Arpit Saxena
Kritti Sharma
Shreyas Changothia /®
Shubham Lohiya

Joo . Prof. Abir De

.
D # ent of Computer Science

*_and Engineering, 11T Bombay

Contents
1 Introduction
2 Background

3 Literature Survey
3.1 TD-Gammon Neural Network
3.2 Neural Fitted Q-Iteration

4 Method
5 Model Architecture
6 Modifications

7 Experiments and Results

7.1 Pong

8 Discussion and Future Work

References

1 Introduction

Controlling agents with high dimensional sensory inputs is a long-standing challenge
of Reinforcement Learning (RL). Deep Learning (DL) has actually made it possible to
extract high-level features from raw sensory data by utilizing a wide range of neural
network architectures (convolutional networks, multi-layer perceptrons, restricted Boltz-
mann machines and recurrent neural networks). Implementation of similar techniques in
RL, although potentially very beneficial when dealing with sensory data, can be quite
challenging from a DL perspective. Couple of these challenges are listed below:

e Typically, DL requires large amounts of hand-labelled data whereas RL requires
us to to learn from a scalar reward signal which can be sparse, noisy and delayed.
The delay between actions and rewards can be quite long, as compared to the
direct instantaneous association between inputs and targets in conventional DL
applications.

e Another major concern is that the data in DL is almost always assumed to be
independent, whereas in RL, the states can be highly correlated. Moreover, this
data distribution is subject to change as our RL algorithm learns, whereas DL
assumes a fixed underlying data distribution.

The paper (,) demonstrates how all of the above listed challenges can be
overcome using a convolutional neural network to learn successful control policies from
sensory input data in complex reinforcement learning enviroments. This convolutional
neural network is trained with a variant of Q-learning algorithm and stochastic gradient
descent is used to update the weights. An experience replay mechanism is implemented
to take into account the correlations in the data. The methods are applied primarily to
the Atari 2600 game, Pong. Results are also obtained on Atari games such as Breakout
and Boxing.

2 Background

In Reinforcement Learning (RL), the agent interacts with the environment in a sequence
of actions, observations and rewards. At each time-step, the agent chooses an action a,
from the set of legal game actions, A = {1, ..., K'}, which modifies the internal state of
the emulator. This is observed in the form of an image x;, which is a vector of raw pixel
values representing the current screen. In addition it receives a reward r; representing
the change in game score.

Since it is impossible to fully understand the current situation from only the current
screen x;, we consider sequences of actions and observations, s; = (1, a1, %o, ..., 41, Ty),
and learn game strategies that depend upon these sequences. Each of these sequences
are assumed to terminate in a finite number of time steps. This formalism leads to a
large Markov Decision Process (MDP) problem where the goal of the agent is to learn
the actions which maximizes the future rewards.

The future discounted return at time step ¢t with a discounting factor v per time-step, is

defined as: .
Ry = Z’Yt,_trt/

=t
where T is the time step at which the game terminates.

The optimal Action value function, defined as the maximum expected return achievable
by following any strategy, after seeing some sequence s and then taking some action a, is
given by:

Q*(s,a) = max, E[Ry|s; = s,a; = a, 7]

where 7 is a policy mapping sequences to actions.

In RL problems such as learning to play Atari games, where the input state space is
computationally very large, it is not feasible to maintain a tabular estimate for the action
value function for each state-action pair. Thus, a linear function approximator is used
to estimate the action value function as Q(s, a,) ~ Q*(s,a). A neural network function
approximator (referred to as a @-network) is trained by minimising a sequence of loss
functions L;(6;) that change at each iteration i:

Li<9i) = Es,a p(.)[(yi - Q(SE a, 91‘))2]

where 6; are the weights, y; is the target for the ith iteration and p(s, a) is the probability
distribution over the sequences and actions.

This loss function is optimised using stochastic gradient descent. If the weights are
updated after every time-step, and the expectations are replaced by single samples from
the behaviour distribution and the emulator, the algorithm is known as @Q-learning.
This algorithm is well known to be model-free and off-policy.

3 Literature Survey

3.1 TD-Gammon Neural Network

Temporal difference methods are based on the concept that learning relies on the dif-
ference between temporally successive predictions, with the goal of making the learner’s
predictions for the current input, match closely the ones at the subsequent time step.
The TD-Gammon Neural Network (:) works with little knowledge of the
game backgammon and learns to play at superhuman levels. Organised as a standard
multi-layer perceptron architecture, TD Gammon was designed to learn complex non-
linear functions. The neural network observes a sequence of board positions which are
fed in as input vectors. For each of these input vectors, the neural network generates an
output vector indicating the exected outcome of that particular input vector. The weight
update at each time step is done using the TD(A) algorithm as follows:

t
Wiq1 — Wy = Oé(Yt+1 - Yt) Z /\t_kvak
k=1

where « is the learning rate, w is the weights vector, Y}, is the output of the network and
VY% is the gradient of network output with respect to the weights. When the game ends,
a reward r is assigned and the weights are updated using (r — Y,) instead of (Y41 — V).

3.2 Neural Fitted Q-Iteration

The Neural Fitted Q-Learning algorithm (NFQ) ()) belongs to the family
of fitted value iteration algorithms and is a special form of experience replay technique,
implemented as a multi-layer perceptron. The updates are performed off-line by consid-
ering an entire set of transition experiences of the form (s, a,s’), where s is the original
state, a is the action and s’ is the transitioned state. The supervised learning method
for batch learning, RPROP was used. The target is calculated as the sum of the cost of
transition and the expected minimal path cost for the state s’, which is computed on the
basis of the current estimate of the Q-function. This memory based method of training
by storing and reusing all transition experiences makes the neural learning process quite
data efficient and reliable.

4 Method

In this project, we use the algorithm, Deep Q-Learning with Experience Replay,
for learning to play Atari Games. We store the agent’s experiences at each time-step,
er = (8¢, ar, 7, Se41) in a data-set D = {ey, ...ex }, pooled over many episodes into a replay
memory. During the inner loop of the algorithm, we apply Q-learning minibatch updates
to samples, e ~ D, drawn at random from the pool of stored samples. After performing
experience replay, the agent executes an action according to an e-greedy policy. The
Q-function works on fixed length representation of histories produced by a function ¢.

Algorithm: Deep Q-Learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1 to M do
Initialise sequence s; = {x;} and preprocessed sequence ¢; = &(s1)
for t = 1 to T do
With probability € select a random action a
otherwise select a; = maz,Q*(d(s¢),a;0)
Execute action a; in emulator and observe reward nr
and image 41
Set Si+1 = (St,a1,2441) and preprocess ¢p1 = P(Si41)
Store transition (¢, a7, ¢Ppr1) in D
Sample random minibatch of transitions (¢j,a,7;,¢j41) from D

Set rj, for terminal ¢;,1,
et y; =

! i +ymazy {Q(¢j4+1,a’;60)}, for non-terminal ¢jii.
Perform a gradient descent step on (y; — Q(d;,a;;0))>

5 Model Architecture

Raw Atari frames are 210 x 160 pixel images with a 128 color palette. These raw frames
are preprocessed by gray-scaling, down-sampling and cropping into an (84 x 84) image.
We have used Open Al Gym Environment: PongNoFrameskip-v4. For the experiments
here, this preprocessing is performed on the last 4 frames of a history and stacked together
to produce the (4 x 84 x 84) input to the Q-network.

The way we have parameterized the Q-function is by using an architecture in which there
is a separate output unit for each possible action, and only the state representation is an
input to the neural network. The outputs correspond to the predicted Q-values of the
individual action for the input state.

The (4 x84 x84) input image to the neural network is acted upon by the first hidden layer,
consisting of 32 (8 x 8) convolutional filters with stride 4, followed by the application of
a rectifier nonlinearity. The second hidden layer convolves 64 (4 x 4) filters with stride
2, again followed by a rectifier nonlinearity. The next hidden layer convolves 64 (3 x 3)
filters with stride 1, again followed by ReLU. The final hidden layer is fully-connected,
consisting of (512 x (64 x 7 x 7)) linear weights and 512 rectifier units. The output layer is
a fully-connected linear layer with a single output for each valid action. The valid actions
in the case of Pong were the following 6 actions: [[NOOP’, ‘FIRE’, ‘RIGHT’, ‘LEFT’,
‘RIGHTFIRE’, ‘LEFTFIRE’]

1x512

4@84x84
s2@20x20 S4@NQ B4@TxT

Dense (FC)
E Layer + ReLU
[—

2D Convolutional 2D Convolutional
Layer + RelLU Layer + RelLU

1x6

Dense (FC) ™
Layer

2D Convolutional
Layer + RelLU

Figure 1: Deep Q-Network (DQN) Architecture

6 Modifications

Q-Learning algorithms suffer from substantial over-estimations of Q-values because they
include a maximization step over estimated Q-values. These over-estimations, not only
increase the number of episodes of training required to reach optimal policies, but can
even lead to sub-optimal policies asymptotically (,). We pro-
pose using a Double Deep Q-Learning Network (DDQN) to tackle this problem. DDQN
uses two separate Q-value estimators (2 neural networks). A target model(Q’) for action
selection and a primary model (@) for action evaluation. Using these independent esti-
mators, we can avoid the maximization bias by disentangling our updates from biased
estimates.

For updating model Q, we use the following target values:
Q* (Sta at) ATt ’YQ(SH-lv argmaxa/{Q’(stH, CL/>})
And then perform gradient descent on Q using:

Loss = (Q*(ss, ar) — Q((s1, ar)))?

To update the target model, we periodically set the weights equal to the weights of the
primary model (Q)

Algorithm: Double Deep Q-Learning

Initialize primary network @y, target network Qg ,replay buffer D,
T<<1
for each iteration do
for each environment step do
Observe state s; and select a; ~ m(ay,St)
Execute a; and observe next state s;4;7 and reward Tt:R(st,at)
Store (st,a¢,1t,8:+1) in replay buffer D
for each update step do
sample ey = (8¢, a¢, 14, Sp41) ~ D
Compute target Q value:
Q*(st,ar) ~ 1, +vQp(st41, argmazy Qo (St41,a)
Perform gradient descent step on (Q*(star) — Qo (sit1,a'))
Update target network parameters:
0 «—1x0+(1—7)%0

7 Experiments and Results

7.1 Pong

Both DQN and DDQN are able to achieve SOTA score of 20 with an average reward
over the last 10 epsisodes being 19.6 for DQN and 18.6 for DDQN. DQN takes around
600 episodes of training to achieve peak performance while DDQN achieves the same in
200 episodes. Playing at various model checkpoints reveals how good our agent after a
certain number of episodes.

Total frames 1440000. Avg reward over last 10 episodes: 19.6 loss
201 5000
10 4 4000 4
3000
0
2000
=10 4
1000 4 ”
| il
D 100 200 300 400 500 €00 700 8OO 0o 02 04 06 08 10 12 14
1e6
Figure 2: Pong-DQN.
Total frames 1011000. Avg reward over last 10 episodes: 18.6 loss
20 10 4
B4
10 4
[
0
4 4
=10 4
24
-20 o -
0 100 200 300 400 500 00 02 04 06 08 10
led

Figure 3: Pong-DDQN.

7.2 Breakout

Both DQN and DDQN show steady improvement in incurred reward as they train. How-
ever, due to lack of time and computational resources, we were not able to achieve SOTA
score. The test performance clearly shows the ability of the agent to play well.

DQN
Total frames 450000. Avg reward over last 10 episodes: 3.4 loss
175 1
m B
15.0
.
125 4
10.0 1 401
75 - 304
5-0 q 20 b
25 4 10
00 4 o4 m- s ﬂh
0 1000 2000 3000 4000 5000 0 100000 200000 300000 400000
Figure 4: Breakout-DQN.
DDQN
Total frames 2040000. Avg reward over last 10 episodes: 5.9 loss
25 1 140 -
120 -
20
100 -
15 - a0 |
10 A 801
_qu 4
5 |
20
R R L“ l—‘» 1 LA
0 2000 4000 600D 8OO0 10000 12000 14000 000 025 050 075 100 125 150 175 200
126

Figure 5: Breakout-DDQN.

7.3 Boxing

We did not achieve significant breakthroughs in just 400 episodes, although it maintains
an average score close to 0, which implies it has learned to play at least as good as the
opponent. In the few tests that we ran, the agent beat the opponent.

DQN

Total frames 710000. Avg reward over last 10 episodes: 0.0 187 loss

20

15 4

=10 1

=15 A

8

|

50 100 150 200 3250 300 350 400 D 100000 200000 300000 400000 500000 600000 700000

Figure 6: Boxing-DQN.

Discussion and Future Work

Using a Deep Q-Learning model with experience replay memory with only raw
pixels as input, we were able to achieve SOTA score in Pong Atari.

The over-optimistic nature of Q-Learning models can affect their performance. A
Double Deep Q-Learning model was used to successfully reduce this overoptimism,
resulting in more stable and faster learning with no adjustment of the architecture
or hyper-parameters.

The same DQN and DDQN networks were used in Atari games Breakout and Box-
ing, with decent results considering the time and computational resources.

Further improvements can be made by using Prioritized Replay as opposed to ran-
dom sampling from the memory buffer. Experiences (transitions) that have a higher
TD-loss, and thus had a higher impact on learning will have a higher chance of being
sampled. This will make the training faster and more efficient

References

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing Atari with Deep Reinforcement Learning. arXiv e-prints, art.
arXiv:1312.5602, Dec. 2013.

M. Riedmiller. Neural fitted q iteration — first experiences with a data efficient neural re-
inforcement learning method. In J. Gama, R. Camacho, P. B. Brazdil, A. M. Jorge, and
L. Torgo, editors, Machine Learning: ECML 2005, pages 317-328, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg. ISBN 978-3-540-31692-3.

G. Tesauro. TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level
Play. Neural Computation, 6(2):215-219, 03 1994. ISSN 0899-7667. doi: 10.1162/neco.
1994.6.2.215. URL https://doi.org/10.1162/neco.1994.6.2.215.

S. Thrun and A. Schwartz. Issues in using function approximation for reinforcement
learning. In D. T. J. E. M. Mozer, P. Smolensky and A. Weigend, editors, Proceedings
of the 1993 Connectionist Models Summer School. Erlbaum Associates, June 1993.

https://doi.org/10.1162/neco.1994.6.2.215

	Introduction
	Background
	Literature Survey
	TD-Gammon Neural Network
	Neural Fitted Q-Iteration

	Method
	Model Architecture
	Modifications
	Experiments and Results
	Pong
	Breakout
	Boxing

	Discussion and Future Work
	References

