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1 Discrete Fourier Transform (DFT)

Why just another DFT tutorial? Well, this is a collection of calculus, graphs and exercises that
the authors found useful for teaching purposes and which evolved over the last decade. The
didactical approach follows Rabiner and Gold [1975], Kammeyer and Kroschel [2002], Möser
[2011]. Furthermore, a compact link to linear algebra fundamentals seems to be reasonable,
since (statistical) signal processing, such as machine learning, heavily relies on matrix algebra.
For that, Strang [2019] is a brilliant resource.

1.1 DFT Definition Conventions

The discrete Fourier transform (DFT, often interpreted as the signal analysis stage) and its
counterpart, i.e. the inverse DFT (IDFT, often interpreted as the signal synthesis stage) are
defined as

X [µ]=
N−1∑
k=0

x[k] ·W−kµ
N x[k]= 1

N

N−1∑
µ=0

X [µ] ·W+kµ
N (1)

using the so-called twiddle factor or DFT kernel

WN = e+j 2π
N (2)

relating an N samples discrete-time signal x[k] and its N coefficients (also called DFT bins)
discrete-frequency DFT spectrum X [µ]. We might use the operator notation

DFT: x[k] c ...........

N X [µ] (3)

IDFT: X [µ] ........... c
N x[k]. (4)

In general, the DFT/IDFT supports x[k] ∈ C and X [µ] ∈ C. Later, some useful relations will
be obtained when assuming x[k] ∈R. In the literature, the DFT pair may be differently defined,
such as e.g.

X [µ]= 1
N︸︷︷︸

KDFT

N−1∑
n=0

x[k] ·W−kµ
N

c ...........

N x[k]= 1︸︷︷︸
KIDFT

N−1∑
µ=0

X [µ] ·W+kµ
N (5)

X [µ]= 1p
N︸︷︷︸

KDFT

N−1∑
n=0

x[k] ·W−kµ
N

........... c
N x[k]= 1p

N︸︷︷︸
KIDFT

N−1∑
µ=0

X [µ] ·W+kµ
N , (6)
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where different normalisation schemes of the sum are applied. In any case a valid DFT pair
must fulfill

K = KIDFT ·KDFT = 1
N

, (7)

such that

x[k]= IDFTN {DFTN {x[k]}} (8)

X [µ]=DFTN
{
IDFTN

{
X [µ]

}}
. (9)

Hence, either the factor KIDFT or the factor KDFT can be chosen according to the specific appli-
cation and then the other parameter is determined due to K = 1

N . Another convention is related
to the sign of the exp() function in the twiddle factor: this may also be defined as, cf. Oppenheim
and Schafer [2010],

WN = e−j 2π
N (10)

if required for specific applications, so we should pay attention to this tiny detail. Note that the
DFT/IDFT equations do not care about signal interpretation, they just transform a vector/signal
to another vector/signal; proper interpretation is up to the user. The general definition of the
DFT pair may thus given as

X [µ]= KDFT

N−1∑
k=0

x[k] ·W∓kµ
N x[k]= KIDFT

N−1∑
µ=0

X [µ] ·W±kµ
N (11)

using

WN = (e+j 2π
N ), KIDFT ·KDFT = 1

N
. (12)

Fortunately, the majority of DSP-related books and software packages consistently define
the DFT pair with the following conventions

X [µ]=DFTN {x[k]}=
N−1∑
k=0

x[k] (e−j 2π
N )k·µ numpy: X=np.fft.fft(x), Matlab: X=fft(x)

(13)

x[k]= IDFTN {X [µ]}= 1
N

N−1∑
µ=0

X [µ] (e+j 2π
N )k·µ numpy: x=np.fft.ifft(X), Matlab: x=ifft(X)

(14)

which will also be used throughout the DSP lecture and tutorial.

This convention implies that positive constant group delays in the DFT spectrum X are inter-
preted as causal signal delays for x.
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1.2 Discrete-Time Fourier Transform (DTFT)

The DTFT pair using the continuous discrete-time frequency variable Ω

X (Ω)=
∞∑

k=−∞
x[k]e−jΩk (15)

x[k]= 1
2π

π∫
−π

X (Ω)e+jΩkdΩ (16)

is defined with the same signs in the exp() function and the prefactor 1
2π belonging to the syn-

thesis equation in the same way as for the used definition of the DFT pair.

1.3 Link to Linear Algebra

The DFT is basically a fundamental linear algebra problem, i.e. solving a set of linear equa-
tions, or in another train of thought: transferring one vector to another vector in hope for more
convenient data representation, such as here either for spectrum analysis or signal synthesis.
Of course it is not pure hope which helps us performing these tasks, but a very appropriate and
intended choice of a vector base that solves our problem. This vector base is probably one of the
most beautiful in linear algebra, in any case it is one the most important ones. Therefore, it
is worth to grasp these linear algebra links for an in-depth understanding of the DFT. Strang
[2019] is highly recommended lecture for further reading.

1.3.1 Roots on the Unit Circle

The DFT of length N is an excellent example using a special base of orthogonal vectors whose
entries are set up from the roots of the zN = 1 equation, i.e. equiangularly distributed locations
along the unit circle within the complex z-plane, cf. Fig. 1. For a complete DFT or IDFT, cf. (13),

DTFT z = e jΩ

DFT zµ = e j 2π
4 µ

1
ℜ{z}

ℑ{z}

◦

◦
◦◦ z0 = 1

z1 =W4 = e j 2π
4

z2

z3

2π
4

Solutions for z4 = 1, N = 4 DFT

DTFT z = e jΩ

DFT zµ = e j 2π
5 µ

1
ℜ{z}

ℑ{z}

◦
◦◦

◦ ◦

z0 = 1

z1 =W5 = e j 2π
5

z2

z3

z4

2π
5

Solutions for z5 = 1, N = 5 DFT

Figure 1: DFT frequencies (blue dots) on the unit circle (red) in the complex z-plane.
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(14), all pairs k ·µ are required. It is useful to create an N ×N matrix from an outer product as

K =



0
1
2
3
...

N −1


· [0 1 2 3 · · · N −1

]
(17)

= k ↓

→µ

0 ·0 0 ·1 0 ·2 0 ·3 . . . 0 · (N −1)
1 ·0 1 ·1 1 ·2 1 ·3 . . . 1 · (N −1)
2 ·0 2 ·1 2 ·2 2 ·3 . . . 2 · (N −1)
3 ·0 3 ·1 3 ·2 3 ·3 . . . 3 · (N −1)

...
...

...
...

. . .
...

(N −1) ·0 (N −1) ·1 (N −1) ·2 (N −1) ·3 . . . (N −1) · (N −1)


, (18)

i.e. varying the time index from top to bottom and increasing the DFT frequency from left
to right. The complex number z1 = WN = e+j 2π

N from Fig. 1 is identified as the twiddle factor
introduced beforehand. This corresponds to the special DTFT frequency Ω = 2π

N . In analogy to
the Fourier series, this frequency is the first harmonic for a DFT of length N. The entry z0
obviously corresponds to the frequency Ω = 0. The IDFT (14) precisely requires powers of the
twiddle factor forming the different phasors (WN )k·µ = (e+j 2π

N )k·µ = e+j 2π
N (k·µ).

1.3.2 Fourier Matrix

That is why matrix K was built before: by using element-wise operator ⊙

W= e+j 2π
N ⊙K (19)

the so called N ×N Fourier Matrix

W = k ↓

→µ

e+j 2π
N (0·0) e+j 2π

N (0·1) e+j 2π
N (0·2) e+j 2π

N (0·3) . . . e+j 2π
N (0·(N−1))

e+j 2π
N (1·0) e+j 2π

N (1·1) e+j 2π
N (1·2) e+j 2π

N (1·3) . . . e+j 2π
N (1·(N−1))

e+j 2π
N (2·0) e+j 2π

N (2·1) e+j 2π
N (2·2) e+j 2π

N (2·3) . . . e+j 2π
N (2·(N−1))

e+j 2π
N (3·0) e+j 2π

N (3·1) e+j 2π
N (3·2) e+j 2π

N (3·3) . . . e+j 2π
N (3·(N−1))

...
...

...
...

. . .
...

e+j 2π
N ((N−1)·0) e+j 2π

N ((N−1)·1) e+j 2π
N ((N−1)·2) e+j 2π

N ((N−1)·3) . . . e+j 2π
N ((N−1)·(N−1))


(20)
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is set up. In textbooks the short version is often given using powers of twiddle factor WN

W = k ↓

→µ

1 1 1 1 . . . 1

1 W1
N W2

N W3
N . . . W (N−1)

N

1 W2
N W4

N W6
N . . . W2(N−1)

N

1 W3
N W6

N W9
N . . . W3(N−1)

N

...
...

...
...

. . .
...

1 W (N−1)
N W2(N−1)

N W3(N−1)
N . . . W (N−1)(N−1)

N



. (21)

The orthogonal columns—this is the essential idea just like using orthogonal oscillations in
a Fourier series—of the Fourier matrix contain the samples for complex-valued oscillations
(e j 2π

N k)µ over time index k for all possible DFT frequencies 0≤µ≤ N−1. All these oscillations are
N-periodic. The first column of W corresponds to µ = 0, this column represents a DC discrete-
time signal, i.e. all samples exhibit amplitude one. The second column of W corresponds to
µ= 1 and contains the N samples of the first DFT harmonic x[k|µ= 1] = e+j 2π

N k·1, i.e. one signal
period fits exactly into N samples, cf. Fig. 2 top. The third column of W corresponds to µ= 2 and
contains the N samples of the second DFT harmonic x[k|µ= 2]= e+j 2π

N k·2, i.e. two signal periods
fit exactly into N samples, cf. Fig. 2 bottom.

1.3.3 IDFT as Matrix Operation

Now, let us consider column vectors with N entries for the discrete-time signal x[k] of length
N (actually the signal is periodic in N, the prevailing convention considers the period at time
instances 0≤ k ≤ N−1) and its DFT spectrum X [µ] (N-periodic as well, convention 0≤µ≤ N−1):

discrete-time signal: xk =



x[k = 0]
x[k = 1]
x[k = 2]
x[k = 3]

...
x[k = N −1]


DFT spectrum: xµ =



X [µ= 0]
X [µ= 1]
X [µ= 2]
X [µ= 3]

...
X [µ= N −1]


. (22)

The IDFT can then be written as matrix multiplication as follows

xk =
1
N

W · xµ. (23)
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0 2 4 6 8 10 12 14
k

1.0
0.5
0.0
0.5
1.0

{Wcolumn2}
{Wcolumn2}

0 2 4 6 8 10 12 14
k

1.0
0.5
0.0
0.5
1.0

{Wcolumn3}
{Wcolumn3}

Figure 2: For the N = 16 DFT, the complex-valued signals e+j 2π
N k·µ are shown for µ= 1 (top) and

for µ= 2 (bottom). These signals correspond to the vectors in the 2nd and 3rd column,
respectively, of the Fourier matrix W . We might think of all N signals / column vectors
in W as DFT eigensignals as these are used for synthesis (IDFT) and analysis (DFT)
stages.

The linear combination of the column vectors in W weighted by the DFT spectrum’s coefficients
X [·] and normalisation by 1/N reveals the discrete-time signal synthesis stage

x[0]

x[1]

x[2]

x[3]

. . .

x[N −1]


= X [0]

N



1

1

1

1

. . .

1


+ X [1]

N



1

W1
N

W2
N

W3
N

. . .

W (N−1)
N


+ X [2]

N



1

W2
N

W4
N

W6
N

. . .

W2(N−1)
N


+ X [3]

N



1

W3
N

W6
N

W9
N

. . .

W3(N−1)
N


+·· ·+ X [N −1]

N



1

W1(N−1)
N

W2(N−1)
N

W3(N−1)
N

. . .

W (N−1)(N−1)
N


.

It is very similar to Fourier series synthesis: a weigthed superposition of harmonics and a DC
signal. The difference to the Fourier series is, that the DFT exhibits an N-periodic, discrete
spectrum of Fourier coefficients, which induces an N-periodic and discrete-time signal.
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1.3.4 DFT as Matrix Operation

The column vectors wi and w j from matrix W (that are considered for the superposition above)
exhibit orthogonality, i.e. the inner product for complex vectors yields

wH
column i ·wcolumn j =

{
N i = j
0 else

(24)

using the conjugate transpose operator (·)H. Again this is very similar to the Fourier series
fundamentals, where the continuous-time signals sin(µω0t), cos(µω0t) and e jµω0 t are orthogonal
to each other for different µ ∈Z.

The analysis stage for the discrete-time signal domain, i.e. the DFT can now be reinvented
by some intuition: How ’much’ of the reference signal wcolumn i (any column in W) is contained
in the discrete-time signal xk that is to be analysed. In signal processing / statistic terms we
look for the amount of correlation of the signals wcolumn i and xk. In linear algebra terms we are
interested in the projection1 of xk onto wcolumn i, because the length of the resulting projection
vector reveals the amount of correlation, which is precisely one DFT coefficient X [·]. The com-
plex inner products wH

column i ·xk reveals these searched quantities. Doing this for all columns of
matrix W , all DFT coefficients are obtained (vector projection mindset):

X [µ= 0]=wH
column 1 · xk (25)

X [µ= 1]=wH
column 2 · xk (26)

X [µ= 2]=wH
column 3 · xk (27)

X [µ= 3]=wH
column 4 · xk (28)

... (29)

X [µ= N −1]=wH
column N · xk. (30)

Naturally, all operations can be merged to one single matrix multiplication using the conjugate
transpose of W

WH =µ ↓

→k

1 1 1 1 . . . 1

1 W−1
N W−2

N W−3
N . . . W−(N−1)

N

1 W−2
N W−4

N W−6
N . . . W−2(N−1)

N

1 W−3
N W−6

N W−9
N . . . W−3(N−1)

N

...
...

...
...

. . .
...

1 W−(N−1)
N W−2(N−1)

N W−3(N−1)
N . . . W−(N−1)(N−1)

N



. (31)

The DFT is then given as

xµ =WH · xk (32)

1A projection in the strict sense of linear algebra would only be obtained if wcolumn i is a unit vector, which can be
easily obtained when normalising by 1p

N
. See the comment on the unitary matrix property on pg. 9.
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yielding the DFT coefficients / spectrum stored in xµ. Here, for the matrix-vector multiplication,
a matrix row × a column vector is a good mindset to grasp the concept of correlation / projection.
The required complex inner product is ensured by taking the conjugate transpose ’beforehand’.

1.3.5 Fourier Matrix Characteristics

The intuition that led to the DFT as matrix operation is for good reason; of course there is a strict
mathematical proof, which we don’t need here. Rather, it is of high importance, that the matrix
W has exceptional characteristics, cf. [Strang, 2019, Ch. IV.2]2. Generally, for a transform pair
we should expect solving a forward and an inverse problem for two N×1 vectors v1 and v2, such
as for the set of equations (solving a set of linear equations mindset)

v1 = Mv2 v2 = M−1v1, (33)

which holds if matrix M is square and has full rank, i.e. it is invertible. For the Fourier matrix
the relations

W−1 = WH

N
= W∗

N
(34)

hold; (·)H is conjugate transpose, (·)∗ is complex conjugate. Inserting this into the DFT equation
(32) reveals the inverse problem (which is here the analysis stage by our chosen sign convention
in the twiddle factor)

xµ = NW−1 xk (35)

and inserting the IDFT equation (23) (our forward problem) into it, yields equality, cf. (9),

xµ = NW−1 (
1
N

W xµ)= xµ (36)

as expected. The above relations W−1 = 1
N WH = 1

N W∗ are given since W is a special square,
complex valued and in fact symmetric matrix. Furthermore, recall from above that the normal-
isation factors can be assigned differently. If the matrix is normalised as W/

p
N, the property(

Wp
N

)H (
Wp
N

)
= I=

(
Wp
N

)−1 (
Wp
N

)
(37)

holds, i.e. the complex conjugate transpose is equal to the inverse
(

Wp
N

)H =
(

Wp
N

)−1
and due

to the matrix symmetry also
(

Wp
N

)∗ =
(

Wp
N

)−1
is valid. As a generalisation for complex valued

matrices, this implies orthonormality of the so called unitary matrix W/
p

N. This is the key
feature of the Fourier matrix and builds the fundamental of the DFT: the unitary Fourier matrix
spans an orthonormal vector space that is specially related to the roots of zN = 1.

2also see Ch. 11 in Frank Schultz, Continuous- and Discrete-Time Signals and Systems—A Tuto-
rial with Computational Examples, University of Rostock, https://github.com/spatialaudio/
signals-and-systems-exercises
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After all, the DFT pair, this is (32) / (13) and (23) / (14), is given as

DFT: xµ =W∗xk IDFT: xk =
1
N

Wxµ (38)

using the Fourier Matrix (20). No matrix inversion and transpose, but only complex conju-
gate operation is required for the DFT stage.

It is worth to verify that the following DFT pairs with N = 4 hold with the chosen conventions

• the signal vector xk = [1,1,1,1]T (pure DC component) yields the DFT spectrum xµ =
[4,0,0,0]T (energy only at ’zero’-th frequency bin, i.e. DC)

• the DFT spectrum xµ = [1,1,1,1]T (all frequencies exhibit equal energy) yields xk = [1,0,0,0]T

(the discrete Dirac impulse)

1.4 FFT as a Fast Calculation of the DFT

A straightforward implementation of the DFT/IDFT equations directly or by its matrix versions
demands very high computing load for large N and is prone to numerical precision errors. Fortu-
nately, the computing load can be considerably reduced by saving many redundant calculations,
which at the same time reduces numerical errors.

For example, most obviously the same Wkµ
N is derived for µ = 1, k = 2 and µ = 2, k = 1, cf.

the entries of the matrices K and W. For large N, many angles 2π
N kµ are equivalent. This

is exemplarily shown in Fig. 3, Fig. 4 and Fig. 5 for N = 8, N = 9 and N = 48 DFTs. These
plots indicate certain symmetries, which is to be expected since the underlying matrices exhibit
symmetry as well.

Algorithms that make use of these symmetries in order to reduce or simplify computation
steps are subsumed as Fast Fourier Transform (FFT). Explained in a sloppy way, FFTs calculate
certain repeatedly used twiddle factor results only once. An initial FFT algorithm was proposed
by Cooley and Tukey [1965], that relies on N = 2m, m ∈N. With a linear algebra driven mindset,
FFT is about finding suitable matrix factorisations of W to avoid the calculation of the full matrix
multiplication. This involves sparse matrices and plain vector permutations (which not need to
be calculated as matrix operations) and thus reduces multiplications/additions. We will reinvent
the basic concept in a homework assignment. Nowadays, many improved FFT algorithms exist,
so that if N is accessible for a prime factorisation, an FFT can be calculated with much less
processing load than a DFT. In fact, the invention of fast DFT calculation via FFT algorithms is
a (if not the) milestone in DSP allowing for the huge technological progress over the last decades.

1.5 DFT Frequency Resolution

The relation between physical temporal frequency f , sampling frequency fs and discrete-time
angular frequency Ω is known as

Ω= 2π
f
fs

= ω

fs
. (39)

Furthermore, the twiddle factor and the Fourier matrix tell us that the unit circle is equiangu-
larly sampled. cf. Fig. 1. This means that the angular frequency resolution

∆Ω= 2π
N

(40)
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holds. From both equations

∆Ω= 2π
∆ f
fs

= ∆ω
fs

≡∆Ω= 2π
N

(41)

we can deduce the DFT resolution in terms of the physical frequency f as

∆ f = fs

N
. (42)

This corresponds to the frequency distance between two spectral lines, i.e. between two DFT
bins. From that, all so called eigenfrequencies of the DFT, i.e. frequencies where the DFT bins
are located, can be derived as

fDFT =µ∆ f =µ fs

N
for 0≤µ≤ N −1, µ ∈N . (43)

These DFT eigenfrequencies can also be given for the discrete-time angular frequency

ΩDFT =µ∆Ω=µ2π
N

= 2π fDFT

fs
. (44)

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

k

arg(Wk
N ) in degree, N=8

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

k

|arg(Wk
N )| in degree, N=8

180
135
90
45

0
45
90
135
180

180
135
90
45

0
45
90
135
180

Figure 3: arg(Wµk
N ) (left) and |arg(Wµk

N )| (right) as matrix over µ and k for N = 8.
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1
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5
6
7
8

k
arg(Wk

N ) in degree, N=9

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

k

|arg(Wk
N )| in degree, N=9

180
135
90
45

0
45
90
135
180

180
135
90
45

0
45
90
135
180

Figure 4: arg(Wµk
N ) (left) and |arg(Wµk

N | (right) as matrix over µ and k for N = 9.

1.6 Periodicity and Symmetry of the DFT

The signals x[k] and X [µ] of a DFT pair exhibit a periodicity of N. This is shown with k,µ,k′,m ∈
Z:

x[k′]= 1
N

N−1∑
µ=0

X [µ]e j 2π
N k′µ (45)

x[k′ = k+mN]= 1
N

N−1∑
µ=0

X [µ]e j 2π
N (k+mN)µ (46)

= 1
N

N−1∑
µ=0

X [µ]e j 2π
N kµ ·e j 2π

N mNµ︸ ︷︷ ︸
=1

= x[k]. (47)

A similar proof yields the identity X [µ] = X [µ+mN], cf. Fig. 6. This is equivalent to a DTFT
spectrum that exhibits a 2π periodicity, i.e. X (Ω) = X (Ω+m ·2π). The baseband of the DFT for
0≤µ≤ N −1 corresponds to the spectrum of the signal x[k] for 0≤ k ≤ N −1. Thus, both signals
x[k] and X [µ] inherently exhibit periodicity with N.

A further very important characteristic of the DFT spectrum is observed, when x[k] ∈R (such
as audio, image and video signals) is assumed. Then the symmetries

Re
{

X
[

N
2

+m
]}

=Re
{

X
[

N
2

−m
]}

, Im
{

X
[

N
2

+m
]}

=−Im
{

X
[

N
2

−m
]}

, (48)∣∣∣∣X [
N
2

+m
]∣∣∣∣= ∣∣∣∣X [

N
2

−m
]∣∣∣∣ , arg

(
X

[
N
2

+m
])

=−arg
(
X

[
N
2

−m
])

(49)

hold that can be written shortly as

X
[

N
2

+m
]
= X

[
N
2

−m
]∗

, (50)
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Figure 5: arg(Wµk
N ) (left) and |arg(Wµk

N )| (right) as matrix over µ and k for N = 48.

with ()∗ again denoting complex conjugate operation. Think of N as being an even number here,
so m ∈Z. The case of odd-numbered N is considered later. The symmetry property of eq. (50) is

8 6 4 2 0 2 4 6 8 10 12 14

Re
{X

[
]}

8 6 4 2 0 2 4 6 8 10 12 14

Im
{X

[
]}

8 6 4 2 0 2 4 6 8 10 12 14

|X
[

]|

8 6 4 2 0 2 4 6 8 10 12 14

ar
g(

X[
])

Figure 6: Periodicity of the DFT for a real signal with N = 8, blue: baseband, black: periodic
repetitions.
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shown by inserting and simplifying

X
[
µ= N

2
+m

]
=

N−1∑
k=0

x[k]e−j 2π
N k( N

2 +m) =
N−1∑
k=0

x[k]e−jπk ·e−j 2π
N km, (51)

X
[
µ= N

2
−m

]
=

N−1∑
k=0

x[k]e−j 2π
N k( N

2 −m) =
N−1∑
k=0

x[k]e−jπk ·e j 2π
N km. (52)

The sum of two complex numbers a,b ∈ C is just (a+ b)∗ = a∗+ b∗. Recall that e−jπk = ±1 ∈ R.
With the assumption x[k] ∈R it can then be proved

X
[
µ= N

2
−m

]∗
=

(
N−1∑
k=0

x[k]e−jπk ·e j 2π
N km

)∗
(53)

=
N−1∑
k=0

x[k]e−jπk ·
(
e j 2π

N km
)∗

(54)

=
N−1∑
k=0

x[k]e−jπke−j 2π
N km (55)

= X
[
µ= N

2
+m

]
. (56)

Since the discrete DFT spectrum is only defined at µ ∈Z m must be defined as follows

m =
{

M for even N
M+ 1

2 for odd N
(57)

using M ∈ Z, cf. Fig. 7 and Fig. 8. Due to the periodicity of X [µ] in general and the special N
2

symmetries of X [µ] when x[k] ∈R (point-symmetric for imaginary part and phase, axisymmetric
for real part and magnitude, cf. again Fig. 7 and Fig. 8) some information is redundant in the
DFT spectrum. For the interpretation of the DFT spectrum, only

M = N
2

+1 for even N

M = N +1
2

for odd N (58)

bins contain non-redundant information. This corresponds to the frequency band from DC ( f = 0
Hz) to half the sampling frequency ( fs/2). It is defined for even N as

0≤µ∆ f ≤ fs

2
for 0≤µ≤ N

2
(59)

and for odd N as
0≤µ∆ f < fs

2
for 0≤µ≤ N −1

2
. (60)

Thus, for even N the symmetry axis µ= N
2 is exactly at the bin indicating half of the sampling

frequency

f =µ fs

N
→ N

2
fs

N
= fs

2
, (61)

whereas for odd N the symmetry axis is located between the two bins around fs
2 . Therefore, an

odd N DFT does not include the ’half of the sampling frequency’ bin, cf. Fig. 9, Fig. 10.
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Figure 7: Symmetry of the DFT for x[k] ∈R with N = 8. Point and axis for symmetry is at N
2 = 4.

Left: real part and magnitude of X [µ] are axisymmetric, right: imaginary part and
phase of X [µ] are point-symmetric.
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Figure 8: Symmetry of the DFT for x[k] ∈ R with N = 9. Point and axis for symmetry is at
N
2 = 4.5, i.e. between two DFT bins. Left: real part and magnitude of X [µ] are axisym-
metric, right: imaginary part and phase of X [µ] are point-symmetric.
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Figure 9: DFT eigenfrequency locations on the unit circle for N = 4 (left), N = 5 (right).

1.7 DFT as Sampling of a DTFT Spectrum

The following discussion of the discrete Fourier transform (DFT) as a sampled DTFT and ex-
planations concerning windowing were inspired by the script Möser [2011]. A similar didactic
concept is approached in [Kammeyer and Kroschel, 2002, Ch. 7.3, 7.4] and Rabiner and Gold
[1975].

The DFT contains all possible spectral information that can be derived from the signal. Since
N time samples are available, only maximum N (complex valued) spectral samples are avail-
able; for x[k] ∈ R less than N samples contain non-redundant information as shown above. The
DFT can be derived by sampling the DTFT spectrum equiangularly on the unit circle with
∆Ω = 2π

N , cf. Fig. 9, Fig. 10. Thinking of the DFT X [µ] as being the spectrum of the non-zero
part of a sampled one-time signal x[k] for 0 ≤ k ≤ N −1, x[k] = 0 for all other k (so-called single
signal model Möser [2011]), inversely allows for interpolation towards the DTFT spectrum. To
this end, the synthesis equation for the one-time signal eq. (14)

x[k]= 1
N

·
N−1∑
µ=0

X [µ] ·e j 2π
N kµ (62)

is inserted into the analysis equation of the DTFT eq. (15) and gets rearranged:

X (Ω)=
∞∑

k=−∞
x[k] ·e−jΩk (63)

=
N−1∑
k=0

1
N

·
N−1∑
µ=0

X [µ] ·e j 2π
N kµ ·e−jΩk (64)

=
N−1∑
µ=0

X [µ] · 1
N

·
N−1∑
k=0

e−jk(Ω− 2π
N µ). (65)
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Figure 10: DFT eigenfrequency locations on the unit circle for N = 8 (left), N = 9 (right).

The sum over k is a geometric series and can be rearranged with [Lyons, 2011, (3-39)] to

X (Ω)=
N−1∑
µ=0

X [µ] · 1
N

· 1−e−j(Ω− 2π
N µ)N

1−e−j(Ω− 2π
N µ)

(66)

=
N−1∑
µ=0

X [µ] · 1
N

· e−j (Ω− 2π
N µ)N
2

e−j
Ω− 2π

N µ

2

· e j (Ω− 2π
N µ)N
2 −e−j (Ω− 2π

N µ)N
2

e j
Ω− 2π

N µ

2 −e−j
Ω− 2π

N µ

2

(67)

=
N−1∑
µ=0

X [µ] · 1
N

·e−j (Ω− 2π
N µ)(N−1)

2 · e j (Ω− 2π
N µ)N
2 −e−j (Ω− 2π

N µ)N
2

e j
Ω− 2π

N µ

2 −e−j
Ω− 2π

N µ

2

. (68)

With the Euler identity 2j ·sin(x)= e jx −e−jx this can be simplified to [Möser, 2011, eq. (2.41)]

X (Ω)=
N−1∑
µ=0

X [µ] ·e−j (Ω− 2π
N µ)(N−1)

2 · 1
N

·
sin

(
N
Ω− 2π

N µ

2

)
sin

(
Ω− 2π

N µ

2

) . (69)

The interpolation kernel is the so-called aliased or periodic sinc function

psincN (Ω)=
 1

N · sin( N
2 Ω)

sin( 1
2Ω) for Ω ̸= 2πm

(−1)m(N−1) for Ω= 2πm
, m ∈Z, (70)

in Matlab and Python’s scipy diric(Omega,N), and a phase shift. Therefore, eq. (69) can be
written as

X (Ω)=
N−1∑
µ=0

X [µ] ·e−j (Ω− 2π
N µ)(N−1)

2 ·psincN

(
Ω− 2π

N
µ

)
. (71)
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Figure 11: DFT (stem, blue) and interpolated DTFT (line, red) magnitude spectra over µ (top),
Ω/π (middle) and f

fs
(bottom) for N = 8 (left) and N = 9 (right).

Thus, a DTFT value at any Ω can be interpolated using eq. (71). It is easy to show, that for
Ω= 2π

N µ′ this evaluates exactly to the DFT value since this is a DFT eigenfrequency:

X
(
Ω= 2π

N
µ′

)
=

N−1∑
µ=0

X [µ] ·e−j (
2π
N µ′− 2π

N µ)(N−1)
2 · 1

N
·
sin

(
N

2π
N µ′− 2π

N µ

2

)
sin

(
2π
N µ′− 2π

N µ

2

) , (72)

=
N−1∑
µ=0

X [µ] ·e−j π(µ′−µ)(N−1)
N · 1

N
· sin(π(µ′−µ))
sin

(
π
N (µ′−µ)

) . (73)

For all µ ̸= µ′ the term sin(π(µ′ − µ)) = 0. For µ = µ′ the periodic sinc evaluates to 1 and

e−j π(µ′−µ)(N−1)
N = 1. Thus, the interpolation yields

X
(
Ω= 2π

N
µ′

)
= X [µ′], (74)

and it can be seen that the DTFT and DFT spectrum are identical at all DFT eigenfrequencies

ΩDFT = 2π
N
µ for 0≤µ≤ N −1, µ ∈N. (75)

For all other frequencies, the DTFT spectrum follows the interpolation kernel, cf. Fig. 11. As
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already introduced in eq. (44)

Ω= 2π f
fs

ΩDFT = 2π fDFT

fs
(76)

hold as well. Thus, a DFT and an interpolated DTFT spectrum can be visualised over µ, Ω and,
for a given sampling frequency fs, over f as depicted in Fig. 11.

1.8 Windowing

Many textbooks treat the derivation of the DFT and windowing separately, which is sensible if
the concept of the DFT is to be introduced solely as a transform. For the spectral analysis of
signals, it might be helpful to discuss the DFT and windowing together as e.g. in Möser [2011],
[Kammeyer and Kroschel, 2002, Ch. 7.3, 7.4].

Let x[k] for −∞≤ k ≤∞ be a sequence with the corresponding continuous and periodic DTFT
spectrum X (Ω). For a computer-assisted spectral analysis, it is necessary to cut out a finite
number of values out of a representative signal section. Mathematically, this is described by
multiplication with a weighting or window sequence w[k], that equals zero outside the desired
signal section:

w[k]= 0 for k < 0 and k ≥ N, w ∈R. (77)

For example, the definition of a rectangular window is

w[k]=
{

1 for 0≤ k ≤ N −1
0 otherwise

. (78)

Of course the chosen signal section does not have to start at k = 0, but it makes calculations
easier. The sequence w[k] has a corresponding DTFT spectrum W(Ω) as well:

W(Ω)=
∞∑

k=−∞
w[k]e−jΩk

w[k]= 1
2π

π∫
−π

W(Ω)e jΩkdΩ. (79)

Cutting-out the signal section means multiplication of the signal with the window sequence

xN[k]= x[k] ·w[k], (80)

which can be expressed as a cyclic convolution of the corresponding spectra in the frequency
domain:

XN(Ω)= 1
2π

(X ⊛W)(Ω) (81)

= 1
2π

π∫
−π

X (Ω−ν) ·W(ν)dν (82)

= 1
2π

π∫
−π

X (ν) ·W(Ω−ν)dν. (83)
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The DTFT spectrum XN(Ω) contains the "original" DTFT spectrum X (Ω) that was to be anal-
ysed, but it is smeared due to the convolution with the window spectrum. The only possibility to
obtain XN(Ω)= X (Ω) is to convolve with a window that is the neutral element of the convolution

Wδ(Ω)= 2π
∞∑

n=−∞
δ(Ω+2πn) (84)

which yields

XN(Ω)=
π∫

−π
X (Ω−ν) ·δ(ν)dν=

π∫
−π

X (ν) ·δ(Ω−ν)dν= X (Ω). (85)

However, Wδ(Ω) corresponds to [Oppenheim and Schafer, 2010, tab. 2.3, p. 90]

Wδ(Ω)= 2π
∞∑

n=−∞
δ(Ω+2πn) s c wδ[k]= 1 for −∞≤ k ≤∞, (86)

which constitutes an infinitely long window. For the time domain follows

xN[k]= x[k] ·wδ[k]= x[k], (87)

which delivers a consistent theory, but is not helpful for practical computation.
Therefore, wδ[k] is not a window that can be employed in practice (and it is not actually not

even a true ’window’ as it is constantly 1), but it should be kept in mind that Wδ(Ω) would be the
ideal window spectrum for the analysis of x[k]. So we have to accept that instead of being able
to analyse x[k] and X (Ω), only xN [k] and XN(Ω) are available. How well XN(Ω) ≈ X (Ω) can be
approximated is dependent on the length N of the cut out section, on the chosen section of x[k]
and on the sequence w[k] and its spectrum W(Ω), that are itself dependent on N.

To illustrate the importance of the window spectrum, the signal spectrum of a single harmonic
oscillation with the angular frequency 0 ≤Ω0 < π is considered [Oppenheim and Schafer, 2010,
tab. 2.3, p. 90]

Xδ(Ω)= 2π
∞∑

n=−∞
δ(Ω−Ω0 +2πn). (88)

For XN(Ω) follows from the convolution Xδ,N(Ω) = 1
2π (Xδ⊛W)(Ω) the spectrum of the window

sequence shifted by Ω0
Xδ,N(Ω)=W(Ω−Ω0). (89)

Therefore, we must be able to interpret the window spectrum to conclude on XN(Ω) or even X (Ω).
The next section starts discussion on the rectangular window which is the ’natural’ window of
the DFT definition as it just cuts out a section of the signal where all values are weighted equally.

1.8.1 Rectangular Window

A window w[k] of length N is defined with

w[k]= 0 for k < 0 and k ≥ N, w ∈R. (90)

For 0≤ k ≤ N−1, w[k] can consist of arbitrary real numbers. If w[k]= 1 for this range, a so called
rectangular window is obtained. To determine the spectrum of a window, we can calculate the
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DTFT of the infinite sequence w[k], where only values of the sequence that are ̸= 0 have to be
summed up:

W(Ω)=
N−1∑
k=0

w[k] ·e−jΩk. (91)

For the simple rectangular window this yields

WRect(Ω)=
N−1∑
k=0

1 ·e−jΩk. (92)

This is a geometric series for which the closed form solution is known [Lyons, 2011, (3-39)] as

WRect(Ω)= 1−e−jΩN

1−e−jΩ . (93)

This expression can be rewritten as

WRect(Ω)= e−jΩN
2

e−jΩ2
· e jΩN

2 −e−jΩN
2

e jΩ2 −e−jΩ2
= e−jΩ(N−1)

2 · e jΩN
2 −e−jΩN

2

e jΩ2 −e−jΩ2
(94)

and with the Euler identity 2j ·sin(x)= e jx −e−jx be simplified to (cf. [Lyons, 2011, (3-42)])

WRect(Ω)= e−jΩ(N−1)
2 · sin

(
N Ω

2
)

sin
(
Ω
2
) . (95)

The spectrum WRect(Ω) is like all Fourier transformed sequences 2π-periodic. For the following
discussion, only the section of the base band −π≤Ω<π is considered.

For the magnitude spectrum only the fraction containing the sines has to be evaluated because∣∣∣e−jΩ(N−1)
2

∣∣∣ = 1. With the rule of L’Hospital [Olver et al., 2010, (1.4.15 )] the rectangular window
at Ω= 0 is

WRect(Ω= 0)= N. (96)

This is the amplitude that is weighting the current mid frequency in the convolution the strongest,
the so-called maximum main lobe amplitude. The zeros WRect(Ω)= 0 in the base band result with
m ∈Z, m ̸= 0 after considering the argument of the sine in the numerator

N
Ω

2
= mπ, (97)

in
Ω= 2π

N
m =∆Ω ·m. (98)

The zeros are equidistantly spaced with ∆Ω= 2π
N . For odd N, N −1 zeros result for

m =±1, ±2, ±3, ... ± N −1
2

. (99)

For even N, N −1 zeros result for

m =±1, ±2, ±3, ... ±
(

N
2

−1
)
, −N

2
. (100)

21



0.0 0.5 1.0 1.5 2.0
/

0
1
2
3
4
5

|A
|

N = 4
DTFT
DFT

0.0 0.5 1.0 1.5 2.0
/

0
1
2
3
4
5
6

|A
|

N = 5
DTFT
DFT

Figure 12: Magnitude of DTFT & DFT spectra for rectangular windows of length N, 0≤Ω< 2π.
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Figure 13: Magnitude of DTFT & DFT spectra for rectangular windows of length N, −π≤Ω<π.

In the last case, the last zero m =−N
2 is exactly at Ω=−π. As it is a 2π-periodic spectrum this

zero could be defined with m = N
2 as Ω=π, but this would be the same zero and it is not counted

twice. For m = 0, no zero can be found, but instead the main lobe, as has been described above.
Fig. 12 and 13 illustrate the cases N = 4 and N = 5 for the DTFT of the rectangular win-

dow. The N −1 zeros of the spectrum are clearly visible. Fig. 14 and 15 show the spectra with
a logarithmic amplitude. Differing from the depiction here, textbooks mostly use normalised
representations of window spectra of the form 20 · log10 W[Ω = 0] = 0 dB, that are symmetric in
Ω= 0, i.e. plotted over −π≤Ω<π.

1.8.2 Discrete Spectrum of the Rectangular Window

As has been explained before, the spectrum from eq. (88)

Xδ(Ω)= 2π
∞∑

n=−∞
δ(Ω−Ω0 +2πn) (101)

evolves with windowing, i.e. the convolution Xδ,N(Ω)= 1
2π (Xδ⊛W)(Ω), into

Xδ,N(Ω)=W(Ω−Ω0). (102)

Now, the spectrum of a finite signal is considered, i.e. a transition from the DTFT to the DFT
is performed. For the discrete DFT frequencies that contain the complete spectral information,
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Figure 14: Level of DTFT spectra for rectangular windows of length N, 0≤Ω< 2π.
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Figure 15: Level of DTFT spectra for rectangular windows of length N, −π≤Ω<π.
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Xδ[µ] can be written as

Xδ[µ]=W
[

2π
N
µ−Ω0

]
. (103)

With eq. (95) follows

Xδ[µ]=WRect

[
2π
N
µ−Ω0

]
= e−j (

2π
N µ−Ω0)(N−1)

2 ·
sin

(
N

2π
N µ−Ω0

2

)
sin

(
2π
N µ−Ω0

2

) (104)

= e−j( N−1
2 ( 2π

N µ−Ω0)) · sin
( N

2
(2π

N µ−Ω0
))

sin
(1

2
(2π

N µ−Ω0
)) . (105)

As can be seen, the DFT coefficients Xδ[µ] strongly depend on the choice of Ω0, which will be
illustrated in the following. The definition

Ω0 = 2π
N

(µ0 +α) with ±α≤ 1
2

(106)

is inserted into eq. (105) to yield

Xδ[µ]= e−j( N−1
2 ( 2π

N µ− 2π
N (µ0+α))) · sin

( N
2

(2π
N µ− 2π

N (µ0 +α)
))

sin
(1

2
(2π

N µ− 2π
N (µ0 +α)

)) (107)

= e−j( N−1
2 ( 2π

N (µ−µ0)− 2π
N α)) · sin

(
π((µ−µ0)−α)

)
sin

(
π
N ((µ−µ0)−α)

) . (108)

For the case α= 0, we have Ω0 = 2π
N µ0 and the fraction containing the sines evaluates to N (cf.

periodic sinc in eq. (70)), so the DFT spectrum becomes

Xδ[µ]=
{

0 for µ ̸=µ0
N for µ=µ0

. (109)

Therefore, if the chosen frequency from eq. (88) happens to be a DFT bin, the frequency spectrum
contains the exact amplitude of this frequency (after normalising with 1

N ). The other values of
the spectrum coincide with the zeros of the window spectrum. This is the best case because
the amplitude of the frequency Ω0 can be analysed exactly, cf. Fig. 16 left. The worst case
occurs when α = ±1

2 . For the rectangular window, two bins share the main energy and the
other bins differ from zero as well, cf. Fig. 16 right. It is not as easy anymore how to interpret
the DFT spectrum. From the example it is known that the signal consists of only one spectral
component, but in the spectrum this is not so obvious. So what is to do when the frequencies
and corresponding amplitudes of the signal are not known (as is of course usually the case in
real applications)?

For the interpretation of such spectra, knowledge about windowing and different window
types as well as experience in analysing spectra is necessary. In a first step we can determine
for each window which amplitude error arises between best and worst case. This gives an indi-
cation for the "true" spectrum. For the rectangular window, this calculation is quite easy and is
shown here: With eq. (108), the amplitude for a certain µ0 is generally

|Xδ[µ0]| =
∣∣∣∣∣ sin(−πα)
sin

(− π
Nα

) ∣∣∣∣∣=
∣∣∣∣∣ sin(πα)
sin

(
π
Nα

) ∣∣∣∣∣ (110)
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Figure 16: Rectangular windowing for N = 8, best case (µ= 2), worst case (µ= 2− 1
2 ).

and for the worst case α=±1
2

|Xδ[µ0]| =
∣∣∣∣∣ sin

(±π
2
)

sin
(± π

2N
) ∣∣∣∣∣=

∣∣∣∣∣ ±1
±sin

(
π

2N
) ∣∣∣∣∣=

∣∣∣∣∣ 1
sin

(
π

2N
) ∣∣∣∣∣ . (111)

For very large N, this yields due to sin(x)≈ x for small x the amplitude

|Xδ[µ0]| = 2N
π

. (112)

The amplitude error between the best case for α = 0 and the worst case for α = ±1
2 is then for

large N ∣∣∣Xδ[µ0]α=± 1
2

∣∣∣∣∣Xδ[µ0]α=0
∣∣ ≈

2N
π

N
≈ 2
π
≈ 0.6366=̂ −3.9224dB. (113)

The amplitude loss from the value 10 to approx. 6.3 can be found in Fig. 16. It is still not
known, though, which frequencies the signal consists of (µ= 1 or µ= 2 or both?). This could be
accomplished by an increase of N. Additionally, the quite high amplitudes in the other bins are
confusing. This point can be counteracted with a window with a higher side lobe attenuation
that is presented in the next subsection discussing the Hann window.

1.8.3 Hann Window

For the Hann window (and for other windows as well), different definitions exist in the litera-
ture. Fig. 17 shows differently defined Hann windows for two lengths N. The red line starts
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Figure 17: Different definitions of the Hann window.

at w[k = 0] = 0, but ends with w[k = N −1] ̸= 0. This is based upon the reason that (at least
for spectral analysis) a symmetric window is not necessary [Harris, 1978, p. 52]. Instead, the
window is constructed in a such a way that for periodic extension w[N] = w[0]. The black line
defines a window that is symmetric around N−1

2 and at both terminal points w[k = 0] = 0 and
w[k = N−1]= 0 holds, because of the common reasoning that the windowed signal must be zero
at the terminal points to ensure continuous transitions for periodic repetitions Oppenheim and
Schafer [2010], Lyons [2011]. The blue curve defines a window that is symmetric around N−1

2
as well, but both terminal points w[k = 0] ̸= 0 and w[k = N −1] ̸= 0. The reason for this is that
N ‘real’ DFT bins should be retrieved Möser [2011], Ifeachor and Jervis [2002]. This is why the
sequence w[k] for the blue line consists of N coefficients that differ from 0 while it is only N −2
for the black line. A DFT of length N for a sequence with only N −2 coefficients differing from
0 yields only N −2 ‘real’ bins (compare to zero-padding). For scientific purposes, it should be
stated which definition of a standard window has been used.

The application can determine which definition of a window is appropriate. For spectral anal-
ysis a window should be used that can be extended periodically without losing information in
bins. Those windows do not have to be symmetric around the middle of the window. In FIR filter
design we aim at reducing an infinite impulse response to a finite length. This is mostly done
by symmetric windows to window symmetrically around the main peak of the impulse response.
Therefore, Matlab and Python discriminate between the variants periodic and symmetric,
symmetric=True/False respectively in window design.

Although the Matlab window as periodic version would be better suited for storytelling, for
the following, the window definition of Möser [2011] is used, since the manual calculation is
more convenient. For the window w[k] of length N,

w[k]= 0 for k < 0 and k ≥ N, w ∈R (114)

is still valid. For 0 ≤ k ≤ N −1, w[k] shall consist of arbitrary real numbers. In this case here,
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those numbers are the ones of a Hann window. Additionally, the window should be symmetric

w[N −1−k]= w[k] (115)

and without zeros in the definition range. The Hann window version that fulfills this require-
ment reads

w[k]=
{

1−cos
(2π

N
(
k+ 1

2
))

for 0≤ k ≤ N −1
0 else

. (116)

The spectrum can be calculated with the help of

cos
(

2π
N

(
k+ 1

2

))
= 1

2

(
e j πN e j 2π

N k +e−j πN e−j 2π
N k

)
(117)

and

W(Ω)=
N−1∑
k=0

w[k]e−jΩk. (118)

Therefore, the spectrum of the window is

WHann(Ω)=
N−1∑
k=0

(
1−cos

(
2π
N

(
k+ 1

2

)))
e−jΩk (119)

=
N−1∑
k=0

(
1− 1

2

(
e j πN e j 2π

N k +e−j πN e−j 2π
N k

))
e−jΩk (120)

=
N−1∑
k=0

e−jΩk − 1
2

e j πN
N−1∑
k=0

e−j(Ω− 2π
N )k − 1

2
e−j πN

N−1∑
k=0

e−j(Ω+ 2π
N )k. (121)

Using the results for the rectangular windows (cf. eq. (92)), this can be abbreviated to

WHann(Ω)=WRect(Ω)− 1
2

e j πN WRect(Ω− 2π
N

)− 1
2

e−j πN WRect(Ω+ 2π
N

). (122)

As can be seen, the spectrum of the Hann window is composed of the spectrum of a rectangular
window and two weighted spectra of rectangular windows that are shifted by one bin. With
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eq. (95), this can be rewritten as

WHann(Ω)=e−jΩ(N−1)
2 · sin

(
N Ω

2
)

sin
(
Ω
2
)

− 1
2

e j πN e−j
(Ω− 2π

N )(N−1)
2 ·

sin
(
N
Ω− 2π

N
2

)
sin

(
Ω− 2π

N
2

)

− 1
2

e−j πN e−j
(Ω+ 2π

N )(N−1)
2 ·

sin
(
N
Ω+ 2π

N
2

)
sin

(
Ω+ 2π

N
2

) (123)

=e−jΩ(N−1)
2 · sin

( N
2 Ω

)
sin

(1
2Ω

)
− 1

2
e j πN e−j

(Ω− 2π
N )(N−1)

2 · sin
( N

2
(
Ω− 2π

N
))

sin
(1

2
(
Ω− 2π

N
))

− 1
2

e−j πN e−j
(Ω+ 2π

N )(N−1)
2 · sin

( N
2

(
Ω+ 2π

N
))

sin
(1

2
(
Ω+ 2π

N
)) . (124)

Because

e j πN e−j
(Ω− 2π

N )(N−1)
2 = e−jΩ(N−1)

2 e j πN e j (N−1)
2

2π
N = e−jΩ(N−1)

2 e jπ( 1
N + N−1

N )︸ ︷︷ ︸
=−1

(125)

and

e−j πN e−j
(Ω+ 2π

N )(N−1)
2 = e−jΩ(N−1)

2 e−j πN e−j (N−1)
2

2π
N = e−jΩ(N−1)

2 e−jπ( 1
N + N−1

N )︸ ︷︷ ︸
=−1

, (126)

the spectrum can be simplified to

WHann(Ω)= e−jΩ(N−1)
2 · sin

( N
2 Ω

)
sin

(1
2Ω

) + 1
2

e−jΩ(N−1)
2 · sin

( N
2

(
Ω− 2π

N
))

sin
(1

2
(
Ω− 2π

N
)) + 1

2
e−jΩ(N−1)

2 · sin
( N

2
(
Ω+ 2π

N
))

sin
(1

2
(
Ω+ 2π

N
)) (127)

= e−jΩ(N−1)
2 ·

(
sin

( N
2 Ω

)
sin

(1
2Ω

) + 1
2
· sin

( N
2

(
Ω− 2π

N
))

sin
(1

2
(
Ω− 2π

N
)) + 1

2
· sin

( N
2

(
Ω+ 2π

N
))

sin
(1

2
(
Ω+ 2π

N
)) )

. (128)

The Hann window exhibits only N −3 zeros compared to the rectangular window with N −1
zeros, so two zeros are lost for usage in spectral shaping, cf. fig 18 and 19. In the region close
to Ω=±π, the weighted and shifted spectra of the rectangular windows (red and dark blue line)
cancel out, which can be observed in the logarithmic depiction in Fig. 20 as well, i.e. the Hann
window achieves a better side lobe attenuation than the rectangular window. Around Ω ≈ 0,
all three spectral components add up in a constructive way, which leads to a broader main lobe
compared to the rectangular window.

Fig. 21 illustrates the best and worst case scenarios for the Hann window when a discrete
frequency exactly coincides with a DFT bin (left, best) or lies in the middle between two bins
(right, worst). In contrast to the rectangular window, the exact case (µ = 2, left) leads to three
bins that are differing from zero with the middle bin representing the exact amplitude of the
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discrete frequency. The worst case (µ = 2− 1
2 , right) leads to two main bins and further bins

differing from zero. The amplitude error between best and worst case for large N is∣∣∣X [µ0]α=± 1
2

∣∣∣∣∣X [µ0]α=0
∣∣ = 3π

8
≈ 1.1781=̂ −1.4236dB, (129)

which is smaller than the error for the rectangular window. This discloses the following general
rule: The broader the main lobe of a window, the smaller the amplitude error in spectral analysis
for a harmonic signal with the frequency

Ω0 = 2π
N

(µ0 +α) with ±α≤ 1
2

. (130)

However, a broad main lobe leads to a poor frequency resolution, i.e. frequencies that are close
together get smeared in the convolution process XN (Ω) = 1

2π (XN ⊛W)(Ω) and cannot be sepa-
rated clearly anymore. So, there is always a compromise involved in frequency resolution and
amplitude accuracy.

One last remark on the amplitudes of the windows: In the literature, windows are often
normalised to a maximum value = 1, which reads for the Hann window according to Möser
[2011]

w[k]=
{

0.5−0.5cos
(2π

N
(
k+ 1

2
))

for 0≤ k ≤ N −1
0 else

. (131)

The definition that has been used above (cf. eq. (116)),

w[k]=
{

1−cos
(2π

N
(
k+ 1

2
))

for 0≤ k ≤ N −1
0 else

. (132)

was chosen to result in equal amplitudes N for the rectangular and the Hann window. In the
classic paper [Harris, 1978, tab. 1] this normalisation factor is treated as the so-called ‘coherent
gain’.

1.8.4 Hamming Window

The Hann window with only N −3 zeros in its spectrum lets two potential zeros unused. Note
that using all possible N zeros would not allow to create a distinct main lobe at Ω= 0, therefore
only N −1 zeros are used for optimal window design. The Hamming window adds these zeros
again to the Hann window spectrum in order to improve the attenuation of the first side lobes
(left and right of the main lobe). To that end, the Hann window spectrum is modified with a
factor β (cf. [Rabiner and Gold, 1975, Ch. 3.10]):

WHamm(Ω)= e−jΩ(N−1)
2 ·

(
sin

( N
2 Ω

)
sin

(1
2Ω

) + β

2
· sin

( N
2

(
Ω− 2π

N
))

sin
(1

2
(
Ω− 2π

N
)) + β

2
· sin

( N
2

(
Ω+ 2π

N
))

sin
(1

2
(
Ω+ 2π

N
)) )

. (133)

At Ω = 2π
N · 2.5, i.e. at µ = 2.5 in the DFT spectrum, an additional zero shall be inserted at

the maximum of the first side lobe. As w[k] shall be real, this zero must have a symmetric
counterpart (so this yields the desired two additional zeros), but only one has to be specified.
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For small arguments, the approximation sin(x) ≈ x holds, which is fulfilled in the denominators
for large N when Ω= 2π

N ·2.5, and for Ω= 5π/N the result is:

∣∣∣∣WHamm(Ω= 5π
N

)
∣∣∣∣≈

∣∣∣∣∣sin
( N

2
5π
N

)
1
2

5π
N

+ β

2
· sin

( N
2

(5π
N − 2π

N
))

1
2
(5π

N − 2π
N

) + β

2
· sin

( N
2

(5π
N + 2π

N
))

1
2
(5π

N + 2π
N

) ∣∣∣∣∣ . (134)

Searching for the zero ∣∣∣∣WHamm(Ω= 5π
N

)
∣∣∣∣=

∣∣∣∣∣ 1
5π
2N

+ β

2
· −1

3π
2N

+ β

2
· −1

7π
2N

∣∣∣∣∣ != 0 (135)

and solving for the corresponding β yields

β

2
·
(

2N
3π

+ 2N
7π

)
= 2N

5π
(136)

⇔ β= 21
25

= 0.84. (137)

The Hamming window can be rearranged to

WHamm(Ω)= (1−β)WRect(Ω)+βWHann(Ω), (138)

which means for the sequence

wHamm[k]=
{

(1−β)wRect[k]+βwHann[k] for 0≤ k ≤ N −1
0 else

(139)

with

wRect[k]=
{

1 for 0≤ k ≤ N −1
0 else

(140)

and

wHann[k]=
{

1−cos
(2π

N
(
k+ 1

2
))

for 0≤ k ≤ N −1
0 else

. (141)

Finally, the sequence of the Hamming window can be rewritten to

wHamm[k]=
{

1−0.84cos
(2π

N
(
k+ 1

2
))

for 0≤ k ≤ N −1
0 else

. (142)

The derivation from [Harris, 1978, p. 62] concludes that the Hamming window as it is defined
in the standard literature must have been developed by rounding, which means that the zero
is at Ω ≈ 2π

N · 2.6. If this zero is used in the calculation here according to Möser [2011], β ≈
0.852 results. If now the windows are scaled to have a maximum of 1 for odd N, the common
representation of the Hamming window in the literature results (here written in the form of
Möser [2011]):

wHamm[k]≈ 0.54−0.54β ·cos
(

2π
N

(
k+ 1

2

))
(143)

= 0.54−0.46 ·cos
(

2π
N

(
k+ 1

2

))
. (144)
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Figure 22: Spectrum of Hamming window from superposition of weighted rectangular windows.

Fig. 22 shows the additionally added zeros which leads to strongly attenuated first side lobes
visible in the logarithmic spectrum in Fig. 23. Fig. 24 displays a comparison of the rectan-
gular, Hann and Hamming window. It shows that the strongly attenuated first side lobes of
the Hamming window are traded for a slower decrease of the side lobes, but the main lobe is
slightly narrower than for the Hann window. Fig. 25 shows the best and worst case scenario for
a Hamming window with β = 0.84. Compared to the Hann window the secondary maxima are
lower, but the amplitude error in the worst case is larger. It is approx. −1.78 dB and is termed
"scalloping loss" in Harris [1978].
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Figure 23: Level of DTFT spectra for rectangular and Hamming window.
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Figure 24: Level of DTFT spectra for rectangular, Hann and Hamming window.
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2 Exercises

Exercise 1: dft/idft Implementation

Write Matlab/Python functions X = my_dft(x) and x = my_idft(X) that calculate the DFT
pair in eq. (13) and (14) without using the pre-built functions fft() and ifft(). Check validity
and performance against the built-in functions (try large N). We might consider the matrix
operation approach rather than a for-loop implementation.

Solution: Jupyter Notebook: dft_windowing_tutorial_exercises.ipynb
Matlab: UE1_Exercise1_Test_dft_idft_functions.m together with my_dft.m, my_idft.m

Exercise 2: IDFT as Analytic Calculus / as Linear Combination

The discrete-time signal x[k]

x[k]=−2 ·sin
(

2π
4

k
)
+3 ·cos

(
2π
4

·2k
)
+1 for 0≤ k ≤ 3 (145)

with k ∈Z is given.

a) Calculate the resulting values of x[k] for 0≤ k ≤ 3.

b) Show analytically that the given values of X [µ], µ ∈Z:

X [µ= 0]= 4, X [µ= 1]= 4j, X [µ= 2]= 12, (146)

are the DFT coefficients of x[k] stemming from

X [µ]=
N−1∑
k=0

x[k] ·e−j 2π
N kµ (147)

with N = 4. The following procedure is suggested: Setup the spectral coefficients X [µ] in
the form

X [µ]= A[µ] ·e jφ[µ] (148)

and specify the missing value X [µ= 3] so that the IDFT results in x[k] ∈R. Then calculate
the IDFT as

x[k]= 1
N

N−1∑
µ=0

X [µ] ·e j 2π
N kµ (149)

showing that this corresponds to the given signal x[k].

c) Plot the real and imaginary part as well as the magnitude and the phase of X [µ] over µ.

d) Remove the DC component in the DFT spectrum X [µ] and from that synthesise the signal
xr[k] via IDFT. Check that the synthesised signal corresponds to

xr[k]=−2 ·sin
(

2π
4

k
)
+3 ·cos

(
2π
4

·2k
)

for 0≤ k ≤ 3 (150)

by help of a linear combination using the Fourier matrix.
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e) A DFT-based audio analyser shall exhibit a frequency resolution of ∆ f = 0.5 Hz for a
sampling frequency fs = 44100 Hz using a rectangular window. Determine the minimum
required DFT length N when only lengths N = 2M (M ∈ N) are allowed. What is the
resulting frequency resolution then?

Solution:
Jupyter Notebook: dft_windowing_tutorial_exercises.ipynb

a)

x[0]=−2 ·sin
(
2π

1
4
·0

)
+3 ·cos

(
2π

2
4
·0

)
+1= 3+1= 4

x[1]=−2 ·sin
(
2π

1
4
·1

)
+3 ·cos

(
2π

2
4
·1

)
+1=−2−3+1=−4

x[2]=−2 ·sin
(
2π

1
4
·2

)
+3 ·cos

(
2π

2
4
·2

)
+1= 3+1= 4

x[3]=−2 ·sin
(
2π

1
4
·3

)
+3 ·cos

(
2π

2
4
·3

)
+1= 2−3+1= 0

b)

X [µ= 0]= 4= 4 ·e j·0

X [µ= 1]= 4j= 4 ·e j π2

X [µ= 2]= 12= 12 ·e j·0

For x[k] ∈R the symmetry X [1]∗ = X [3] holds, thus

X [µ= 3]=−4j= 4 ·e−j· π2 .

The IDFT is given as

x[k]= 1
N

N−1∑
µ=0

X [µ] ·e j 2π
N kµ

= 1
4

3∑
µ=0

X [µ] ·e j π2 kµ.

With the spectral coefficients in the form X [µ]= A[µ] ·e jφ[µ] this simplifies to

x[k]= 1
4

(4 ·e j·0 ·e j π2 k·0 +4 ·e j· π2 ·e j π2 k·1 +12 ·e j·0 ·e j π2 k·2 +4 ·e−j· π2 ·e j π2 k·3)

= 1+e j π2 ·e j π2 k +3 ·e jπk +e−j π2 ·e j 3π
2 k

= 1+e j π2 ·e j π2 k +3 ·
cos(πk)+ j ·sin(πk)︸ ︷︷ ︸

=0 if k∈Z

−e j π2 ·e−j π2 k

= 1+3 ·cos(πk)+ e j π2︸︷︷︸
=j

·
(
e j π2 k −e−j π2 k

)
.
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With Euler’s identity
2j ·sin(x)= e jx −e−jx

we get

x[k]= 1+3 ·cos(πk)+ j ·2j ·sin
(π

2
k
)

= 1+3 ·cos(πk)−2 ·sin
(π

2
k
)

which finally results as expected

x[k]= 1+3 ·cos
(

2π
4

·2k
)
−2 ·sin

(
2π
4

k
)
.

c)
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0
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+
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Figure 26: DFT of x[k] for exercise 2 c).

d) Recall that the IDFT is given as xk = 1
N Wxµ with the vectors

discrete-time signal: xk =



x[k = 0]
x[k = 1]
x[k = 2]
x[k = 3]

...
x[k = N −1]


DFT spectrum: xµ =



X [µ= 0]
X [µ= 1]
X [µ= 2]
X [µ= 3]

...
X [µ= N −1]


.

(151)

and the Fourier matrix W .
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The samples of the DC-free signal xr[k] set up as a column vector are

xrk =


xr[k = 0]= 3

xr[k = 1]=−5
xr[k = 2]= 3

xr[k = 0]=−1

 (152)

just by subtracting the DC amount 1 from x[k]. Let us check the IDFT by matrix
multiplication. We build the 4×4 Fourier matrix (by element-wise operation)

W= e+j 2π
4 K (153)

from the twiddle factor
WN=4 = e+j 2π

4 (154)

and from matrix (this is an outer product)

K=


0
1
2
3

 · [0 1 2 3
]=


0 0 0 0
0 1 2 3
0 2 4 6
0 3 6 9

 (155)

containing all possible products kµ in a suitable arrangement. We get

W=


1 1 1 1
1 +j −1 −j
1 −1 1 −1
1 −j −1 +j

 (156)

The columns are the DFT signals

w1 =


1
1
1
1

 ,w2 =


1
+j
−1
−j

 ,w3 =


1
−1
1
−1

 ,w4 =


1
−j
−1
+j

 . (157)

to be used for the linear combination

xrk =
X [µ= 0]

4
w1 + X [µ= 1]

4
w2 + X [µ= 2]

4
w3 + X [µ= 3]

4
w4. (158)

using the DFT coefficients from task b).

As X [µ= 0] shall be made zero by intention we are left with the linear combination

xrk =
0
4
·


1
1
1
1

+ +4j
4

·


1
+j
−1
−j

+ 12
4

·


1
−1
1
−1

+ −4j
4

·


1
−j
−1
+j

=


3
−5
3
−1

 (159)

which gives the desired result.

39



e)

∆ f = fs

N
= fs

2M
!= 0.5Hz

M =
⌈

log2

(
fs

∆ f

)⌉
∈N

=
⌈

log2

(
44100Hz

0.5Hz

)⌉
∈N

= ⌈16.4285...⌉∈N
= 17

⇒ N = 2M = 217 = 131072

The resulting frequency resolution is thus

∆ f = fs

N
= 44100Hz

131072
≈ 0.3365Hz.

Exercise 3: DFT Analysis Using a Rectangular Window / DTFT Interpolation

A sine signal x[k] = cos(Ωk) with Ω= 2 · 2π
N , N = 8, 0 ≤ k ≤ N −1 is to be analysed with the DFT

eq. (13) assuming a sampling frequency of fs = 48 kHz.

a) Calculate the spectrum X [µ] of x[k] and visualise the real and imaginary part as well as
the magnitude and the phase of X [µ] over 0≤µ≤ N −1.

b) Check the expected symmetries.

c) Implement the interpolation of eq. (71) and visualise this over µ, Ω as well as f as a
magnitude spectrum together with |X [µ]|.

d) Repeat the steps a) to c) for N = 9. What is different?

e) Repeat the steps a) to d) for Ω= 2.5 · 2π
N . What is different now?

Solution:
Jupyter Notebook: dft_windowing_tutorial_exercises.ipynb
Matlab: UE1_Exercise3_DFT_analysis.m together with interpolate_DFT.m

Exercise 4: DFT / DTFT of an Impulse Response

The finite length impulse response (FIR filter) h[k] of an LTI system is given as

h[k]= 1
8
· (11 ·δ[k]−5 ·δ[k−1]+7 ·δ[k−2]−9 ·δ[k−3]) (160)

The DFT and DTFT spectrum correspond to the transfer function of the system.
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a) Calculate the DFT analytically

H[µ]=
N−1∑
k=0

h[k] ·e−j 2π
N kµ (161)

for N = 4 and 0≤ k ≤ N −1.

b) Calculate the magnitude |H[µ]| and the phase response arg(H[µ]) for 0 ≤ µ≤ 3. State the
magnitude as level in dB and the phase in degrees.

c) The frequency resolution is assumed to be ∆ f = 500Hz. Sketch the DFT line spectrum and
the interpolated DTFT spectrum of the magnitude |H[µ]| in dB and the phase arg(H[µ]) in
degrees over the frequency axis from 0Hz≤ f ≤ 4000Hz. Estimate the sampling frequency
fs from the known parameters and information. What filter characteristic is realised with
this impulse response?

Solution:

a) If we set up the FIR h[k] and the DFT spectrum H[µ] as vectors

hk =


h[k = 0]
h[k = 1]
h[k = 2]
h[k = 3]

= 1
8


11
−5
7
−9

 hµ =


H[µ= 0]
H[µ= 1]
H[µ= 2]
H[µ= 3]

 (162)

the DFT can be calculated with matrix multiplication, cf. Section 1.3.4,

hµ =W∗hk (163)

using again the 4×4 Fourier matrix (see exercise 2)

W=


1 1 1 1
1 +j −1 −j
1 −1 1 −1
1 −j −1 +j

 (164)

The columns of W are the DFT eigensignals

wcolumn 1 =


1
1
1
1

 ,wcolumn 2 =


1
+j
−1
−j

 ,wcolumn 3 =


1
−1
1
−1

 ,wcolumn 4 =


1
−j
−1
+j

 . (165)

The DFT is the signal analysis stage, i.e. correlation of the input signal with DFT
eigensignals. This is realised by the (complex) inner product of the two vectors. Thus,
the inner products H[µ]=wH

column (µ+1)hk requires complex conjugates

wH
column 1 =

[
1,1,1,1

]
wH

column 2 =
[
1,−j,−1,+j

]
wH

column 3 =
[
1,−1,1,−1

]
wH

column 4 =
[
1,+j,−1,−j

]
. (166)
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Calculated for all µ this yields the DFT spectrum

H[µ= 0]=wH
column 1hk =

(
1 · 11

8

)
+

(
1 · −5

8

)
+

(
1 · 7

8

)
+

(
1 · −9

8

)
= 4

8
= 1

2

H[µ= 1]=wH
column 2hk =

(
1 · 11

8

)
+

(
(−j) · −5

8

)
+

(
(−1) · 7

8

)
+

(
j · −9

8

)
= 4

8
− j

4
8
= 1

2
− j

1
2

H[µ= 2]=wH
column 3hk =

(
1 · 11

8

)
+

(
(−1) · −5

8

)
+

(
1 · 7

8

)
+

(
(−1) · −9

8

)
= 32

8
= 4

H[µ= 3]=wH
column 4hk =

(
1 · 11

8

)
+

(
j · −5

8

)
+

(
(−1) · 7

8

)
+

(
(−j) · −9

8

)
= 4

8
+ j

4
8
= 1

2
+ j

1
2

b)

|H[0]| = 1
2

−→ 20log10

(
1
2

)
=−6.02dB

|H[1]| =
√

1
22 + 1

22 = 1p
2

−→ 20log10

(
1p
2

)
=−3.01dB

|H[2]| = 4 −→ 20log10(4)= 12.04dB

|H[3]| =
√

1
22 + 1

22 = 1p
2

−→ 20log10

(
1p
2

)
=−3.01dB

arg(H[0])= 0

arg(H[1])= arctan

(−1
2

1
2

)
=−0.7854=̂ −45◦

arg(H[2])= 0

arg(H[3])= arctan

( 1
2
1
2

)
= 0.7854=̂45◦

c)
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Figure 27: DFT (blue dots) and DTFT (red line) spectrum for h[k]
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sampling frequency: ∆ f = fs
N ⇔ fs =∆ f ·N = 500Hz ·4= 2000Hz

filter characteristic: highpass filter, -3 dB corner frequency at about 790 Hz, rel-
ative sidelobe level about -7 dB, notch at about 560 Hz, 12 dB gain at fs

2

Exercise 5: DFT Parameterisation

A composite signal x[k]= A1 ·e j(Ω1k+φ1)+A2 ·e j(Ω2k+φ2) with the known frequencies Ω1 = 1
30π and

Ω2 = 1
4π but unknown amplitude and phase relation is given.

a) What DFT length N must be set up so that the exact amplitude and phase values for both
frequencies Ω1 and Ω2 can be determined for a rectangularly windowed signal (i.e. no
leakage occurs)?

b) In which bins are the frequencies Ω1 and Ω2 then found?

c) What amplitude deviation occurs when analysing the signal x[k]= e jΩ3k with Ω3 = 30.5
60 π?

Solution:

a) DFT eigenfrequencies: ΩDFT = 2π
N µ

Ω1 and Ω2 must be DFT eigenfrequencies (recall µ ∈Z):

Ω1 = π

30
= 2π

N
µ ⇔ N = 60 ·µ

Ω2 = π

4
= 2π

N
µ ⇔ N = 8 ·µ

Both conditions together can be fulfilled when using N = 120 (or multiples thereof).

b)

µ1 =Ω1 · N
2π

= π

30
· 120

2π
= 2, i.e. the 3rd bin / column of W

µ2 =Ω2 · N
2π

= π

4
· 120

2π
= 15, i.e. the 16th bin / column of W

c) The discrete angular frequency Ω3 = 30.5
60 π can be expressed in terms of multiples of

the first DFT eigenfrequency 2π
N as

Ω3 = n · 2π
N

↔ n =Ω3 · N
2π

= 30.5
60

π · 120
2π

= 30.5

so that
Ω3 = 30.5 · 2π

N
.
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The frequency Ω3 is not a DFT eigenfrequency as it is not an integer multiple of the
first DFT eigenfrequency, but is located in the middle between bins 31 and 32 (for
µ = 30 and µ = 31 counting from µ = 0). The neighbouring bins are the bins that can
give the best information about the amplitude of the true signal. The spectral values
at the neighbouring bins can be calculated by the DFT of a complex exponential (see
formularies)

e jΩ3k c s e j (Ω3− 2π
N µ)(N−1)

2 ·
sin

(
N
Ω3− 2π

N µ

2

)
sin

(
Ω3−µ 2π

N
2

) .

At µ= 30, the amplitude is

|X [µ= 30]| =

∣∣∣∣∣∣∣∣e
j (Ω3− 2π

N µ)(N−1)
2 ·

sin
(
N
Ω3− 2π

N µ

2

)
sin

(
Ω3− 2π

N µ

2

)
∣∣∣∣∣∣∣∣

=
sin

(
N
Ω3− 2π

N µ

2

)
sin

(
Ω3− 2π

N µ

2

)

=
sin

(
N

30.5· 2π
N −30· 2π

N
2

)
sin

(
30.5· 2π

N −30· 2π
N

2

)

=
sin

(
N

1
2 · 2π

N
2

)
sin

(
1
2 · 2π

N
2

)
= sin

(
π
2
)

sin
(
π

2N
)

= 1
sin

(
π

240
)

≈ 76.3966.

At µ= 31, the amplitude is

|X [µ= 31]| =
sin

(
N

30.5· 2π
N −31· 2π

N
2

)
sin

(
30.5· 2π

N −31· 2π
N

2

)
= sin

(−π
2
)

sin
(− π

2N
)

≈ 76.3966.
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If the frequency of the complex exponential had been exactly at a DFT eigenfrequency,
e.g. at µ = 31, the DFT spectrum would have contained the true amplitude of the
signal. The rule of L’Hospital is needed to to calculate this amplitude value:

lim
Ω3→31· 2π

N

sin
(
N
Ω3− 2π

N 31
2

)
sin

(
Ω3− 2π

N 31
2

)

= lim
Ω3→31· 2π

N

cos
(
N
Ω3− 2π

N 31
2

)
· N

2

cos
(
Ω3− 2π

N 31
2

)
· 1

2

=cos0
cos0

·N
=N

=120.

The error is thus
20 · log10

(
76.3966

120

)
=−3.9221dB,

i.e. the magnitude is underestimated. The case when the signal frequency lies exactly
in middle between two DFT eigenfrequencies is the worst case scenario, in Harris
[1978] termed "worst case process loss".
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