#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
![]() |
![]() |
![]() |
![]() |
TensorFlow Lite (TFLite) is a set of tools that helps developers run ML inference on-device (mobile, embedded, and IoT devices). The TFLite converter is one such tool that converts existing TF models into an optimized TFLite model format that can be efficiently run on-device.
In this doc, you'll learn what changes you need to make to your TF to TFLite conversion code, followed by a few examples that do the same.
If you're using a legacy TF1 model format (such as Keras file, frozen GraphDef, checkpoints, tf.Session), update it to TF1/TF2 SavedModel and use the TF2 converter API tf.lite.TFLiteConverter.from_saved_model(...)
to convert it to a TFLite model (refer to Table 1).
Update the converter API flags (refer to Table 2).
Remove legacy APIs such as tf.lite.constants
. (eg: Replace tf.lite.constants.INT8
with tf.int8
)
// Table 1 // TFLite Python Converter API Update
TF1 API | TF2 API | |
---|---|---|
tf.lite.TFLiteConverter.from_saved_model('saved_model/',..) |
supported | |
tf.lite.TFLiteConverter.from_keras_model_file('model.h5',..) |
removed (update to SavedModel format) | |
tf.lite.TFLiteConverter.from_frozen_graph('model.pb',..) |
removed (update to SavedModel format) | |
tf.lite.TFLiteConverter.from_session(sess,...) |
removed (update to SavedModel format) |
// Table 2 // TFLite Python Converter API Flags Update
TF1 API | TF2 API | |
---|---|---|
allow_custom_ops optimizations representative_dataset target_spec inference_input_type inference_output_type experimental_new_converter experimental_new_quantizer |
supported |
|
input_tensors output_tensors input_arrays_with_shape output_arrays experimental_debug_info_func |
removed (unsupported converter API arguments) |
|
change_concat_input_ranges default_ranges_stats get_input_arrays() inference_type quantized_input_stats reorder_across_fake_quant |
removed (unsupported quantization workflows) |
|
conversion_summary_dir dump_graphviz_dir dump_graphviz_video |
removed (instead, visualize models using Netron or visualize.py) |
|
output_format drop_control_dependency |
removed (unsupported features in TF2) |
import tensorflow as tf
import tensorflow.compat.v1 as tf1
import numpy as np
import logging
logger = tf.get_logger()
logger.setLevel(logging.ERROR)
import shutil
def remove_dir(path):
try:
shutil.rmtree(path)
except:
pass
Create all the necessary TF1 model formats.
# Create a TF1 SavedModel
SAVED_MODEL_DIR = "tf_saved_model/"
remove_dir(SAVED_MODEL_DIR)
with tf1.Graph().as_default() as g:
with tf1.Session() as sess:
input = tf1.placeholder(tf.float32, shape=(3,), name='input')
output = input + 2
# print("result: ", sess.run(output, {input: [0., 2., 4.]}))
tf1.saved_model.simple_save(
sess, SAVED_MODEL_DIR,
inputs={'input': input},
outputs={'output': output})
print("TF1 SavedModel path: ", SAVED_MODEL_DIR)
# Create a TF1 Keras model
KERAS_MODEL_PATH = 'tf_keras_model.h5'
model = tf1.keras.models.Sequential([
tf1.keras.layers.InputLayer(input_shape=(128, 128, 3,), name='input'),
tf1.keras.layers.Dense(units=16, input_shape=(128, 128, 3,), activation='relu'),
tf1.keras.layers.Dense(units=1, name='output')
])
model.save(KERAS_MODEL_PATH, save_format='h5')
print("TF1 Keras Model path: ", KERAS_MODEL_PATH)
# Create a TF1 frozen GraphDef model
GRAPH_DEF_MODEL_PATH = tf.keras.utils.get_file(
'mobilenet_v1_0.25_128',
origin='https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_0.25_128_frozen.tgz',
untar=True,
) + '/frozen_graph.pb'
print("TF1 frozen GraphDef path: ", GRAPH_DEF_MODEL_PATH)
This is typical code for TF1-style TFlite conversion.
converter = tf1.lite.TFLiteConverter.from_saved_model(
saved_model_dir=SAVED_MODEL_DIR,
input_arrays=['input'],
input_shapes={'input' : [3]}
)
converter.optimizations = {tf.lite.Optimize.DEFAULT}
converter.change_concat_input_ranges = True
tflite_model = converter.convert()
# Ignore warning: "Use '@tf.function' or '@defun' to decorate the function."
Directly convert the TF1 SavedModel to a TFLite model, with a smaller v2 converter flags set.
# Convert TF1 SavedModel to a TFLite model.
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir=SAVED_MODEL_DIR)
converter.optimizations = {tf.lite.Optimize.DEFAULT}
tflite_model = converter.convert()
This is typical code for TF1-style TFlite conversion.
converter = tf1.lite.TFLiteConverter.from_keras_model_file(model_file=KERAS_MODEL_PATH)
converter.optimizations = {tf.lite.Optimize.DEFAULT}
converter.change_concat_input_ranges = True
tflite_model = converter.convert()
First, convert the TF1 Keras model file to a TF2 SavedModel and then convert it to a TFLite model, with a smaller v2 converter flags set.
# Convert TF1 Keras model file to TF2 SavedModel.
model = tf.keras.models.load_model(KERAS_MODEL_PATH)
model.save(filepath='saved_model_2/')
# Convert TF2 SavedModel to a TFLite model.
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir='saved_model_2/')
tflite_model = converter.convert()
This is typical code for TF1-style TFlite conversion.
converter = tf1.lite.TFLiteConverter.from_frozen_graph(
graph_def_file=GRAPH_DEF_MODEL_PATH,
input_arrays=['input'],
input_shapes={'input' : [1, 128, 128, 3]},
output_arrays=['MobilenetV1/Predictions/Softmax'],
)
converter.optimizations = {tf.lite.Optimize.DEFAULT}
converter.change_concat_input_ranges = True
tflite_model = converter.convert()
First, convert the TF1 frozen GraphDef to a TF1 SavedModel and then convert it to a TFLite model, with a smaller v2 converter flags set.
## Convert TF1 frozen Graph to TF1 SavedModel.
# Load the graph as a v1.GraphDef
import pathlib
gdef = tf.compat.v1.GraphDef()
gdef.ParseFromString(pathlib.Path(GRAPH_DEF_MODEL_PATH).read_bytes())
# Convert the GraphDef to a tf.Graph
with tf.Graph().as_default() as g:
tf.graph_util.import_graph_def(gdef, name="")
# Look up the input and output tensors.
input_tensor = g.get_tensor_by_name('input:0')
output_tensor = g.get_tensor_by_name('MobilenetV1/Predictions/Softmax:0')
# Save the graph as a TF1 Savedmodel
remove_dir('saved_model_3/')
with tf.compat.v1.Session(graph=g) as s:
tf.compat.v1.saved_model.simple_save(
session=s,
export_dir='saved_model_3/',
inputs={'input':input_tensor},
outputs={'output':output_tensor})
# Convert TF1 SavedModel to a TFLite model.
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir='saved_model_3/')
converter.optimizations = {tf.lite.Optimize.DEFAULT}
tflite_model = converter.convert()
.h5
files, frozen GraphDef .pb
, etc), please update your code and migrate your models to the TF2 SavedModel format.