IJCAI'21, CPAIOR'21

Optimized Item Selection to Boost Exploration for Recommender Systems

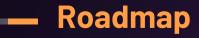
> Serdar Kadıoğlu Adjunct Assoc. Prof, Dept. of Computer Science, Brown University Group Vice President, Al Center of Excellence, Fidelity Investments

Skadio.github.io

Nov. 2022 | Bucknell University

Building new applications with limited or no training data remains a common challenge in the industry.

Apriori decision in any recommender system: what is the universe of items J to consider?



1. Problem Definition Illustrative example Introduce the ISP problem **3. Solution Approach** Multi-objective optimization with warm-starts 5. Human-in-the Loop Decision Making Empower non-tech users with interactive item selection

2. High-Level System Design ISP in the context of Recommender pipelines **4. Benefits of the Approach** Numerical results on recommendation benchmarks

Item Selection Problem

Problem Definition, Illustrative Example High-Level System Design

Item Selection Problem (ISP)

Problem Definition and Illustrative Example

Given a set of items *I*, the goal of the item selection problem (ISP) is to find the minimum subset $S \subseteq I$ that covers a set of labels L_c within each category $c \in C$ while maximizing the diversity of the selection *S* in the latent embedding space of items E(I)

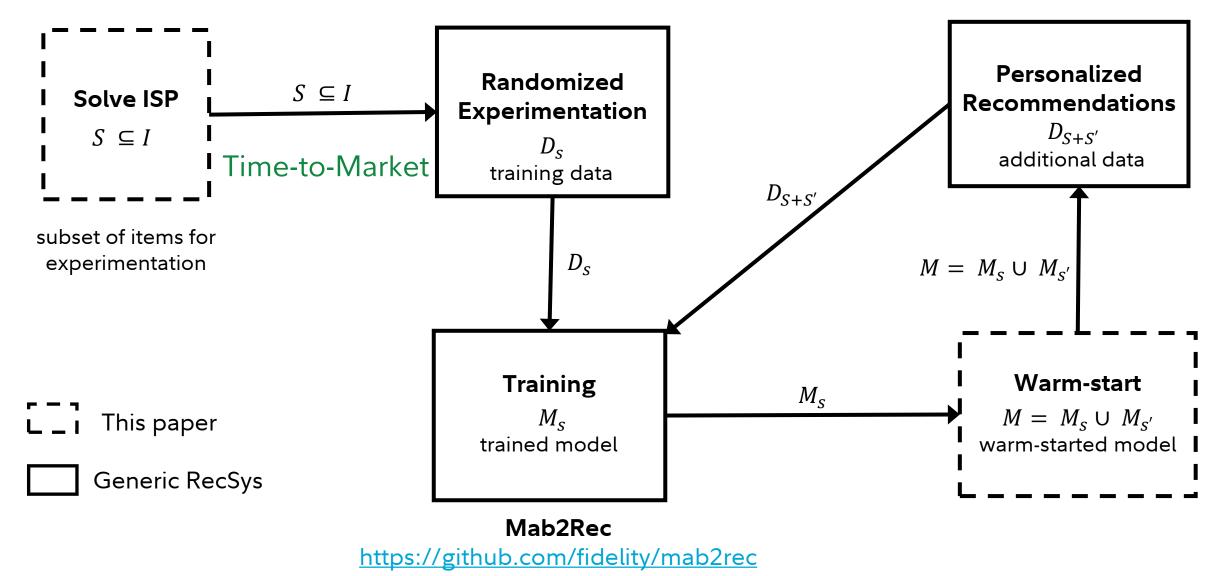
Illustrative Example: Movie Recommendations

- I: All available movie titles to be recommended
- S: Subset of movie titles to be included in experimentation
- C: Categories of interest (e.g., language, genre, producer)
- *L_c*: Labels within each category (e.g., action, comedy for genre)
- *E*(*I*): Latent representation based on textual data (e.g., synopses, movie reviews), image data (e.g., cover art), audio data (e.g., soundtracks), video data (e.g., trailer)

High-Level System Design

Recommender System Components

Time-to-Personalization



Implications of Item Selection

Time-to-Market vs. Time-to-Personalization

Hypothetical Scenario

- 3M visits/week
- 1% CTR
- Uniform impressions

Implications

- Clicks per item
- Model training
- Feature space

Average Clicks per Item

		Weeks					
		2	4	6	8		
Number of items	15	4,000	8,000	12,000	16,000		
	20	3,000	6,000	9,000	12,000		
	25	2,400	4,800	7,200	9,600		
	30	2,000	4,000	6,000	8,000		
	35	1,714	3,429	5,143	6,857		
	40	1,500	3,000	4,500	6,000		
	45	1,333	2,667	4,000	5,333		
	50	1,200	2,400	3,600	4,800		

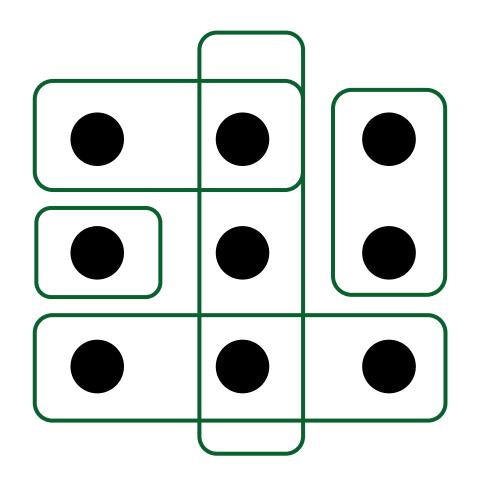
Multiple Trade-offs

Conflicting criteria for item selection

- Number of items vs. Experimentation Time
- Item Diversity vs. Learning Objectives
- Item Mix vs. Coverage Outcomes
- Item Onboarding (creation, review, publication, maintenance)

Cover formulations, Multi-objective optimization framework Warm-start procedure

Set Covering Refresher



[1] Beasley, J.E.: An algorithm for set covering problem. European Journal of Operational Research 31(1), 85–93 (1987)

Multi-Objective Optimization

1 Minimize Subset Size	Use standard set covering ^[1] formulation to select subset of items that cover all predefined labels
2 Maximize Diversity	Reformulate unicost selection to yield minimum subset of items that are most spread in embedding space $E(I)$ while covering all labels
3 Bounded Subset Size	Constrain number of selected items in #2 while maximizing the number of labels covered

[1] S. Kadioglu, B. Kleynhans, X. Wang, Active learning meets optimized item selection (IJCAI'21)[2] B. Kleynhans, X. Wang, S. Kadioglu, Optimized item selection to boost exploration for recommender systems (CPAIOR'21)

#1 Minimizing the Subset Size

Standard covering formulation to select a subset of items that cover all predefined labels

$$\begin{split} & P_{unicost} \\ & \min \sum_{i}^{I} c_{i} x_{i} \\ & \sum_{i \in I} M_{l,i} x_{i} \geq 1 \qquad \forall l \in L_{c}, \forall c \in C \\ & x_{i} \in \{0,1\}, c_{i} = 1 \qquad \forall i \in I \end{split}$$

Assume *unicost_selection* $\subseteq I$ is the solution to $P_{unicost}$ where $k = |unicost_selection|$ is the number of selected items

Solving the ISP #2 Maximizing Diversity

Given k from the solution of $P_{unicost}$, cluster the embedding space of items E(I) into k clusters and let K denote the cluster centers

Reformulate $P_{unicost}$ by changing its cost structure such that the inclusion of item *i* incurs cost, c_i based on the distance to its closest cluster

$$P_{diverse}$$

 $c_i = \min \ distance(i,k) \ k \in K \ orall i \in I$

#3 Maximize Bounded Subset Size

Given a constant t such that $t \le |Pdiverse|$ select up to t items from *diverse_selection* such that coverage is maximized

> **P**_{max_cover@t} $max \sum is_label_covered_l$ $\sum_{l \in L_c, c \in C}$ $\sum x_i \le t$ $i \in I$ $M_{l,i}x_i \leq is_label_covered_l \quad \forall l \in L_c, \ \forall c \in C \ \forall i \in I$ $\sum M_{l,i} x_i \geq is_label_covered_l \quad \forall l \in L_c, \ \forall c \in C$ $i \in I$ $x_i \in \{0, 1\} \quad \forall i \in I$ $is_label_covered_l \in \{0,1\} \quad \forall l \in L_c, \ \forall c \in C$

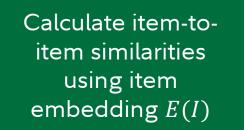
Bringing it Together

// First Level: Minimize the subset size Formulate $P_{unicost}(I, M)$ $unicost_selection \leftarrow \mathbf{solve}(P_{unicost})$ // Second Level: Maximize diversity $k \leftarrow |unicost_selection|$ $K \leftarrow cluster(E(I), num_clusters = k)$ **Initialize** $cost \leftarrow zeros(|I|)$ for all item $\in I$ do $cost_{item} \leftarrow \min(distance(item, centroids \in K))$ end for **Formulate** $P_{diverse}(I, M, cost, unicost_selection)$ $diverse_selection \leftarrow \mathbf{solve}(P_{diverse})$ // Third Level: Maximize bounded coverage $t \leftarrow |diversity_selection|$ **Formulate** $P_{max_cover@t}(diverse_selection, M, t)$ $S = max_coverage \leftarrow solve(P_{max_cover@t})$

Warm-start Procedure

Exploiting the Exploration

Exploration with ISP yields the training data D_S which is used to build model M_S Warm-start items $s' \in S': I \setminus S$ to build $M_{S'}$ sharing knowledge from M_S



Find a distance threshold, *w*, based on similarities of all items in *S* Given pairwise distances, we find the closest item $s \in$ S for each untrained item s' such that distance(s,s') $\leq w$

Leverage the training data D_S or trained parameters of model M_S to warm-start s' ^[1, 2]

Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from libraries of models. ICML 2004
 Caruana, R., Munson, A., Niculescu-Mizil, A.: Getting the most out of ensemble selection. ICDM 2006

Numerical Results

Effectiveness of the ISP Solution & Warm-start

Research Questions

What is the **minimum number of items** required to cover all labels?

How much **speed-up is enabled** when ISP is used to collect response data?

3

How effective is the **warm-start procedure**?

How **sensitive is the ISP** to the choice of latent embedding space of items?

Data & MIP Solver

Two well-known datasets:

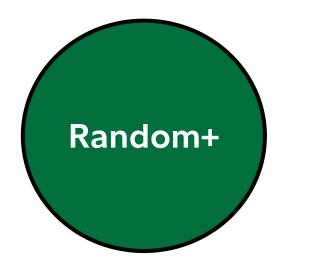
- Goodreads Book Reviews with 11,123 books (items)
- MovieLens (ml-25m) Movie Recommendations with 62,423 movies (items)

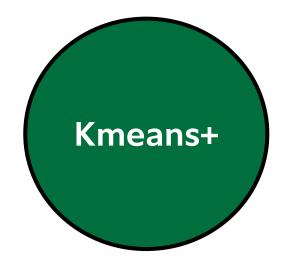
Randomly selected subsets with 1,000 and 10,000 items <u>Python-MIP</u> with COIN-OR CBC Solver

Dataset	# Items	Categories	# Labels
Goodreads	1,000 10,000	{Genre, Publisher, Genre × Publisher}	574 1,322
MovieLens	1,000 10,000	{Genre, Producer, Language, Genre × Language}	473 1,011

Wan, M., McAuley, J.J.: Item recommendation on monotonic behavior chains. In: Pera, S., Ekstrand, M.D., Amatriain, X., O'Donovan, J. (eds.)
 Harper, F., Konstan, J.: The movielens datasets: History and context.

Comparisons





Uniform random selection as a simple baseline. The Random method uses the subset size k from the solution for $P_{unicost}$ The classical greedy ^[1] heuristic for set covering that adds items iteratively, whereby at each step, the item with the best $\frac{cost}{coverage}$ ratio is selected Clusters the latent space E(I)into k centers and then selects items closest to the centroids, independent of item labels

Q1: What is the minimum number of items required to cover all labels?

Dataset	# Items	# Labels	P_unicost	% Reduction	Greedy # Items	Random Coverage	Greedy Coverage	KMeans Coverage
Goodreads	1,000	574	374	63%	374	57%	100%	58%
	10,000	1,322	1,080	89%	1,080	46%	100%	45%
MovieLens	1,000	473	243	76%	249	46%	100%	43%
	10,000	1,011	523	95%	703	29%	100%	31%

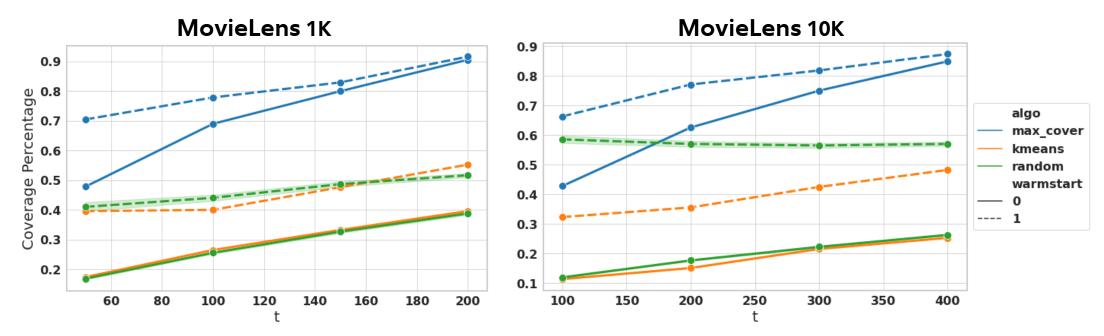
- *P_{unicost}* yields substantial reduction in number of items and still cover all labels
- Coverage from *Random* and *KMeans* methods are markedly lower for same number of items
- *Greedy* did not always yield the optimal solution

Q1: What is the minimum number of items required to cover all labels?

Dataset	# Items	# Labels	P_unicost	% Reduction	Greedy # Items	Random Coverage	Greedy Coverage	KMeans Coverage
Goodreads	1,000	574	374	63%	374	57%	100%	58%
	10,000	1,322	1,080	89%	1,080	46%	100%	45%
MovieLens	1,000	473	243	76%	249	46%	100%	43%
	10,000	1,011	523	95%	703	29%	100%	31%

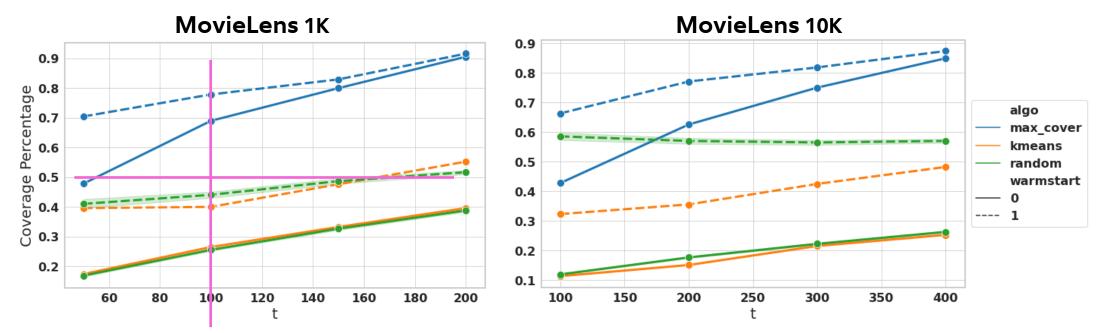
- *P_{unicost}* yields substantial reduction in number of items and still cover all labels
- Coverage from *Random* and *KMeans* methods are markedly lower for same number of items
- *Greedy* did not always yield the optimal solution

Q2: How much speed-up is enabled in exploration phase when using ISP?



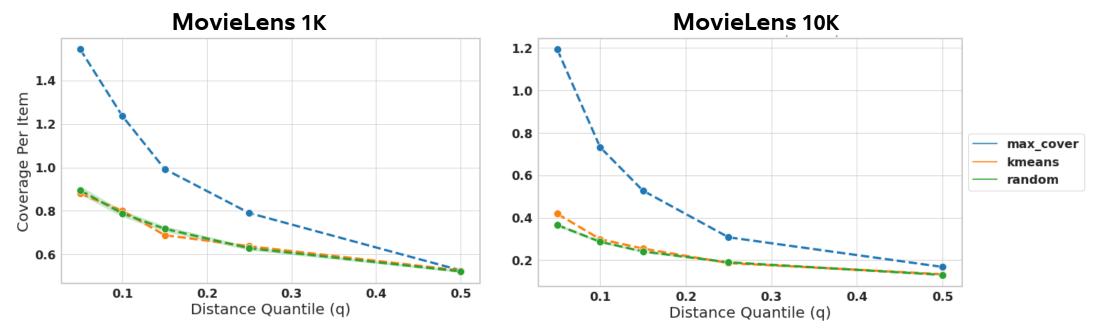
- For a given coverage level, *P_{max_cover@t}* requires much less items, hence learning time
- For a given threshold, coverage percentage higher for $P_{max_cover@t}$ compared to other methods
- After warm-start (dashed lines), coverage for $P_{max_cover@t}$ continues to rank highest

Q2: How much speed-up is enabled in exploration phase when using ISP?



- For a given coverage level, P_{max_cover@t} requires much less items, hence learning time
- For a given threshold, coverage percentage higher for *P_{max_cover@t}* compared to other methods
- After warm-start (dashed lines), coverage for $P_{max_cover@t}$ continues to rank highest

Q3: How effective is the warm-start procedure as a function of distance quantile?



- As the distance quantile, q, is increased coverage per item decreases for all methods
- Consistent with the coverage analysis, $P_{max_cover@t}$ is the most effective approach in terms of the number of labels covered per item, significantly better than *Random* and *KMeans*, especially for the top (semi-) decile, i.e., $q \le 0.1$

Q4: How sensitive is the ISP to the choice of latent embedding space of items?

Embedding ^[1]	1K	10K
TFIDF ^[2]	1.2	0.4
Word2Vec ^[3]	1.4	0.7
GloVe ^[4]	1.4	0.6
Byte-Pair ^[5]	1.3	0.6

Goodreads: Coverage per item for P_{max_cover@100}

Summary

- Similar unit coverage for different embedding methods
- More complex methods appear to provide better unit coverage compared to TFIDF

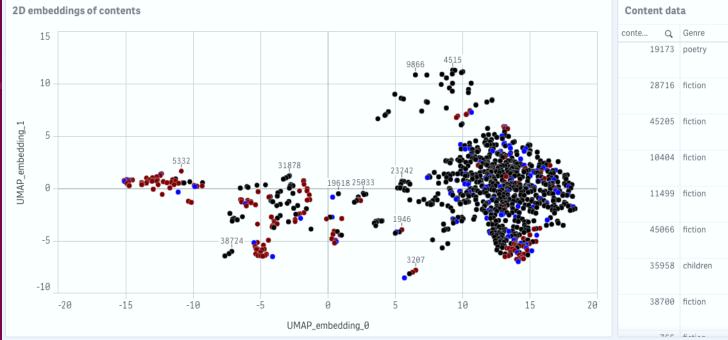
[2] Jones, K.S.: A statistical interpretation of term specificity and its application in retrieval.

[3] Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vectors for 157 languages. ACL 2018

[4] Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. ACL 2014
[5] Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. ACL 201

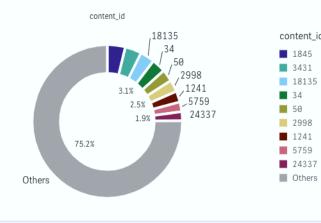
^[1] Kilitcioglu, D., Kadioglu, S. Representing the Unification of Text Featurization using a Context-Free Grammar. AAAI 2021

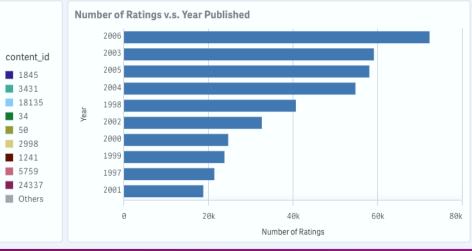
Optimized Content Selection

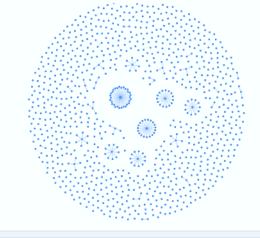


Content dat	a			
onte Q	Genre Q	Title Q	Description Q	Sŧ
19173	poetry	The Divine Comedy Vol. 2: Purgatory	_The Divine Comedy_ is perhaps the greatest Christian classic ever written, and probably the greatest adventure story ever told. Dante wrote	eı
28716	fiction	Blood Meridian	'Blood Meridian' presents an epic novel of the violent American West. The story is loosely based on accounts of murder along the border	eı
45205	fiction	No Name	'Mr Vanstone's daughters are Nobody's Children'. Magdalen Vanstone and her sister Norah learn	eı
10404	fiction	Doctor Who: Cat's Cradle-Witch Mark	'Spare no sympathy for those creatures. They were witches, they deserved to die.' A coach crashes on the M40. All the passengers	eı
11499	fiction	The Promise	"A superb mirror of a place, a time, and a group of people who capture our immediate interest and hold it tightly." –The Philadelphia Inquirer	eı
45066	fiction	The Mill on the Floss	"Backgrounds" includes fifteen letters from the 1859-69 period centering on the novel's content and composition; "Brother and Sister"	eı
35958	children	Sagwa the Chinese Siamese Cat	"Before you go out into the world," Ming Miao told her five kittens, "you must know the true story of your ancestors"	eı
38700	fiction	Rabbit Hole	"David Lindsay-Abaire has crafted a drama that's not just a departure but a revelationan intensely emotional examination of grief, laced	eı
700	£ - 4	Adamania da ante acchentatione	PPI	

Number of Ratings







Special thanks to my collaborators!

- O [TMLR'22]Non-deterministic behavior of Thompson sampling
- O [IJCAI'21] Active learning meets optimized item selection
- O [CPAIOR'21] Optimized item selection to boost exploration for recommender systems
- O [AAAI'21] Representing the unification of text featurization using a context-free grammar
- O [AAAI'22] Seq2Pat: Sequence-to-Pattern generation
- O [AAAI'22] Dichotomic pattern mining for prediction from clickstream datasets
- O [ICMLA'21] Surrogate ground truth to enhance binary fairness in uplift modelling
- O [IJAIT'21] Parallelizable contextual multi-armed bandits
- O [JDSA'21] Modeling uncertainty to improve personalized recommendations via Bayesian DL
- O [ICTAI'19] Bayesian DL-based exploration-exploitation for personalized recommendations
- O Recommenders
- O Multi-armed Bandits
- O NLF
- O Pattern Mining
- O Feature Selection
- O Al Fairness & Bias

ab2Rec:https://github.com/fidelity/mab2recABWiser:https://github.com/fidelity/mabwiserextWiser:https://github.com/fidelity/textwisereq2Pat:https://github.com/fidelity/seq2patelective:https://github.com/fidelity/selectiveurity:https://github.com/fidelity/jurity

Du Cheng

Doruk Kilitcioglu

Bernard Filip Xin Kleynhans Michalsky Wang

