Demonstrates plotting hourly tidal currents around Antarctica
OTIS format tidal solutions provided by Ohio State University and ESR
Finite Element Solution (FES) provided by AVISO
arguments.py
: load the nodal corrections for tidal constituentsastro.py
: computes the basic astronomical mean longitudescrs.py
: Coordinate Reference System (CRS) routinesio.model.py
: retrieves tide model parameters for named tide modelsio.OTIS.py
: extract tidal harmonic constants from OTIS tide modelsio.ATLAS.py
: extract tidal harmonic constants from ATLAS netcdf modelsio.FES.py
: extract tidal harmonic constants from FES tide modelspredict.py
: predict tidal values using harmonic constantstime.py
: utilities for calculating time operationsutilities.py
: download and management utilities for filesThis notebook uses Jupyter widgets to set parameters for calculating the tidal maps.
import os
import pyproj
import datetime
import numpy as np
import matplotlib
matplotlib.rcParams['axes.linewidth'] = 2.0
matplotlib.rcParams["animation.html"] = "jshtml"
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import cartopy.crs as ccrs
from IPython.display import HTML
# import tide programs
import pyTMD.io
import pyTMD.predict
import pyTMD.tools
import pyTMD.utilities
import timescale.time
# autoreload
%load_ext autoreload
%autoreload 2
# available model list
model_list = sorted(pyTMD.io.model.global_current() + pyTMD.io.model.antarctic_current())
# display widgets for setting directory and model
TMDwidgets = pyTMD.tools.widgets()
TMDwidgets.model.options = model_list
TMDwidgets.model.value = 'CATS2008'
TMDwidgets.VBox([
TMDwidgets.directory,
TMDwidgets.model,
TMDwidgets.atlas,
TMDwidgets.compress,
TMDwidgets.datepick
])
# get model parameters
model = pyTMD.io.model(TMDwidgets.directory.value,
format=TMDwidgets.atlas.value,
compressed=TMDwidgets.compress.value
).current(TMDwidgets.model.value)
# create an image around Antarctica
xlimits = [-560.*5e3,560.*5e3]
ylimits = [-560.*5e3,560.*5e3]
spacing = [20e3,-20e3]
# x and y coordinates
x = np.arange(xlimits[0],xlimits[1]+spacing[0],spacing[0])
y = np.arange(ylimits[1],ylimits[0]+spacing[1],spacing[1])
xgrid,ygrid = np.meshgrid(x,y)
# x and y dimensions
nx = int((xlimits[1]-xlimits[0])/spacing[0])+1
ny = int((ylimits[0]-ylimits[1])/spacing[1])+1
# convert image coordinates from polar stereographic to latitude/longitude
crs1 = pyproj.CRS.from_epsg(3031)
crs2 = pyproj.CRS.from_epsg(4326)
transformer = pyproj.Transformer.from_crs(crs1, crs2, always_xy=True)
lon,lat = transformer.transform(xgrid.flatten(), ygrid.flatten())
# convert from calendar date to days relative to Jan 1, 1992 (48622 MJD)
YMD = TMDwidgets.datepick.value
ts = timescale.time.Timescale().from_calendar(YMD.year, YMD.month,
YMD.day, hour=np.arange(24))
# save tide currents
tide = {}
# iterate over u and v currents
for TYPE in model.type:
# read tidal constants and interpolate to grid points
if model.format in ('OTIS','ATLAS','TMD3'):
amp,ph,D,c = pyTMD.io.OTIS.extract_constants(lon, lat, model.grid_file,
model.model_file['u'], model.projection, type=TYPE, crop=True,
method='spline', grid=model.format)
DELTAT = np.zeros_like(ts.tide)
elif (model.format == 'netcdf'):
amp,ph,D,c = pyTMD.io.ATLAS.extract_constants(lon, lat, model.grid_file,
model.model_file[TYPE], type=TYPE, crop=True, method='spline',
scale=model.scale, compressed=model.compressed)
DELTAT = np.zeros_like(ts.tide)
elif (model.format == 'GOT'):
amp,ph,c = pyTMD.io.GOT.extract_constants(lon, lat, model.model_file[TYPE],
crop=True, method='spline', scale=model.scale,
compressed=model.compressed)
# delta time (TT - UT1)
DELTAT = ts.tt_ut1
elif (model.format == 'FES'):
amp,ph = pyTMD.io.FES.extract_constants(lon, lat, model.model_file[TYPE],
type=TYPE, version=model.version, crop=True, method='spline',
scale=model.scale, compressed=model.compressed)
c = model.constituents
# delta time (TT - UT1)
DELTAT = ts.tt_ut1
# calculate complex phase in radians for Euler's
cph = -1j*ph*np.pi/180.0
# calculate constituent oscillation
hc = amp*np.exp(cph)
# allocate for tide current map calculated every hour
tide[TYPE] = np.ma.zeros((ny,nx,24))
for hour in range(24):
# predict tidal elevations at time and infer minor corrections
TIDE = pyTMD.predict.map(ts.tide[hour], hc, c, deltat=DELTAT[hour],
corrections=model.format)
MINOR = pyTMD.predict.infer_minor(ts.tide[hour], hc, c,
deltat=DELTAT[hour], corrections=model.format)
# add major and minor components and reform grid
tide[TYPE][:,:,hour] = np.reshape((TIDE+MINOR),(ny,nx))
# output Antarctic Tidal Current Animation
projection = ccrs.Stereographic(central_longitude=0.0,
central_latitude=-90.0,true_scale_latitude=-71.0)
# figure axis and image objects
ax1,im = ({},{})
fig, (ax1['u'],ax1['v']) = plt.subplots(num=1, ncols=2,
figsize=(11.5,7), subplot_kw=dict(projection=projection))
vmin = np.min([tide['u'].min(),tide['v'].min()])
vmax = np.max([tide['u'].max(),tide['v'].max()])
extent = (xlimits[0],xlimits[1],ylimits[0],ylimits[1])
for TYPE,ax in ax1.items():
# plot tidal currents
im[TYPE] = ax.imshow(np.zeros((ny,nx)),
interpolation='nearest', vmin=vmin, vmax=vmax,
transform=projection, extent=extent, origin='upper',
animated=True)
# add high resolution cartopy coastlines
ax.coastlines('10m')
# set x and y limits
ax.set_xlim(xlimits)
ax.set_ylim(ylimits)
# stronger linewidth on frame
ax.spines['geo'].set_linewidth(2.0)
ax.spines['geo'].set_capstyle('projecting')
# Add colorbar with a colorbar axis
# Add an axes at position rect [left, bottom, width, height]
cbar_ax = fig.add_axes([0.085, 0.075, 0.83, 0.035])
# extend = add extension triangles to upper and lower bounds
# options: neither, both, min, max
cbar = fig.colorbar(im['u'], cax=cbar_ax, extend='both',
extendfrac=0.0375, drawedges=False, orientation='horizontal')
# rasterized colorbar to remove lines
cbar.solids.set_rasterized(True)
# Add label to the colorbar
cbar.ax.set_title(f'{model.name} Tidal Velocity', fontsize=13,
rotation=0, y=-1.65, va='top')
cbar.ax.set_xlabel('cm/s', fontsize=13, rotation=0, va='center')
cbar.ax.xaxis.set_label_coords(1.075, 0.5)
# ticks lines all the way across
cbar.ax.tick_params(which='both', width=1, length=18,
labelsize=13, direction='in')
# add title (date and time)
ttl = fig.suptitle(None, y=0.97, fontsize=13)
# adjust subplot within figure
fig.subplots_adjust(left=0.02,right=0.98,bottom=0.1,top=0.98,wspace=0.04)
# animate each map
def animate_maps(hour):
# set map data iterating over u and v currents
for TYPE in model.type:
im[TYPE].set_data(tide[TYPE][:,:,hour])
# set title
args = (YMD.year,YMD.month,YMD.day,hour)
ttl.set_text('{0:4d}-{1:02d}-{2:02d}T{3:02d}:00:00'.format(*args))
# set animation
anim = animation.FuncAnimation(fig, animate_maps, frames=24)
%matplotlib inline
HTML(anim.to_jshtml())