VR practitioners led us
to review widely used VR SDKs like UNITY3D [5], Unreal Game
Engine [6], CryEngine [2], AframeJS [3], and Amazon Lumberyard
[4]. We examined SDK source code, underlying classes, and white
papers. All other non-technical proprietary materials are excluded
from examination.

VR Standards Selection: Interactions with VR practitioners led
us to explore VR standards in detail. We considered prior standards
- VRML[23], X3D [25], WebXR, O3D [10], and prevailing standards
- OpenXR [8] and IEEE VR/AR Working Group for our study. Addi-
tionally, we examined peer-reviewed publications to understand
the components of a meta-model for a bare-minimum VR software
system.

2.2 Data Analysis
We used the Open Coding method [19] to annotate the interview
transcripts, VR Standard documentation, and VR SDKs documen-
tation with essential details. Our annotation criteria are to check
for the presence of elements that explain the constructs of a bare-
minimum VR Software system and depict the control and data flow
among them. These annotations are linked with generalized codes,
which have the same meaning as our annotation criteria. These
codes are further generalized into common labeled concepts. The
researcher has the flexibility to decide the concept labels. The con-
cepts are ordered into a category goal for our study. Fig 1 explains
a few examples of open codes linking overall concepts and cate-
gories to provide an overall understanding of a bare-minimum VR
software system.

Figure 1: Common Codes from Interview Study

2.3 Observations
Based on the codes generated using open-coding, we used Abduc-
tion Reasoning [9] to theorize a meta-model for a bare minimum
VR software system. Abductive reasoning helps researchers con-
duct data analysis through different means such as hunches, clues,
metaphors or analogy, symptoms, patterns, and explanations. This
approach opens various avenues for creative thinking and theory
development. Following are the data points and observations cap-
tured to depict bare-minimum concepts that are found to constitute
a VR Software System. These concepts are the building blocks of a
meta-model understanding of a VR software system.

• Scene - A 3D environment or space with (un)limited dimen-
sions in terms of length, breadth, and height with elements
operating together as a whole in their respective part. It is
referred to as "play area" in VR SDKs and "virtual operating
space" in most VR standards.

• Article - A 3D object with specific dimensions and physi-
cal properties, including material type, texture, color. It has
other properties like Pixel/Voxel type, CanCastShadow, Is-
RigitObject, IsCollidiable, CanRotate, Isluminous, etc. These
objects are engaged as static objects or interactable with the
character in a given scene.

• Action - Any engagement between two or more articles
leads to interaction, causing a known/unknown outcome.
The engagement may be internal and external to objects
within the prescribed scene.

• Audio - This element is associated with the scene and article.
A scene may or may not have background audio. An article
may or may not give rise to audio internally or externally
due to an action by another article within the prescribed
scene.

• Behavior - The Action’s outcome and the object’s transfor-
mation within the prescribed scene.

• Viewsource - An initial viewpoint of a person trying to
experience the scene. It is called a camera in VR SDKs and
viewpoint in VR standards.

A Role Based Model Template for Specifying
Virtual Reality Software ASE ’22, October 10–14,2022, Rochester,MI, USA

The culmination of these concepts varies between various VR stan-
dards and VR SDKs based on their levels of abstraction and nomen-
clature. However, the overall elements illustrated in Section 2.3 are
the bare-minimum set to construct a VR software system. To un-
derstand how SDKs perceive the same underlying meta-model ele-
ments differently, we present examples fromWebXR and AFrameJS-
based VR Scenes. A WebXR scene1 presents a no-audio 3D scene
with a centered view-source, cube articles placed at a particular
height with no action but a changes behavior in terms of color
when clicked on the cube. On another end, an AframeJS scene 2

presents a no-audio 3D scene with a centered view-source, with
unsized articles placed at a distance with no action but changes
behavior in terms of their dimension with any external intervention.
These two scenes are different and are built using different VR SDKs.
These two SDKs work under different meta-model concepts and
code templates. The WebXR-based scene is obsolete as browsers
no longer support it. The AframeJS based scene is supported by
javascript-based browsers only (chrome, firefox etc.). These two
scenes are built for the web and are not compatible with high-end
head-mounted-device consumption. One of the SDKs, WebXR, is
now deprecated, thus limiting the portability of all WebXR scenes
and causing platform fragmentation. Such gaps can be avoided if
they are built using a shared underlying meta-model of VR. The fol-
lowing section presents a role-based model template representing
a shared meta-model for a VR software system.

3 VR SOFTWARE SYSTEM META MODEL
We present the meta-model of a VR software system using a role-
based meta-modeling language (RBML) approach proposed Dae-
Kyoo et al. [13]. It is a UML-based language extension that supports
rigorous specification of patterns that characterize a family of de-
sign models. Since RBML uses UML syntax, UML tools are used to
create RBML specifications. Figure 2 presents the role-based model
template class diagram of a bare-minimum VR software system.
Template elements are marked with the "|" symbol. As shown in
Figure 2, |Scene, |Viewsource, |Time, |Behavior, |Physics, |Requestor,
|Article, |Audio, and |Action are called as class templates. Each class
template consists of two sections, the attribute template and the
association template. For example, the |Audio class template has
|sourcetype, |noise, |init, |inext as part of attribute template section
and |runsound, |syncsound, and |asyncsound are listed as part of asso-
ciation template section. Each association template is defined with
a cardinality [1..*], i.e., one to many with |param* as unlimited pa-
rameters. Each role model template class is linked with UML based
relationship specifications with association definitions like |acesses,
|Impartswith, |RendersInto, |Syncwith and |Validateswith. The virtual
software system is invoked by a |Requestor class template. |Audio,
|Action and |Scene class templates are initiated synchronously to
load underlying |Article (s) and their |Behavior (s) through a |View-
Source onto |Scene. |ViewSource initiates all other class templates
asynchronously with |Time.

Implications of VR Meta-Model: Studies have shown that en-
terprise VR product development differs from traditional software

1https://immersive-web.github.io/webxr-samples/input-selection.html?usePolyfill=0
2https://aframe.io/aframe/examples/animation/warps/

development [12]. Contemporary VR practitioners are primarily
from the gaming industry. They are adopting development meth-
ods that fit their needs to succeed in their business. Thus the VR
practitioners are left with few monopolistic tools and frameworks.
A VR Meta-model will provide a conceptual overview of VR as a
domain and help practitioners create novel open-source tools to
support and ease VR product development. The following are a
few of many use-cases that can be formalized by ideating generic
approaches to ease VR product development.

• Requirements - This area is a challenging aspect for VR. The
meta-model will help practitioners build generic open-source
tools to elicit, specify and track requirements in detail across
the VR product development. These requirements can be
programmatically validated across different stages of VR
product development.

• Code Analysis - There is almost no tool support for VR source
code analysis. Code patterns play a great role in addressing
unstructured code in large-scale VR scenes. A meta-model
can help build generic open-source tools to refactor, modu-
larize the code-base, define code patterns, and suggest code-
reusability.

• Testing - Unit testing and cognitive walkthroughs are cur-
rently practiced to test the VR scenes. Quality and Usability
guidelines are manually evaluated through these studies. A
meta-model can help build generic automated test-case gen-
eration, test strategies, guideline-based code-validation, and
evaluation code-metrics specific to VR.

• Release - Traditional in-place release management is cur-
rently practiced in VR. A meta-model can aid dev-ops practi-
tioners in automating the packaging of various components
of VR with novel release strategies. Generic release man-
agement can address platform fragmentation to a certain
extent.

• Physics Engines - Most widely used prevailing physics en-
gines are either customized or proprietary. Ameta-model can
be used to develop a novel physics engine with and beyond
the natural laws of physics. Different variants of VR engines
can be developed with varying degrees of complexity.

Meta-Model Instance - We present a meta-model instance exam-
ple by providing example bindings for a sample VR football game3.
Table 1 provides example bindings of a test case to be used for veri-
fying the action:kick and response audio:splash associated with the
article:ball. Example bindings can be used as part of a generic VR
test-case generator tool. This table provides a correlation between
meta-model parameters and test-case generator application-specific
elements of a VR football game instance. Using the test-case ap-
plication specification, a custom test-case generator tool can be
developed to generate test cases for a game like VR applications.

4 RELATEDWORK
Tanriverdi et al. presented an early conceptual model of Virtual
Environments [20]. Different VR practitioners introduced various
design-centered conceptual models to illustrate VR as a domain.
Ossa [18], CLEVR [14], VR-WISE Virtools Dev [21], Marigold
toolset [24], UsiXML [22] are few vital models. However, none
3https://github.com/Utopiah/aframe-soccer

ASE ’22, October 10–14,2022, Rochester,MI, USA S. Karre et al.

Figure 2: Role based Model Template of a bare minimum VR Software System

of these models illustrate the meta-model information, and they are
either obsolete or no longer relevant for contemporary VR. Most
of these models are design-centered and interface-centered in us-
age. Later, these models helped practitioners to extend them into
standards like VRML [23], X3D [25], and AC3D [1] specifications
for the Web. With the rise in hardware and software capabilities,
VR offerings are dominated by head-mounted devices rather than
traditional Web. Consequently, these models and standards failed to
evade platform fragmentation, causing monopolies in VR offerings
as their meta-model levels are dissimilar. OpenXR [8], the latest
cross-platform specification for VR on the Web, created a new di-
rective for VR offerings. However, they failed to present a matured
conceptual model to illustrate a bare-minimum VR software system

that could help VR practitioners build new tools to ease VR product
development.

5 CONCLUSION
This paper presents a role-based model template as a meta-model
for a bare-minimum VR software system. We constructed this meta-
model theory using abductive reasoning of codes generated using
open coding of informal interview transcripts, VR SDKs documenta-
tion, and VR standards documentation. The presented meta-model
will help VR practitioners to develop generic open-source tools
to ease VR product development and address platform fragmen-
tation between VR hardware and software. As part of our future
work, we planned to develop an overall state machine using the

A Role Based Model Template for Specifying
Virtual Reality Software ASE ’22, October 10–14,2022, Rochester,MI, USA

Meta-model parameter Application Specific element
|Action Kick
|Audio Splash
|Article Ball
|Action::|kinematic Kick::kinematic
|Action::|motion Kick::motion
|Action::|syncEvent Kick::syncEvent
|Audio::|init Splash::init
|Audio::|syncsound Splash::syncsound
|Impartswith impartswith
|accesses accesses
|x *
1 1
|m *

Table 1: Example bindings for a test-case of kicking the ball
using template class

proposed meta-model to understand the states involved in a bare-
minimum VR system comprehensively. We also planned to develop
open-source tools for requirement specification and testing of VR
applications.

ACKNOWLEDGMENTS
The authors thank the VR practitioners from SAP-XR, Deloitte
Digital Labs, ThoughtWorks, Samsung Studios, UNITY Dev Group,
and Khronos Dev Community for participating in the study and
sharing their insights.

REFERENCES
[1] 1994. AC3D. Inivis Inc. http://www.inivis.com/features.html
[2] Dec, 2021. CRYENGINE Programming Documentation. Crytek Technologies.

https://docs.cryengine.com/display/CEPROG/CRYENGINE+Programming
[3] Jan, 2022. AframeJS Documentation. https://aframe.io/docs/1.3.0/introduction/
[4] Jan, 2022. Lumberyard Documentation. Amazon Web Services. https://docs.aws.

amazon.com/lumberyard/latest/userguide/lumberyard-intro.html
[5] Jan, 2022. Unity3D Manual - Offline Documentation. UNITY Technologies. https:

//docs.unity3d.com/Manual/OfflineDocumentation.html
[6] Jan, 2022. UnRealEngine 5 Documentation. EPIC Games Inc. https://docs.

unrealengine.com/5.0/en-US/
[7] Matthew Brennesholtz. 2017. VR/AR Standards – Are We Con-

fused Yet? https://www.displaydaily.com/article/display-daily/
vr-ar-standards-are-we-confused-yet

[8] Khronos Group. 2019. The OpenXR Specification 1.0.24. https://www.khronos.
org/registry/OpenXR/specs/1.0/html/xrspec.html

[9] Rashina Hoda. 2021. Socio-Technical Grounded Theory for Software Engineering.
IEEE Transactions on Software Engineering (2021), 1–1. https://doi.org/10.1109/
TSE.2021.3106280

[10] Google Inc. 2010. COLLADA - Digital Asset and FX Exchange Schema. https:
//code.google.com/archive/p/o3d/

[11] Sony Computer Entertainment Inc. 2004. COLLADA - Digital Asset and FX
Exchange Schema. Khronos Group. https://www.khronos.org/collada/

[12] Sai Anirudh Karre, Neeraj Mathur, and Y. Raghu Reddy. 2019. Is Virtual Reality
Product Development different?: An Empirical Study on VR Product Development
Practices. In Proceedings of the 12th Innovations on Software Engineering Conference
(formerly known as India Software Engineering Conference), ISEC 2019, Pune, India,
February 14-16, 2019. ACM, 3:1–3:11. https://doi.org/10.1145/3299771.3299772

[13] Dae-Kyoo Kim, Robert B. France, Sudipto Ghosh, and Eunjee Song. 2003. A
Role-Based Metamodeling Approach to Specifying Design Patterns. In 27th In-
ternational Computer Software and Applications Conference (COMPSAC 2003):
Design and Assessment of Trustworthy Software-Based Systems, 3-6 November 2003,
Dallas, TX, USA, Proceedings. IEEE Computer Society, 452. https://doi.org/10.
1109/CMPSAC.2003.1245379

[14] G. Jounghyun Kim, Kyo Chul Kang, Hyejung Kim, and Jiyoung Lee. 1998. Software
Engineering of Virtual Worlds. In Proceedings of the ACM Symposium on Virtual
Reality Software and Technology (Taipei, Taiwan) (VRST ’98). Association for
Computing Machinery, New York, NY, USA, 131–138. https://doi.org/10.1145/
293701.293718

[15] Steven M. LaValle. 2020. Virtual Reality. Cambridge University Press. http:
//vr.cs.uiuc.edu/vrbookbig.pdf

[16] Joseph R. Levy and Harley Bjelland. 1994. Create Your Own Virtual Reality System.
McGraw-Hill, Inc., USA.

[17] William R. Sherman and Alan B. Craig. 2003. Introduction to Virtual Reality
Systems. In Understanding Virtual Reality, William R. Sherman and Alan B.
Craig (Eds.). Morgan Kaufmann, San Francisco, 70–73. https://doi.org/10.1016/
B978-155860353-0/50003-3

[18] Finnegan Southey and James G. Linders. 2001. Ossa - A Conceptual Modelling
System for Virtual Realities. InConceptual Structures: Broadening the Base, Harry S.
Delugach and Gerd Stumme (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
333–345.

[19] Anselm Strauss and Juliet Corbin. 1967. Discovery of grounded theory.
[20] Vildan Tanriverdi and Robert J.K. Jacob. 2001. VRID: A Design Model and

Methodology for Developing Virtual Reality Interfaces. In Proceedings of the ACM
Symposium on Virtual Reality Software and Technology (Baniff, Alberta, Canada)
(VRST ’01). Association for Computing Machinery, New York, NY, USA, 175–182.
https://doi.org/10.1145/505008.505042

[21] Olga Troyer, Frederic Kleinermann, Bram Pellens, and Wesley Bille. 2007. Con-
ceptual Modeling for Virtual Reality., Vol. 83. 3–18.

[22] Jean Vanderdonckt, Quentin Limbourg, Benjamin Michotte, Laurent Bouillon,
Daniela Trevisan, and Murielle Florins. 2004. USIXML: a User Interface Descrip-
tion Language for Specifying Multimodal User Interfaces. W3C Workshop on
Multimodal Interaction (01 2004).

[23] W3C. 1997. VRML Virtual Reality Modeling Language. Web3D Consortium.
https://www.w3.org/MarkUp/VRML/

[24] JAMES S. WILLANS and MICHAEL D. HARRISON. 2001. A toolset supported
approach for designing and testing virtual environment interaction techniques.
International Journal of Human-Computer Studies 55, 2 (2001), 145–165. https:
//doi.org/10.1006/ijhc.2001.0474

[25] X3D. [n.d.]. Extensible 3D. Web3D Consortium. https://www.web3d.org/x3d/
what-x3d/

http://www.inivis.com/features.html
https://docs.cryengine.com/display/CEPROG/CRYENGINE+Programming
https://aframe.io/docs/1.3.0/introduction/
https://docs.aws.amazon.com/lumberyard/latest/userguide/lumberyard-intro.html
https://docs.aws.amazon.com/lumberyard/latest/userguide/lumberyard-intro.html
https://docs.unity3d.com/Manual/OfflineDocumentation.html
https://docs.unity3d.com/Manual/OfflineDocumentation.html
https://docs.unrealengine.com/5.0/en-US/
https://docs.unrealengine.com/5.0/en-US/
https://www.displaydaily.com/article/display-daily/vr-ar-standards-are-we-confused-yet
https://www.displaydaily.com/article/display-daily/vr-ar-standards-are-we-confused-yet
https://www.khronos.org/registry/OpenXR/specs/1.0/html/xrspec.html
https://www.khronos.org/registry/OpenXR/specs/1.0/html/xrspec.html
https://doi.org/10.1109/TSE.2021.3106280
https://doi.org/10.1109/TSE.2021.3106280
https://code.google.com/archive/p/o3d/
https://code.google.com/archive/p/o3d/
https://www.khronos.org/collada/
https://doi.org/10.1145/3299771.3299772
https://doi.org/10.1109/CMPSAC.2003.1245379
https://doi.org/10.1109/CMPSAC.2003.1245379
https://doi.org/10.1145/293701.293718
https://doi.org/10.1145/293701.293718
http://vr.cs.uiuc.edu/vrbookbig.pdf
http://vr.cs.uiuc.edu/vrbookbig.pdf
https://doi.org/10.1016/B978-155860353-0/50003-3
https://doi.org/10.1016/B978-155860353-0/50003-3
https://doi.org/10.1145/505008.505042
https://www.w3.org/MarkUp/VRML/
https://doi.org/10.1006/ijhc.2001.0474
https://doi.org/10.1006/ijhc.2001.0474
https://www.web3d.org/x3d/what-x3d/
https://www.web3d.org/x3d/what-x3d/

	Abstract
	1 motivation
	2 Methodology
	2.1 Data Collection
	2.2 Data Analysis
	2.3 Observations

	3 VR Software System Meta Model
	4 Related Work
	5 Conclusion
	Acknowledgments
	References

