#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
![]() |
![]() |
![]() |
![]() |
TensorBoard is a built-in tool for providing measurements and visualizations in TensorFlow. Common machine learning experiment metrics, such as accuracy and loss, can be tracked and displayed in TensorBoard. TensorBoard is compatible with TensorFlow 1 and 2 code.
In TensorFlow 1, tf.estimator.Estimator
saves summaries for TensorBoard by default. In comparison, in TensorFlow 2, summaries can be saved using a tf.keras.callbacks.TensorBoard
callback.
This guide demonstrates how to use TensorBoard, first, in TensorFlow 1 with Estimators, and then, how to carry out the equivalent process in TensorFlow 2.
import tensorflow.compat.v1 as tf1
import tensorflow as tf
import tempfile
import numpy as np
import datetime
%load_ext tensorboard
mnist = tf.keras.datasets.mnist # The MNIST dataset.
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
In this TensorFlow 1 example, you instantiate a tf.estimator.DNNClassifier
, train and evaluate it on the MNIST dataset, and use TensorBoard to display the metrics:
%reload_ext tensorboard
feature_columns = [tf1.feature_column.numeric_column("x", shape=[28, 28])]
config = tf1.estimator.RunConfig(save_summary_steps=1,
save_checkpoints_steps=1)
path = tempfile.mkdtemp()
classifier = tf1.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[256, 32],
optimizer=tf1.train.AdamOptimizer(0.001),
n_classes=10,
dropout=0.1,
model_dir=path,
config = config
)
train_input_fn = tf1.estimator.inputs.numpy_input_fn(
x={"x": x_train},
y=y_train.astype(np.int32),
num_epochs=10,
batch_size=50,
shuffle=True,
)
test_input_fn = tf1.estimator.inputs.numpy_input_fn(
x={"x": x_test},
y=y_test.astype(np.int32),
num_epochs=10,
shuffle=False
)
train_spec = tf1.estimator.TrainSpec(input_fn=train_input_fn, max_steps=10)
eval_spec = tf1.estimator.EvalSpec(input_fn=test_input_fn,
steps=10,
throttle_secs=0)
tf1.estimator.train_and_evaluate(estimator=classifier,
train_spec=train_spec,
eval_spec=eval_spec)
%tensorboard --logdir {classifier.model_dir}
In this TensorFlow 2 example, you create and store logs with the tf.keras.callbacks.TensorBoard
callback, and train the model. The callback tracks the accuracy and loss per epoch. It is passed to Model.fit
in the callbacks
list.
%reload_ext tensorboard
def create_model():
return tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28), name='layers_flatten'),
tf.keras.layers.Dense(512, activation='relu', name='layers_dense'),
tf.keras.layers.Dropout(0.2, name='layers_dropout'),
tf.keras.layers.Dense(10, activation='softmax', name='layers_dense_2')
])
model = create_model()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'],
steps_per_execution=10)
log_dir = tempfile.mkdtemp()
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir=log_dir,
histogram_freq=1) # Enable histogram computation with each epoch.
model.fit(x=x_train,
y=y_train,
epochs=10,
validation_data=(x_test, y_test),
callbacks=[tensorboard_callback])
%tensorboard --logdir {tensorboard_callback.log_dir}