

A Hybrid Model for Named Entity Recognition in Optimization Problems

Parag Pravin Dakle, Serdar Kadioglu, Karthik Uppuluri, Regina Politi, Preethi Raghavan, SaiKrishna Rallabandi, Ravisutha Srinivasamurthy

Problem Description

Given an expert formulated optimization problem in natural language, extract six named entities: **CONST_DIR** (constraint direction), **LIMIT** (limit), **OBJ_DIR** (objective direction), **OBJ_NAME** (objective name), **PARAM** (parameter), **VAR** (variable). See example below:

Data Characteristics

Number of Samples: Training - 713, Dev - 99

Are there any frequently occurring key-phrases or themes in these entities?

Common key-phrases in CONST_DIR and OBJ_DIR and Common Themes in LIMIT and PARAM

Are there any patterns in Structure and Verbiage in these entities?

Common Patterns in VAR

Common Patterns in **OBJ_NAME**

Are there any Grammatical/Morphological cues that can be exploited?

- □ OBJ_DIR is often a verb, with last three characters ending in "ize"
- ☐ LIMIT and PARAM are some form of numerical entities
- ☐ Both OBJ_NAME and VAR could be noun chunks / prepositional chunks
- ☐ OBJ_NAME sometimes is a direct object / subject in a sentence

The need for Semantic and Contextual Learning (BERT/RoBERTa)

- ☐ All entities except **VAR** have a semantic theme
- □ LIMIT and PARAM are numerical entities which can only be disambiguated by looking at the context in which they appear
- □ OBJ_DIR and CONST_DIR have a directional theme. For instance, phrases like "minimum profit" without any additional context can belong to both classes
- □ OBJ_NAME often has a concept representing a numeral associated with it (e.g., maximize my profit)

Experimental Protocol

Feature Engineering

- ☐ CRF model exploring basic grammatical and morphological features
- ☐ CRF model exploring grammatical, morphological and engineered features inspired from the Data Characteristics

Feature Learning

- ☐ Token-classification model using RoBERTa large
- ☐ Ensemble of two separate token-classification models one for just OBJ_NAME and VAR and the other for the rest
- □ Token-classification model with a modified cost function to optimize for mistakes in OBJ_NAME and VAR
- ☐ Token-classification model using XLM-RoBERTa and curriculum learning
- ☐ Token-classification model using XLM-RoBERTa fine-tuned on Optimization Corpora

Hybrid

☐ CRF Model combining best performing Feature Engineering and Feature Learning techniques

Augmentation Strategies

Up sampling via Duplication of in-frequent patterns

- □ OBJ_DIR is generally a verb (e.g., maximize, minimize) but there are a few examples, where OBJ_DIR is also an adjective (e.g., I want the cost to be minimal)
- VAR is mostly a Conjuncting noun chunk. Conjuncting prepositional phrases are an infrequent pattern (e.g., He does commercials with famous actors and commercials with regular actors)
- OBJ_NAME is OBJ_DIR followed by a noun phrase / prepositional phrase.
 OBJ_DIR followed by multiple prepositional phrases is a rare pattern (e.g., maximize the number of action figures; minimize the number of batches of cookies)

Augmenting Last Two Sentences: In most cases, for OBJ_NAME tokens to be tagged correctly it is imperative that the objective is known first. For example:

A doctor can prescribe two types of medication for high glucose levels, a diabetic pill var and a diabetic shot var. Per dose, diabetic pill var delivers 1 param unit of glucose reducing medicine and 2 param units of blood pressure reducing medicine obj_name. Per dose, a diabetic shot var delivers 2 param units of glucose reducing medicine and 3 param units of blood pressure reducing medicine obj_name. In addition, diabetic pills var provide 0.4 param units of stress and the diabetic shot var provides 0.9 param units of stress. At most const_dir 20 limit units of stress can be applied over a week and the doctor must deliver at least const_dir 30 limit units of glucose reducing medicine. How many doses of each should be delivered to maximize obj_dir the amount of blood pressure reducing medicine obj_name delivaered to the patient?

Pseudo Label Data generation: Use paraphrase corpora like WordNet and PPDB to generate pseudo label data

Hybrid Model

Feature Engineering

- ☐ Grammatical Features
- Morphological Features
- □ Gazetteer Features
- ☐ Features exploiting syntax and verbiage
- ☐ Features are extracted at each word position and a window around it

- ☐ Label predictions from a trained RoBERTa transformers model
- Large variant and the base variants is used for comparison

Feature Learning

Conditional Random Field

Selected Results

Model Name	CONST_DIR		LIMIT		OBJ_DIR		OBJ_NAME		PARAM		VAR		Average	Average
	Precision	Recall	Micro F1 (Dev)	INICTO										
Grammatical and Morphological Features + CRF	0.956	0.854	0.904	0.954	0.979	0.929	0.649	0.353	0.958	0.916	0.795	0.714	0.816	-
Grammatical, Morphological, Gazetteer, Structural Features + CRF	0.960	0.858	0.931	0.942	0.990	0.970	0.726	0.544	0.953	0.935	0.823	0.787	0.853	-
RoBERTa Large	0.895	0.902	0.984	0.950	0.990	1.000	0.668	0.597	0.965	0.983	0.916	0.940	0.904	_
[Infrequent Pattern Upsampling] + RoBERTa Large	0.947	0.909	0.984	0.950	0.990	0.990	0.628	0.615	0.961	0.979	0.906	0.947	0.903	-
Pre-trained XLM-RoBERTa Large on Textbooks	0.901	0.897	0.987	0.953	0.989	0.999	0.665	0.583	0.971	0.989	0.918	0.946	0.907	
[Last Two Sentence Augmentation] + Grammatical, Morphological, Gazetteer, Structural Features + RoBERTa Model Predictions + CRF + RandomSearchCV	0.946	0.890	0.980	0.942	0.990	1.000	0.730	0.668	0.957	0.983	0.935	0.953	0.919	0.920

Discussions & Observations

Scope for Aleatoric Uncertainty - Similar sequences annotated differently in Train and Dev

How should the bakery operate to maximize OBJ_DIR total profit OBJ_NAME ?
How many of each type of transportation should the company schedule to move their lumber to minimize OBJ_DIR the total cost OBJ_NAME
How many of each type of donut should be bought in order to maximize obj_dir the total monthly profit obj_NAME
If the chemical company needs to make at least const_dir au of the acidic liquid and 1200 LIMIT au of the basic liquid per minute OBJ_NAME, how m
minutes OBJ_NAME should each reaction be run for to minimize OBJ_DIR the total time OBJ_NAME needed?
How many of each should the pharmaceutical manufacturing plant make to minimize obj_dir the total number of minutes needed obj_name
Cautious Asset Investment has a total const_dir of \$ 150,000 LIMIT to manage and decides to invest it in money market fund var , which yields a 2 % PARAM ref
OBJ_NAME as well as in foreign bonds var , which gives and average rate of return OBJ_NAME of 10.2 PARAM %.
To do so , the company needs to decide how much to allocate on each of its two advertising channels : (1) morning TV show var and (2) social media var . Each day , it
costs the company \$ 1,000 PARAM and \$ 2000 PARAM to run advertisement spots on morning TV VAR show and social media VAR respectively.

Excerpts from Train (green) and Dev (yellow) highlighting annotation inconsistency for similar sequences