#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
![]() |
![]() |
![]() |
![]() |
In TF1, tf.metrics
is the API namespace for all the metric functions. Each of the metrics is a function that takes label
and prediction
as input parameters and returns the corresponding metrics tensor as result. In TF2, tf.keras.metrics
contains all the metric functions and objects. The Metric
object can be used with tf.keras.Model
and tf.keras.layers.layer
to calculate metric values.
Let's start with a couple of necessary TensorFlow imports,
import tensorflow as tf
import tensorflow.compat.v1 as tf1
and prepare some simple data for demonstration:
features = [[1., 1.5], [2., 2.5], [3., 3.5]]
labels = [0, 0, 1]
eval_features = [[4., 4.5], [5., 5.5], [6., 6.5]]
eval_labels = [0, 1, 1]
In TF1, the metrics can be added to EstimatorSpec
as the eval_metric_ops
, and the op is generated via all the metrics functions defined in tf.metrics
. You can follow the example to see how to use tf.metrics.accuracy
.
def _input_fn():
return tf1.data.Dataset.from_tensor_slices((features, labels)).batch(1)
def _eval_input_fn():
return tf1.data.Dataset.from_tensor_slices(
(eval_features, eval_labels)).batch(1)
def _model_fn(features, labels, mode):
logits = tf1.layers.Dense(2)(features)
predictions = tf.math.argmax(input=logits, axis=1)
loss = tf1.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits)
optimizer = tf1.train.AdagradOptimizer(0.05)
train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
accuracy = tf1.metrics.accuracy(labels=labels, predictions=predictions)
return tf1.estimator.EstimatorSpec(mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops={'accuracy': accuracy})
estimator = tf1.estimator.Estimator(model_fn=_model_fn)
estimator.train(_input_fn)
estimator.evaluate(_eval_input_fn)
Also, metrics could be added to estimator directly via tf.estimator.add_metrics()
.
def mean_squared_error(labels, predictions):
labels = tf.cast(labels, predictions.dtype)
return {"mean_squared_error":
tf1.metrics.mean_squared_error(labels=labels, predictions=predictions)}
estimator = tf1.estimator.add_metrics(estimator, mean_squared_error)
estimator.evaluate(_eval_input_fn)
In TF2, tf.keras.metrics
contains all the metrics classes and functions. They are designed in a OOP style and integrate closely with other tf.keras
API. All the metrics can be found in tf.keras.metrics
namespace, and there is usually a direct mapping between tf.compat.v1.metrics
with tf.keras.metrics
.
In the following example, the metrics are added in model.compile()
method. Users only need to create the metric instance, without specifying the label and prediction tensor. The Keras model will route the model output and label to the metrics object.
dataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(1)
eval_dataset = tf.data.Dataset.from_tensor_slices(
(eval_features, eval_labels)).batch(1)
inputs = tf.keras.Input((2,))
logits = tf.keras.layers.Dense(2)(inputs)
predictions = tf.math.argmax(input=logits, axis=1)
model = tf.keras.models.Model(inputs, predictions)
optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)
model.compile(optimizer, loss='mse', metrics=[tf.keras.metrics.Accuracy()])
model.evaluate(eval_dataset, return_dict=True)
With eager execution enabled, tf.keras.metrics.Metric
instances can be directly used to evaluate numpy data or eager tensors. tf.keras.metrics.Metric
objects are stateful containers. The metric value can be updated via metric.update_state(y_true, y_pred)
, and the result can be retrieved by metrics.result()
.
accuracy = tf.keras.metrics.Accuracy()
accuracy.update_state(y_true=[0, 0, 1, 1], y_pred=[0, 0, 0, 1])
accuracy.result().numpy()
accuracy.update_state(y_true=[0, 0, 1, 1], y_pred=[0, 0, 0, 0])
accuracy.update_state(y_true=[0, 0, 1, 1], y_pred=[1, 1, 0, 0])
accuracy.result().numpy()
For more details about tf.keras.metrics.Metric
, please take a look for the API documentation at tf.keras.metrics.Metric
, as well as the migration guide.
The optimizers in tf.compat.v1.train
, such as the
Adam optimizer
and the
gradient descent optimizer,
have equivalents in tf.keras.optimizers
.
The table below summarizes how you can convert these legacy optimizers to their Keras equivalents. You can directly replace the TF1.x version with the TF2 version unless additional steps (such as updating the default learning rate) are required.
Note that converting your optimizers may make old checkpoints incompatible.
TF1.x | TF2 | Additional steps |
---|---|---|
`tf.v1.train.GradientDescentOptimizer` | `tf.keras.optimizers.SGD` | None |
`tf.v1.train.MomentumOptimizer` | `tf.keras.optimizers.SGD` | Include the `momentum` argument |
`tf.v1.train.AdamOptimizer` | `tf.keras.optimizers.Adam` | Rename `beta1` and `beta2` arguments to `beta_1` and `beta_2` |
`tf.v1.train.RMSPropOptimizer` | `tf.keras.optimizers.RMSprop` | Rename the `decay` argument to `rho` |
`tf.v1.train.AdadeltaOptimizer` | `tf.keras.optimizers.Adadelta` | None |
`tf.v1.train.AdagradOptimizer` | `tf.keras.optimizers.Adagrad` | None |
`tf.v1.train.FtrlOptimizer` | `tf.keras.optimizers.Ftrl` | Remove the `accum_name` and `linear_name` arguments |
`tf.contrib.AdamaxOptimizer` | `tf.keras.optimizers.Adamax` | Rename the `beta1`, and `beta2` arguments to `beta_1` and `beta_2` |
`tf.contrib.Nadam` | `tf.keras.optimizers.Nadam` | Rename the `beta1`, and `beta2` arguments to `beta_1` and `beta_2` |
Note: In TF2, all epsilons (numerical stability constants) now default to 1e-7
instead of 1e-8
. This difference is negligible in most use cases.