import networkx as nx
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import requests
import scipy
# import tensorflow as tf
# from sklearn.manifold import TSNE
# import sompylib.sompy as SOM
from time import time
import random
from mpl_toolkits.mplot3d import Axes3D
import ipyvolume as ipv
import os
import glob
from ipywidgets import interact, HTML, FloatSlider, fixed, IntSlider, HBox, VBox, interactive
import ipywidgets as widgets
%matplotlib inline
# print (plt.style.available)
# How to import the fmd module
from fdmlib import fdm
import sys,importlib
importlib.reload(fdm)
FdmSolver = fdm.FDM()
path = './Data/'
graph_id = 'stadium'
fn = path + '{}.npy'.format(graph_id)
Data_struct = np.load(fn,allow_pickle='TRUE').item()
fig = plt.figure(figsize=(7,7))
free_nodes_mask = Data_struct['free_nodes_mask']
G = Data_struct['G']
all_poses = Data_struct['all_poses']
nx.draw_networkx(G,
pos=all_poses,
arrows=False,
width = 1,
with_labels=True,
font_color='white',
node_size=200,
node_color=free_nodes_mask,
cmap=plt.cm.jet,
alpha=1)
all_poses = Data_struct['all_poses'].copy()
fixed_nodes = Data_struct['fixed_nodes']
free_edges = Data_struct['free_edges']
G = Data_struct['G']
fixed_nodes
r = 10
center = [0,0]
n_cols = len(fixed_nodes)
n_nodes = len(G.node)
n_rows = int(n_nodes/n_cols)
rows = [list(range(i,n_nodes,n_rows)) for i in range(n_rows)]
cols = [list(range(i,i+n_rows)) for i in range(0,n_nodes,n_rows)]
DF_edges = pd.DataFrame(data=free_edges,columns=['u','v'])
DF_edges.head()
which_row = np.zeros(DF_edges.shape[0]).astype(int)
which_col = np.zeros(DF_edges.shape[0]).astype(int)
is_vertical = np.zeros(DF_edges.shape[0])
for j in range(DF_edges.shape[0]):
e = list(DF_edges.values[j])
for i in range(len(rows)):
if len(set(rows[i]).intersection(set([e[0]])))==1:
which_row[j] = int(i)
if len(set(rows[i]).intersection(e))==2:
# which_col[j] = -1
is_vertical[j] = 0
for i in range(len(cols)):
if len(set(cols[i]).intersection(set([e[0]])))==1:
# which_row[j] = -1
which_col[j] = int(i)
if len(set(cols[i]).intersection(e))==2:
is_vertical[j] = 1
DF_edges['col_number'] = which_col
DF_edges['is_vertical'] = is_vertical
DF_edges['row_number'] = which_row
DF_edges.tail(12)
u | v | col_number | is_vertical | row_number | |
---|---|---|---|---|---|
516 | 281 | 5 | 23 | 0.0 | 5 |
517 | 282 | 283 | 23 | 1.0 | 6 |
518 | 282 | 6 | 23 | 0.0 | 6 |
519 | 283 | 284 | 23 | 1.0 | 7 |
520 | 283 | 7 | 23 | 0.0 | 7 |
521 | 284 | 285 | 23 | 1.0 | 8 |
522 | 284 | 8 | 23 | 0.0 | 8 |
523 | 285 | 286 | 23 | 1.0 | 9 |
524 | 285 | 9 | 23 | 0.0 | 9 |
525 | 286 | 287 | 23 | 1.0 | 10 |
526 | 286 | 10 | 23 | 0.0 | 10 |
527 | 287 | 11 | 23 | 0.0 | 11 |
# The force densities in each trail line (connections from the top to the fixed points) are connected via a trigonometric function
def vis_harmonic(Amp=1,freq=2,phase_s=0):
# Here, we need to assign 11 values for each path from the top to the supports (fixed points)
n_rows = 11
facecolor = 'black'
phase_s = phase_s*np.pi
angles = [(freq*np.pi*float(k)/n_rows)-phase_s for k in range(0,n_rows)]
vals = Amp*np.sin(angles)
r = 20
center = [0,0]
angles = [2*np.pi*i/n_rows for i in range(n_rows)]
xy_fixed_nodes = [[r*np.cos(a),r*np.sin(a)] for a in angles]
xy_fixed_nodes = np.asarray(xy_fixed_nodes)
mn = np.min(vals)
mx = np.max(vals)
fig = plt.figure(figsize=(10,5))
ax = plt.subplot(1,2,1)
ax.set_facecolor(facecolor)
plt.scatter(xy_fixed_nodes[:,0],xy_fixed_nodes[:,1],s=40,c=vals,cmap=plt.cm.jet,vmin=mn,vmax=mx);
plt.grid();
plt.axis('equal');
ax = plt.subplot(1,2,2)
ax.set_facecolor(facecolor)
plt.plot(vals,'.-');
vis_harmonic(Amp=1,freq=2,phase_s=0)
vis_harmonic(Amp=1,freq=4,phase_s=0)
vis_harmonic(Amp=1,freq=4,phase_s=-1)
interact(vis_harmonic,
Amp=FloatSlider(1.0,min=-5,max=20,step=.1),
freq=FloatSlider(2.0,min=0,max=100,step=1),
phase_s=FloatSlider(0.0,min=-2,max=2,step=.5))
interactive(children=(FloatSlider(value=1.0, description='Amp', max=20.0, min=-5.0), FloatSlider(value=2.0, de…
<function __main__.vis_harmonic>
def parametric_solver(Data_struct,
p_z=.1,
base_radius=10,
Amp_trail=1,
phase_trail=0,
coef_trail=2,
fixed_minimum_trail=.3,
Amp_deviation=1,
# phase_deviation=0,
# coef_deviation=2,
plot_interactive = True,
verbose=True,
plot_form_projection=False
):
n_free_nodes = len(Data_struct['free_nodes'])
n_fixed_nodes = len(Data_struct['fixed_nodes'])
n_cols = np.max(DF_edges['col_number'])+1
n_rows = np.max(DF_edges['row_number'])+1
r = base_radius
center = [0,0]
angles = [2*np.pi*i/n_cols for i in range(n_cols)]
xy_fixed_nodes = [[r*np.cos(a),r*np.sin(a)] for a in angles]
xy_fixed_nodes = np.asarray(xy_fixed_nodes)
z_f = 0*np.ones(n_fixed_nodes) - 0.0*np.random.randn(n_fixed_nodes)
x_f = xy_fixed_nodes[:,0]
y_f = xy_fixed_nodes[:,1]
p_x = .0*np.ones((n_free_nodes)) + 0.0*np.random.randn(n_free_nodes)
p_y = -.0*np.ones((n_free_nodes))
p_z = p_z*np.ones((n_free_nodes))
q = np.ones(DF_edges.shape[0])
q = np.zeros(DF_edges.shape[0])
eps = .00001
# give the same value to vertical elements in each row
# Trail members
factor = np.random.choice(range(n_cols),size=n_cols,replace=False)
factor = range(n_cols)
for i in range(n_cols):
ind_ = DF_edges.loc[(DF_edges['col_number']==i) & (DF_edges['is_vertical']==1)].index[:].values[:]
Amp = Amp_trail*(0+1)/1.0
freq = coef_trail
# factor = np.random.randint(-1,high=2,size=1)[0]
phase_s = (factor[i]+phase_trail)*np.pi
angles = [(freq*np.pi*float(k)/(n_rows-1))-phase_s for k in range(0,n_rows-1)]
vals = Amp*np.sin(angles) + fixed_minimum_trail
# vals = .1
if len(ind_)>1:
q[ind_] = vals
# give the same value in horizontal edges in each column
# Deviation
for i in range(n_rows):
ind_ = DF_edges.loc[(DF_edges['row_number']==i) & (DF_edges['is_vertical']==0)].index[:].values[:]
vals = Amp_deviation*(i+1)
# rnd_factor = n_rows*np.random.rand()
# vals = Amp_deviation*(np.sign(rnd_factor)*np.abs(rnd_factor))
# print (vals)
if len(ind_)>1:
q[ind_] = vals
n_free_edges = len(Data_struct['free_edges'])
n_free_nodes = len(Data_struct['free_nodes'])
Data_struct['q'] = q
Data_struct['p_x'] = p_x
Data_struct['p_y'] = p_y
Data_struct['p_z'] = p_z
Data_struct['x_f'] = x_f
Data_struct['y_f'] = y_f
Data_struct['z_f'] = z_f
# Now solve FDM
Data_struct = FdmSolver.solve_fdm_Sheck(Data_struct,plot_topologies=False)
Data_struct = FdmSolver.cal_loadpath(Data_struct)
if plot_form_projection == True:
FdmSolver.plot_form_static(Data_struct)
if verbose == True:
print ('loadpath:{}'.format(FdmSolver.cal_loadpath(Data_struct)['loadpath']))
if plot_interactive == True:
FdmSolver.plot_form_interactive(Data_struct,fixed_node_size=.71)
return Data_struct
from fdmlib import fdm
import sys,importlib
importlib.reload(fdm)
FdmSolver = fdm.FDM()
_ = interactive(parametric_solver,
Data_struct=fixed(Data_struct),
p_z = FloatSlider(0.5,min=.0,max=2,step=.01),
base_radius = FloatSlider(20.0,min=1,max=200,step=1),
Amp_trail=FloatSlider(0.0,min=-5,max=10,step=.05),
phase_trail=FloatSlider(0.0,min=-2,max=2,step=.05),
coef_trail=FloatSlider(1.0,min=-20,max=20,step=.1),
fixed_minimum_trail = FloatSlider(0.3,min=0.0,max=4,step=0.1),
Amp_deviation=FloatSlider(.05,min=-1,max=1,step=.01),
# phase_deviation = FloatSlider(0.0,min=-2,max=2,step=.05),
# coef_deviation=FloatSlider(1.0,min=-20,max=20,step=1),
plot_interactive = True,
verbose=fixed(True),
plot_form_projection=False
);
display(_)
interactive(children=(FloatSlider(value=0.5, description='p_z', max=2.0, step=0.01), FloatSlider(value=20.0, d…
all_combinations = []
for i in range(10000):
if i%500==0:
print (i)
Amp_trail = -5+ 10*np.random.rand()
phase_trail = -2+ 4*np.random.rand()
coef_trail = -(n_rows-1)*4+ 2*((n_rows-1)*4)*np.random.rand()
fixed_minimum_trail= 0.0 + 4*np.random.rand()
Amp_deviation= -1+ 2*np.random.rand()
params = [Amp_trail] + [phase_trail] + [coef_trail] + [fixed_minimum_trail] + [Amp_deviation]
Input_params_names = ['Amp_trail','phase_trail','coef_trail','fixed_minimum_trail','Amp_deviation']
experiment = {}
try:
res = parametric_solver(Data_struct,
p_z=.5,
base_radius=20,
Amp_trail=Amp_trail,
phase_trail=phase_trail,
coef_trail=coef_trail,
fixed_minimum_trail=fixed_minimum_trail,
Amp_deviation=Amp_deviation,
plot_interactive = False,
verbose=False,
plot_form_projection=False
)
experiment['result'] = res.copy()
experiment['input_parameters'] = params
all_combinations.append(experiment)
except:
pass
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500
# Save all results
# for i in range(len(all_combinations)):
# file_name = 'stadium_{}.npy'.format(i)
# json_file = './Data/Sample_results/'+file_name
# np.save(json_file, all_combinations[i])
# Load sample results
# path = './Data/Sample_results/'
# filenames = []
# for filename in glob.glob(os.path.join(path, '*.npy')):
# filenames.append(filename)
# filenames = np.sort(filenames)
# print (len(filenames))
# all_combinations = [np.load(fn,allow_pickle='TRUE').item() for fn in filenames[:]]
len(all_combinations)
10000
DF_all_combinations = pd.DataFrame()
tmp = [ex['result'] for ex in all_combinations]
DF_all_combinations['result'] = tmp
XYZ_coords = [ex['result']['final_positions'] for ex in all_combinations]
XYZ_coords = np.asarray(XYZ_coords)
print (XYZ_coords.shape)
Xcoords = pd.DataFrame(data=XYZ_coords[:,0,0])
Ycoords = pd.DataFrame(data=XYZ_coords[:,0,1])
Zcoords = pd.DataFrame(data=XYZ_coords[:,0,2])
Lengths = [ex['result']['edgelenght'] for ex in all_combinations]
Lengths = np.asarray(Lengths)
Lengths = pd.DataFrame(data=Lengths)
print (Lengths.shape)
Forces = [ex['result']['q'] for ex in all_combinations]
Forces = np.asarray(Forces)
Forces = pd.DataFrame(data=Forces)
print (Forces.shape)
Input_parameters = [ex['input_parameters'] for ex in all_combinations]
Input_parameters = np.asarray(Input_parameters)
LoadPaths_abs = np.multiply(np.abs(Forces.values[:]),Lengths.values[:])
LoadPaths = np.multiply(Forces.values[:],Lengths.values[:])
(10000, 288, 3) (10000, 528) (10000, 528)
Input_parameters.shape
(10000, 5)
n_free_edges = len(Data_struct['free_edges'])
def vis_(ind_experiment=0,plot_form_projection = True,verbose = False,plot_interactive = False):
DD = DF_all_combinations['result'].values[ind_experiment].copy()
if plot_form_projection == True:
FdmSolver.plot_form_static(DD)
if verbose == True:
print ('loadpath:{}'.format(DD['loadpath']))
if plot_interactive == True:
FdmSolver.plot_form_interactive(DD,fixed_node_size=.71)
interact(vis_,ind_experiment=IntSlider(0,0,len(all_combinations),1))
interactive(children=(IntSlider(value=0, description='ind_experiment', max=10000), Checkbox(value=True, descri…
<function __main__.vis_>
from scipy.stats import kurtosis
from scipy.stats import skew
#mean of Forces
mean_Forces = Forces.mean(axis=1)
# mean of abs(Forces)
mean_abs_Forces = np.abs(Forces.values[:]).mean(axis=1)
#variance of Forces
std_Forces = Forces.std(axis=1)
#variance of absolute Forces
std_abs_Forces = np.abs(Forces.std(axis=1))
#Skewness Forces
skw_Forces = skew(Forces.values[:],axis=1)
#Skewness of absolute Forces
skw_abs_Forces = np.abs(skew(Forces.values[:],axis=1))
#Kurtosis of Forces
kurt_Forces = kurtosis(Forces.values[:],axis=1)
#Kurtosis of absolute Forces
kurt_abs_Forces = kurtosis(np.abs(Forces.values[:]),axis=1)
#mean of Lengths
mean_Lengths = Lengths.mean(axis=1)
#variance of Lengths
std_Lengths = Lengths.std(axis=1)
#Skewness Lengths
skw_Lengths = skew(Lengths.values[:],axis=1)
#Kurtosis of Lengths
kurt_Lengths = kurtosis(Lengths.values[:],axis=1)
#mean of LoadPaths
mean_LoadPaths = LoadPaths.mean(axis=1)
# mean of abs(LoadPaths)
mean_abs_LoadPaths = np.abs(LoadPaths).mean(axis=1)
#variance of LoadPaths
std_LoadPaths = LoadPaths.std(axis=1)
#variance of absolute LoadPaths
std_abs_LoadPaths = np.abs(LoadPaths.std(axis=1))
#Skewness LoadPaths
skw_LoadPaths = skew(LoadPaths,axis=1)
#Skewness of absolute LoadPaths
skw_abs_LoadPaths = np.abs(skew(LoadPaths,axis=1))
#Kurtosis of LoadPaths
kurt_LoadPaths = kurtosis(LoadPaths,axis=1)
#Kurtosis of absolute LoadPaths
kurt_abs_LoadPaths = kurtosis(np.abs(LoadPaths),axis=1)
#mean of LoadPaths_abs
mean_LoadPaths_abs = LoadPaths_abs.mean(axis=1)
# mean of abs(LoadPaths_abs)
mean_abs_LoadPaths_abs = np.abs(LoadPaths_abs).mean(axis=1)
#variance of LoadPaths_abs
std_LoadPaths_abs = LoadPaths_abs.std(axis=1)
#variance of absolute LoadPaths_abs
std_abs_LoadPaths_abs = np.abs(LoadPaths_abs.std(axis=1))
#Skewness LoadPaths_abs
skw_LoadPaths_abs = skew(LoadPaths_abs,axis=1)
#Skewness of absolute LoadPaths_abs
skw_abs_LoadPaths_abs = np.abs(skew(LoadPaths_abs,axis=1))
#Kurtosis of LoadPaths_abs
kurt_LoadPaths_abs = kurtosis(LoadPaths_abs,axis=1)
#Kurtosis of absolute LoadPaths_abs
kurt_abs_LoadPaths_abs = kurtosis(np.abs(LoadPaths_abs),axis=1)
#mean of Xcoords
mean_Xcoords = Xcoords.mean(axis=1)
# mean of abs(Coords)
mean_abs_Xcoords = np.abs(Xcoords).mean(axis=1)
#variance of Coords
std_Xcoords = Xcoords.std(axis=1)
#variance of absolute Coords
std_abs_Xcoords = np.abs(Xcoords.std(axis=1))
#Skewness Coords
skw_Xcoords = skew(Xcoords,axis=1)
#Skewness of absolute Coords
skw_abs_Xcoords = np.abs(skew(Xcoords,axis=1))
#Kurtosis of Coords
kurt_Xcoords = kurtosis(Xcoords,axis=1)
#Kurtosis of absolute Coords
kurt_abs_Xcoords = kurtosis(np.abs(Xcoords),axis=1)
#mean of Ycoords
mean_Ycoords = Ycoords.mean(axis=1)
# mean of abs(Coords)
mean_abs_Ycoords = np.abs(Ycoords).mean(axis=1)
#variance of Coords
std_Ycoords = Ycoords.std(axis=1)
#variance of absolute Coords
std_abs_Ycoords = np.abs(Ycoords.std(axis=1))
#Skewness Coords
skw_Ycoords = skew(Ycoords,axis=1)
#Skewness of absolute Coords
skw_abs_Ycoords = np.abs(skew(Ycoords,axis=1))
#Kurtosis of Coords
kurt_Ycoords = kurtosis(Ycoords,axis=1)
#Kurtosis of absolute Coords
kurt_abs_Ycoords = kurtosis(np.abs(Ycoords),axis=1)
#mean of Ycoords
mean_Zcoords = Zcoords.mean(axis=1)
# mean of abs(Coords)
mean_abs_Zcoords = np.abs(Zcoords).mean(axis=1)
#variance of Coords
std_Zcoords = Zcoords.std(axis=1)
#variance of absolute Coords
std_abs_Zcoords = np.abs(Zcoords.std(axis=1))
#Skewness Coords
skw_Zcoords = skew(Zcoords,axis=1)
#Skewness of absolute Coords
skw_abs_Zcoords = np.abs(skew(Zcoords,axis=1))
#Kurtosis of Coords
kurt_Zcoords = kurtosis(Zcoords,axis=1)
#Kurtosis of absolute Coords
kurt_abs_Zcoords = kurtosis(np.abs(Zcoords),axis=1)
DF_analytics = pd.DataFrame()
DF_analytics['Forces mean'] = mean_Forces
# DF_analytics['Abs Forces mean'] = mean_abs_Forces
DF_analytics['Forces std'] = std_Forces
# DF_analytics['Abs Forces std'] = std_abs_Forces
DF_analytics['Forces skw'] = skw_Forces
# DF_analytics['skw abs Forces'] = skw_abs_Forces
DF_analytics['Forces kurt']=kurt_Forces
# DF_analytics['kurt abs Forces'] = kurt_abs_Forces
DF_analytics['Lengths mean'] = mean_Lengths
DF_analytics['Lengths std'] = std_Lengths
DF_analytics['Lengths skw'] = skw_Lengths
DF_analytics['Lengths kurt'] = kurt_Lengths
# here, we took abs load path as load path just for simplicity
DF_analytics['Load paths mean'] = mean_LoadPaths_abs
# DF_analytics['mean_abs_LoadPaths'] = mean_abs_LoadPaths
DF_analytics['Load paths std'] = std_LoadPaths_abs
# DF_analytics['std_abs_LoadPaths'] = std_abs_LoadPaths
DF_analytics['Load paths skw'] = skw_LoadPaths_abs
# DF_analytics['skw_abs_LoadPaths'] = skw_abs_LoadPaths
DF_analytics['Load paths kurt']=kurt_LoadPaths_abs
# DF_analytics['kurt_abs_LoadPaths'] = kurt_abs_LoadPaths
# DF_analytics['mean_LoadPaths_abs'] = mean_LoadPaths_abs
# # DF_analytics['mean_abs_LoadPaths_abs'] = mean_abs_LoadPaths_abs
# DF_analytics['std_LoadPaths_abs'] = std_LoadPaths_abs
# # DF_analytics['std_abs_LoadPaths_abs'] = std_abs_LoadPaths_abs
# DF_analytics['skw_LoadPaths_abs'] = skw_LoadPaths_abs
# # DF_analytics['skw_abs_LoadPaths_abs'] = skw_abs_LoadPaths_abs
# DF_analytics['kurt_LoadPaths_abs']=kurt_LoadPaths_abs
# # DF_analytics['kurt_abs_LoadPaths_abs'] = kurt_abs_LoadPaths_abs
print (DF_analytics.shape)
DF_analytics.head()
(10000, 12)
Forces mean | Forces std | Forces skw | Forces kurt | Lengths mean | Lengths std | Lengths skw | Lengths kurt | Load paths mean | Load paths std | Load paths skw | Load paths kurt | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1.400552 | 2.524269 | 1.104292 | -0.033187 | 20.571313 | 27.360074 | 1.255291 | 0.237999 | 14.561627 | 22.287390 | 1.489439 | 0.549378 |
1 | 3.437100 | 2.487026 | 0.106903 | -0.671475 | 1.929271 | 1.685833 | 1.741640 | 3.359197 | 5.614847 | 5.630988 | 2.600435 | 7.933790 |
2 | 4.302162 | 2.808049 | 0.300504 | -0.821463 | 1.817861 | 1.805642 | 1.291868 | 1.007585 | 4.674525 | 3.845214 | 1.170459 | 1.330803 |
3 | -0.361045 | 4.631162 | -0.240127 | -1.539911 | 4.486321 | 3.786833 | 1.237860 | 0.308079 | 15.607602 | 9.373135 | 0.948337 | 0.814853 |
4 | -0.111435 | 1.913773 | 0.700431 | -0.682580 | 3.381802 | 1.269899 | -0.584763 | -0.858044 | 5.234578 | 3.889722 | 0.997090 | 0.127665 |
HOS_stat = DF_analytics.describe(percentiles=[.1,.2,.3,.4,.5,.6,.7,.8,.9,.95,.99])
HOS_stat
# HOS_stat['Forces mean']
Forces mean | Forces std | Forces skw | Forces kurt | Lengths mean | Lengths std | Lengths skw | Lengths kurt | Load paths mean | Load paths std | Load paths skw | Load paths kurt | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 10000.000000 | 10000.000000 | 10000.000000 | 10000.000000 | 10000.000000 | 10000.000000 | 10000.000000 | 10000.000000 | 10000.000000 | 10000.000000 | 10000.000000 | 10000.000000 |
mean | 0.999035 | 2.768390 | 0.195622 | -0.878645 | 22.366275 | 21.719842 | 1.025391 | 1.112504 | 41.805616 | 36.472751 | 1.150237 | 1.170967 |
std | 2.099697 | 1.187537 | 0.515632 | 0.438398 | 233.709031 | 268.563236 | 0.815074 | 2.657635 | 362.946382 | 360.908477 | 0.633999 | 2.146703 |
min | -3.464547 | 0.137342 | -1.150857 | -1.998982 | 1.642208 | 1.005402 | -0.905692 | -1.922638 | 1.500118 | 1.625031 | -0.357464 | -1.834847 |
10% | -1.826260 | 1.259901 | -0.443124 | -1.424440 | 1.853540 | 1.358301 | 0.079547 | -1.000020 | 3.427693 | 2.632724 | 0.412910 | -0.768852 |
20% | -1.103298 | 1.706165 | -0.288527 | -1.244958 | 2.154848 | 1.609427 | 0.334125 | -0.793518 | 4.406210 | 3.444195 | 0.599993 | -0.499613 |
30% | -0.385746 | 2.057794 | -0.151082 | -1.107229 | 3.030177 | 2.002485 | 0.536752 | -0.570430 | 5.379917 | 4.379839 | 0.767608 | -0.230218 |
40% | 0.315775 | 2.354491 | -0.018219 | -0.986152 | 4.133269 | 2.590956 | 0.692459 | -0.333801 | 7.329474 | 5.890249 | 0.898894 | 0.091401 |
50% | 1.003944 | 2.653424 | 0.123220 | -0.885937 | 5.146745 | 3.448111 | 0.890291 | 0.028403 | 10.834807 | 8.038113 | 1.053644 | 0.411790 |
60% | 1.701311 | 2.964954 | 0.305108 | -0.807570 | 6.571613 | 4.973546 | 1.102731 | 0.593015 | 14.352395 | 10.694496 | 1.213110 | 0.860330 |
70% | 2.377869 | 3.347028 | 0.523589 | -0.707932 | 8.956343 | 7.636079 | 1.388658 | 1.503175 | 18.903991 | 14.615738 | 1.440421 | 1.626341 |
80% | 3.078369 | 3.823990 | 0.755199 | -0.531775 | 13.548583 | 12.142275 | 1.741330 | 2.826054 | 27.141591 | 22.327944 | 1.727612 | 2.754658 |
90% | 3.822234 | 4.462023 | 0.948607 | -0.272776 | 25.997698 | 25.462367 | 2.205784 | 4.998249 | 52.965245 | 45.235815 | 2.061289 | 4.335907 |
95% | 4.332560 | 4.928896 | 1.052046 | -0.108408 | 50.021506 | 53.363197 | 2.557178 | 6.599287 | 97.530198 | 89.145752 | 2.309339 | 5.620864 |
99% | 4.979959 | 5.604794 | 1.134848 | 0.228555 | 229.919009 | 227.271502 | 3.051899 | 10.612938 | 457.664481 | 402.431618 | 2.747698 | 7.963312 |
max | 5.459668 | 6.313615 | 1.154427 | 1.118299 | 13888.868416 | 17592.811101 | 4.183523 | 16.521906 | 20079.501739 | 25430.389515 | 3.419957 | 12.461245 |
plt.plot(HOS_stat['Load paths mean'].values[3:-1],'.-');
ticks = list(HOS_stat.index.values[3:-1])
plt.xticks([i for i in range(len(ticks))],ticks)
plt.grid()
ind_sel = DF_analytics['Load paths mean']<=HOS_stat['Load paths mean'].loc['80%']
print (DF_analytics.shape)
XX = DF_analytics.values[ind_sel].astype(float)
YY = Input_parameters[ind_sel]
columns = np.asarray(list(DF_analytics.columns.values[:])+Input_params_names)
# X = np.concatenate((XX,YY),axis=1)
# X = YY
# columns = columns[-5:]
X = XX
columns = columns[range(XX.shape[1])]
std_x = np.std(X,axis=0)
print (X.shape)
X = X[:,std_x>0]
print (X.shape)
(10000, 12) (8000, 12) (8000, 12)
###############
# For this we need a proper data set as csv
###############
import sompylib.sompy as SOM
msz10 = 50
msz11 =50
# X = DF_analytics.values[:].astype(float)
print (X.shape)
som = SOM.SOM('', X[:], mapsize = [msz10, msz11],norm_method = 'var',initmethod='pca')
som.train(n_job = 1, shared_memory = 'no',verbose='final')
som.compname=[columns]
(8000, 12) Total time elapsed: 4.888000 secodns final quantization error: 0.771733
dists,bmus = som.find_K_nodes(som.data_raw,K=1)
som.hit_map(col='gray')
if X.shape[1]>35:
pass
else:
som.view_map(text_size=7)
xy_option = som.ind_to_xy(bmus[:,0])
xx = xy_option[:,1]
yy = som.mapsize[0]- xy_option[:,0]
# bmus
# freq_bmus = [15000*np.sum(bmus==i)/som.nnodes for i in range(som.nnodes) ]
# plt.hist(freq_bmus,bins=100);
bmus
freq_bmus = [50+20000*np.sum(bmus==i)/len(bmus) for i in range(som.nnodes)]
plt.hist(freq_bmus,bins=100);
freq_bmus = [freq_bmus[bm[0]] for bm in bmus]
len(freq_bmus)
8000
def show_node(ind=0):
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
node_n = ind_sel_nodes[ind]
print ('node number: ',node_n)
cases = np.argwhere(bmus==node_n)[:,0]
K = len(cases)
if K>=1:
#Sort within each cluster
DF_tmp = pd.DataFrame()
DF_tmp['data_inds'] = cases
DF_tmp['dists'] = dists[cases]
data_inds = DF_tmp.sort_values('dists')['data_inds'].copy().values[:]
facecolor = 'black'
fig = plt.figure(figsize=(30,10),facecolor=facecolor)
for f in range(6):
try:
data_ind = data_inds[f]
G = Data_struct['G']
all_poses = Data_struct['all_poses']
ax = fig.add_subplot(2,6,f+1)
ax.set_facecolor(facecolor)
# ax.set_facecolor(facecolor)
DD = DF_all_combinations['result'].values[ind_sel][data_ind]
# ax = plt.subplot(1,2,1)
G = DD['G']
xy_poses = DD['all_poses']
xy_poses = {}
coords = DD['final_positions'].copy()
for i in range(coords.shape[0]):
xy_poses[i]=coords[i,[0,1]]
G = DD['G']
BG =DD['base_G']
q = DD['q']
edge_colors = dict(BG.edges)
for i,e in enumerate(G.edges):
edge_colors[e] = q[i]
for e in set(BG.edges).difference(G.edges):
edge_colors[e] = 4.
col = np.asarray(list(edge_colors.values())).copy()
# col = DD['q'].copy()
col[col>=0] = .85
col[col<0] = .15
w = 0.5+ np.abs(DD['q'].copy()).copy()
nx.draw_networkx(BG,
pos=xy_poses,
arrows=False,
edge_color = list(col),
edge_cmap = plt.cm.RdYlBu_r,
edge_vmin = 0,
edge_vmax = 1.,
width = 1,
with_labels=False,
font_color='white',
node_size=.01,
node_color = 'w',
alpha=1)
ax.set_aspect('equal', 'box')
ax = fig.add_subplot(2,6,1*6+f+1)
ax.set_facecolor(facecolor)
# ax = plt.subplot(1,2,2)
xz_poses = {}
coords = DD['final_positions'].copy()
for i in range(coords.shape[0]):
xz_poses[i]=coords[i,[0,2]]
nx.draw_networkx(BG,
pos=xz_poses,
arrows=False,
edge_color = list(col),
edge_cmap = plt.cm.RdYlBu_r,
edge_vmin = 0,
edge_vmax = 1.,
width = 1,
with_labels=False,
font_color='white',
node_size=.01,
node_color = 'w',
alpha=1)
ax.set_aspect('equal', 'box')
plt.tight_layout()
except:
pass
plt.tight_layout( )
plt.show()
else:
print ('not enough data for this node')
codebooks = SOM.denormalize_by(som.data_raw,som.codebook)
unq_bmus = np.unique(bmus)
xy_som = som.ind_to_xy(unq_bmus)
def query_nodes_new(Measure1='Load paths mean',percentRange1=[3,99],Measure2='Load paths mean',percentRange2=[1,99],plot='Yes'):
from IPython.display import clear_output, Image, display
codebooks = SOM.denormalize_by(som.data_raw,som.codebook)
# codebooks = codebooks[unq_bmus]
DF_som = pd.DataFrame(data=codebooks,columns=list(som.compname[0]))
percentiles = list(set(percentRange1).union(percentRange2))
percentiles = list(np.sort(percentiles)/100.0)
som_stat = DF_som.describe(percentiles=percentiles)
try:
ind_sel_nodes = DF_som.loc[
(DF_som[Measure1] >= som_stat.ix[str(percentRange1[0])+'%'][Measure1])
&
(DF_som[Measure1] <= som_stat.ix[str(percentRange1[1])+'%'][Measure1])
&
(DF_som[Measure2] >= som_stat.ix[str(percentRange2[0])+'%'][Measure2])
&
(DF_som[Measure2] <= som_stat.ix[str(percentRange2[1])+'%'][Measure2])
].index.values[:]
if plot=='Yes':
xy_sel = som.ind_to_xy(ind_sel_nodes)
fig = plt.figure(figsize=(16,16))
plt.rcParams.update({'font.size': 10})
for i in range(codebooks.shape[1]):
ax = fig.add_subplot(5,4,i+1)
col = codebooks[unq_bmus,i]
mn = col.min()
mx = col.max()
col = codebooks[ind_sel_nodes,i]
x = xy_sel[:,1]*1
y = som.mapsize[0]-1-xy_sel[:,0]*1
sc = ax.scatter(x,y,s=20,c=col,cmap=plt.cm.RdYlBu_r,edgecolor='None',vmax=mx,vmin=mn,marker='o',alpha=1.);
eps = .8
plt.xlim(x.min()-eps,x.max()+eps)
plt.ylim(y.min()-eps,y.max()+eps)
plt.colorbar(sc,shrink=.5,ticks=[mn,(mn+mx)/2.0,mx])
plt.title(som.compname[0][i])
plt.tight_layout(pad=0.001, h_pad=0.0, w_pad=0.0)
plt.xlim(0,som.mapsize[0]-1);
plt.ylim(0,som.mapsize[1]-1);
plt.xticks([]);
plt.yticks([]);
return ind_sel_nodes
except:
print ('change the values of the sliders')
return
ind_ = query_nodes_new(Measure1='Load paths mean',percentRange1=[87,100],Measure2='Forces std',percentRange2=[80,100],plot='Yes')
show_node(ind=21)
node number: 73
from ipywidgets import interact, HTML, FloatSlider, interactive
from IPython.display import display
import ipywidgets as widgets
codebooks = SOM.denormalize_by(som.data_raw,som.codebook)
DF_som = pd.DataFrame(data=codebooks,columns=som.compname)
som_stat = DF_som.describe(percentiles=[0.0,.01,.05,.1,.29,.3,.4,.5,.6,.7,.8,.9,.95,.99,1])
what_measures = [i[0] for i in som_stat.columns.values[:]]
percents = [i for i in som_stat.index.values[4:-1]]
# smallerorlarger = ['smaller','larger']
items = [widgets.Label(str(i)) for i in range(4)]
left_box = widgets.VBox([items[0], items[1]])
right_box = widgets.VBox([items[2], items[3]])
widgets.HBox([left_box, right_box])
Drop_what_measures1 = widgets.Dropdown(
# value='John',
placeholder=what_measures[0],
options=what_measures,
description='Measure 1',
ensure_option=True,
disabled=False
)
double_percentage1 = widgets.IntRangeSlider(
value=[0, 100],
min=0,
max=100,
step=1,
# options = percents,
description='Percentage',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
readout_format='.1f',
)
col1 = widgets.VBox([Drop_what_measures1,double_percentage1])
Drop_what_measures2 = widgets.Dropdown(
# value='John',
placeholder=what_measures[0],
options=what_measures,
description='Measure 2',
ensure_option=True,
disabled=False
)
double_percentage2 = widgets.IntRangeSlider(
value=[0, 100],
min=0,
max=100,
step=1,
# options = percents,
description='Percentage',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
readout_format='.1f',
)
col2 = widgets.VBox([Drop_what_measures2,double_percentage2])
menu_hbox = widgets.HBox([col1,col2])
menu = interactive(query_nodes_new,
Measure1=Drop_what_measures1,percentRange1=double_percentage1,
Measure2=Drop_what_measures2,
percentRange2=double_percentage2,
plot='Yes')
display(menu)
interactive(children=(Dropdown(description='Measure 1', options=('Forces mean', 'Forces std', 'Forces skw', 'F…
from ipywidgets import interact, HTML, FloatSlider
import ipywidgets as widgets
menu.kwargs
# ind_sel_nodes = query_nodes(what=menu.kwargs['what'],smallerorlarger=menu.kwargs['smallerorlarger'],percent=menu.kwargs['percent'],plot='No')
ind_sel_nodes = query_nodes_new(
Measure1=menu.kwargs['Measure1'],
percentRange1=menu.kwargs['percentRange1'],
Measure2=menu.kwargs['Measure2'],
percentRange2=menu.kwargs['percentRange2'],
plot='No')
interact(show_node,ind=widgets.IntSlider(min=0,max=len(ind_sel_nodes)-1,step=1,value=0));
interactive(children=(IntSlider(value=0, description='ind', max=213), Output()), _dom_classes=('widget-interac…