## NIP MH ZS peaks
880 / 4169
## footprint
420 / 4169
## CHIP
609 / 4169
## LD 0.8 lead SNP
11002 / 44881
## footprint
5705 / 44881
## CHIP
6448 / 44881
percent <- data.frame(type=c("Lead SNP","Lead SNP","Lead SNP", "Lead SNP + LD","Lead SNP + LD","Lead SNP + LD"),group=c("ATAC peak","ATAC footprint","ChIP peak","ATAC peak","ATAC footprint","ChIP peak"),percentage=c(21.1,10.0,14.6, 24.5,12.7, 14.4))
percent$group <- factor(percent$group, levels=c("ATAC peak","ChIP peak", "ATAC footprint"))
percent
type | group | percentage |
---|---|---|
<chr> | <fct> | <dbl> |
Lead SNP | ATAC peak | 21.1 |
Lead SNP | ATAC footprint | 10.0 |
Lead SNP | ChIP peak | 14.6 |
Lead SNP + LD | ATAC peak | 24.5 |
Lead SNP + LD | ATAC footprint | 12.7 |
Lead SNP + LD | ChIP peak | 14.4 |
options(repr.plot.width = 6, repr.plot.height = 6, repr.plot.res = 100)
library(ggpubr)
library(paletteer)
ggplot(data=percent, aes(x=type, y=percentage, fill=group)) +
geom_bar(stat="identity", position=position_dodge())+
geom_text(aes(label=percentage), vjust=1.6, color="white",
position = position_dodge(0.9), size=3.5)+
scale_fill_manual(values=paletteer_d("ggthemes::Superfishel_Stone"))+theme_pubr()+xlab("") + ylab("Percentage (%)")
library(org.Osativa.eg.db)
library(ChIPseeker)
library(clusterProfiler)
library(GenomicFeatures)
gff_file <- "~/genome/oryza_sativa.gtf"
txdb <- makeTxDbFromGFF(gff_file)
peak <- readPeakFile("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/our_gwas/leadSNP/all_leadSNP_meta.txt")
peakAnno <- annotatePeak(peak, tssRegion=c(-3000, 3000),
TxDb=txdb, annoDb="org.Osativa.eg.db")
df <- peakAnno@annoStat
df$Feature <- gsub("1st Exon","Exon",df$Feature)
df$Feature <- gsub("Other Exon","Exon",df$Feature)
df$Feature <- gsub("1st Intron","Intron",df$Feature)
df$Feature <- gsub("Other Intron","Intron",df$Feature)
df$Feature <- gsub("Downstream (<=300)","Downstream (<=300 bp)",df$Feature)
constitutive <- aggregate(df$Frequency, by=list(Category=df$Feature), FUN=sum)
constitutive$Category <- factor(constitutive$Category, levels=c(constitutive[order(constitutive$x),]$Category))
constitutive
Import genomic features from the file as a GRanges object ... OK Prepare the 'metadata' data frame ... OK Make the TxDb object ... OK
>> preparing features information... 2023-04-15 11:00:06 AM >> identifying nearest features... 2023-04-15 11:00:06 AM >> calculating distance from peak to TSS... 2023-04-15 11:00:06 AM >> assigning genomic annotation... 2023-04-15 11:00:06 AM >> adding gene annotation... 2023-04-15 11:00:12 AM
Warning message in annotatePeak(peak, tssRegion = c(-3000, 3000), TxDb = txdb, annoDb = "org.Osativa.eg.db"): “Unknown ID type, gene annotation will not be added...”
>> assigning chromosome lengths 2023-04-15 11:00:12 AM >> done... 2023-04-15 11:00:12 AM
Category | x |
---|---|
<fct> | <dbl> |
3' UTR | 0.55900621 |
5' UTR | 0.04140787 |
Distal Intergenic | 37.61904762 |
Downstream (<=300) | 4.20289855 |
Exon | 0.97308489 |
Intron | 2.91925466 |
Promoter (<=1kb) | 23.33333333 |
Promoter (1-2kb) | 17.30848861 |
Promoter (2-3kb) | 13.04347826 |
constitutive$pos <- c(99,55,97,95,92,25,73,88,100)
constitutive$x <- round(as.numeric(constitutive$x),2)
p <- ggplot(data=constitutive, aes(x=x, y=Category, fill = Category)) +
geom_bar(stat="identity")+
geom_text(aes(label=x), vjust=-0.3, size=3.5)+
theme_pubr() + scale_fill_manual(values = rev(paletteer_d("ggthemes::gdoc")[1:9]))+ theme(legend.position = "none") +
xlab("Percentage (%)") + ylab("")
p
meta <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/our_gwas/cheers_LeadSNP_LD_0.8/final_snp/1.txt",sep='|')
head(meta)
V1 | V2 | V3 | V4 | V5 | V6 | |
---|---|---|---|---|---|---|
<chr> | <chr> | <chr> | <chr> | <chr> | <chr> | |
1 | 1_Panicle_Architecture_2013HN.numberofprimary | Xie_PNAS_2015_Primary_branch_number_2013HN | Primary_branch_number_2013HN | Morphological_characteristics | Xie_PNAS_2015 | Primary_branch_number |
2 | 1_Panicle_Architecture_2013HN.paniclelength | Xie_PNAS_2015_Panicle_length_2013HN | Panicle_length_2013HN | Morphological_characteristics | Xie_PNAS_2015 | Panicle_length |
3 | 1_Panicle_Architecture_2013HN.primarybranchlength | Xie_PNAS_2015_Primary_branch_length_2013HN | Primary_branch_length_2013HN | Morphological_characteristics | Xie_PNAS_2015 | Primary_branch_length |
4 | 1_Panicle_Architecture_2013HN.secondarybranchlength | Xie_PNAS_2015_Secondary_branch_length_2013HN | Secondary_branch_length_2013HN | Morphological_characteristics | Xie_PNAS_2015 | Secondary_branch_length |
5 | 1_Panicle_Architecture_2013HN.secondarybranchnumber | Xie_PNAS_2015_Secondary_branch_number_2013HN | Secondary_branch_number_2013HN | Morphological_characteristics | Xie_PNAS_2015 | Secondary_branch_number |
6 | 1_Panicle_Architecture_2013HN.spikeletsperpanicle | Xie_PNAS_2015_Spikelets_per_panicle_2013HN | Spikelets_per_panicle_2013HN | Yield_components | Xie_PNAS_2015 | Spikelets_per_panicle |
lead_snp <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/our_gwas/leadSNP/all_leadSNP_meta.txt")
head(lead_snp)
V1 | V2 | V3 | V4 | V5 | |
---|---|---|---|---|---|
<int> | <int> | <int> | <chr> | <chr> | |
1 | 4 | 22486066 | 22486066 | 1_Panicle_Architecture_2013HN.numberofprimary_5e-6 | 1_Panicle_Architecture_2013HN.numberofprimary |
2 | 8 | 1178219 | 1178219 | 1_Panicle_Architecture_2013HN.numberofprimary_5e-6 | 1_Panicle_Architecture_2013HN.numberofprimary |
3 | 8 | 1182722 | 1182722 | 1_Panicle_Architecture_2013HN.numberofprimary_5e-6 | 1_Panicle_Architecture_2013HN.numberofprimary |
4 | 7 | 5317416 | 5317416 | 1_Panicle_Architecture_2013HN.numberofprimary_5e-6 | 1_Panicle_Architecture_2013HN.numberofprimary |
5 | 8 | 1287915 | 1287915 | 1_Panicle_Architecture_2013HN.numberofprimary_5e-6 | 1_Panicle_Architecture_2013HN.numberofprimary |
6 | 8 | 1192481 | 1192481 | 1_Panicle_Architecture_2013HN.numberofprimary_5e-6 | 1_Panicle_Architecture_2013HN.numberofprimary |
library(xlsx)
lead_snp_res <- merge(lead_snp, meta, by.x="V5", by.y="V1", all=F)
head(lead_snp_res)
V5 | V1 | V2.x | V3.x | V4.x | V2.y | V3.y | V4.y | V5.y | V6 | |
---|---|---|---|---|---|---|---|---|---|---|
<chr> | <int> | <int> | <int> | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | |
1 | 1_Panicle_Architecture_2013HN.numberofprimary | 4 | 22486066 | 22486066 | 1_Panicle_Architecture_2013HN.numberofprimary_5e-6 | Xie_PNAS_2015_Primary_branch_number_2013HN | Primary_branch_number_2013HN | Morphological_characteristics | Xie_PNAS_2015 | Primary_branch_number |
2 | 1_Panicle_Architecture_2013HN.numberofprimary | 8 | 1178219 | 1178219 | 1_Panicle_Architecture_2013HN.numberofprimary_5e-6 | Xie_PNAS_2015_Primary_branch_number_2013HN | Primary_branch_number_2013HN | Morphological_characteristics | Xie_PNAS_2015 | Primary_branch_number |
3 | 1_Panicle_Architecture_2013HN.numberofprimary | 8 | 1182722 | 1182722 | 1_Panicle_Architecture_2013HN.numberofprimary_5e-6 | Xie_PNAS_2015_Primary_branch_number_2013HN | Primary_branch_number_2013HN | Morphological_characteristics | Xie_PNAS_2015 | Primary_branch_number |
4 | 1_Panicle_Architecture_2013HN.numberofprimary | 7 | 5317416 | 5317416 | 1_Panicle_Architecture_2013HN.numberofprimary_5e-6 | Xie_PNAS_2015_Primary_branch_number_2013HN | Primary_branch_number_2013HN | Morphological_characteristics | Xie_PNAS_2015 | Primary_branch_number |
5 | 1_Panicle_Architecture_2013HN.numberofprimary | 8 | 1287915 | 1287915 | 1_Panicle_Architecture_2013HN.numberofprimary_5e-6 | Xie_PNAS_2015_Primary_branch_number_2013HN | Primary_branch_number_2013HN | Morphological_characteristics | Xie_PNAS_2015 | Primary_branch_number |
6 | 1_Panicle_Architecture_2013HN.numberofprimary | 8 | 1192481 | 1192481 | 1_Panicle_Architecture_2013HN.numberofprimary_5e-6 | Xie_PNAS_2015_Primary_branch_number_2013HN | Primary_branch_number_2013HN | Morphological_characteristics | Xie_PNAS_2015 | Primary_branch_number |
pie_df <- data.frame(table(lead_snp_res$V4.y, lead_snp_res$V6))
pie_df$Var1 <- factor(pie_df$Var1, levels=c("Morphological_characteristics","Yield_components","Physiological_features","Resistance","Grain_quality","Others","Coloration"))
source("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/our_gwas/cheers_LeadSNP_LD_0.8/final_snp/PieDonut.R")
library(ggplot2)
library(moonBook)
library(webr)
library(RColorBrewer)
library(dplyr)
library(tidyr)
options(repr.plot.width = 16, repr.plot.height = 16, repr.plot.res = 100)
PieDonutCustom(pie_df, aes(Var1, Var2,count=Freq), showRatioThreshold =0.01, r0 = 0.6, r1 = 0.9, showPieName =F, donutLabelSize = 3.5,ratioByGroup = FALSE,
palette_name = paletteer_d("ggthemes::Tableau_10")[1:7],pieAlpha = 1, donutAlpha = 1)
Warning message: “`guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> = "none")` instead.” Warning message: “`guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> = "none")` instead.”
tissue_col <- read.table("/public/workspace/zhutao/encode/figure/fig7/color.txt",comment.char = "", check.names = FALSE)
color <- setNames(tissue_col$V2,tissue_col$V1)
color
trait <- "MAF.2_Stigma_Traits.Spikeletthick.fastGWA"
res_lst <- list()
a <- 1
for (i in as.numeric(c(0.1, 0.01, 0.001, 0.0001,0.00001,0.000001,0.0000001))){
gwas_p_snp <- read.table(sprintf("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/diff_p/%s_%s", trait, format(i, scientific = FALSE)))
if (nrow(gwas_p_snp) >0){
snp <- read.table(sprintf("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/nip_peak_file/overlap/%s_%s.overlap",trait, format(i, scientific = FALSE)))
snp$V2 <- snp$V1 / nrow(gwas_p_snp)
bg <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/nip_peak_file/noncoding_snp/xiewb_noncoding_overalpping_peak_num.txt")
colnames(bg) <- c("tissue","bg")
res <- cbind(snp, bg)
res$fc <- res$V2 / res$bg
final <- res[,c("tissue","fc")]
final$group <- format(i, scientific = FALSE)
res_lst[[a]] <- final
a <- a+1
}
}
df <- bind_rows(res_lst)
df$tissue <- gsub(".bed","",df$tissue)
options(repr.plot.width = 9, repr.plot.height = 6, repr.plot.res = 100)
p1 <- ggplot(df, aes(x =factor(group,levels=c("0.1", "0.01", "0.001", "0.0001","0.00001", "0.000001","0.0000001")) , y = fc, color = tissue, group = tissue)) +
geom_point(size=3) + geom_line(size=0.8)+theme_pubr()+xlab("GWAS P-value threshod") + ylab("Fold enrichment of SNPs in OCRs")+
scale_color_manual(values=color)+theme(legend.position="right")+ggtitle(trait)
p1
trait <- "rice3k_Culm_length_final.fastGWA"
res_lst <- list()
a <- 1
for (i in as.numeric(c(0.1, 0.01, 0.001, 0.0001,0.00001,0.000001,0.0000001))){
gwas_p_snp <- read.table(sprintf("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/diff_p/%s_%s", trait, format(i, scientific = FALSE)))
if (nrow(gwas_p_snp) >0){
snp <- read.table(sprintf("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/nip_peak_file/overlap/%s_%s.overlap",trait, format(i, scientific = FALSE)))
snp$V2 <- snp$V1 / nrow(gwas_p_snp)
bg <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/nip_peak_file/noncoding_snp/xiewb_noncoding_overalpping_peak_num.txt")
colnames(bg) <- c("tissue","bg")
res <- cbind(snp, bg)
res$fc <- res$V2 / res$bg
final <- res[,c("tissue","fc")]
final$group <- format(i, scientific = FALSE)
res_lst[[a]] <- final
a <- a+1
}
}
df <- bind_rows(res_lst)
df$tissue <- gsub(".bed","",df$tissue)
options(repr.plot.width = 9, repr.plot.height = 6, repr.plot.res = 100)
p1 <- ggplot(df, aes(x =factor(group,levels=c("0.1", "0.01", "0.001", "0.0001","0.00001", "0.000001","0.0000001")) , y = fc, color = tissue, group = tissue)) +
geom_point(size=3) + geom_line(size=0.8)+theme_pubr()+xlab("GWAS P-value threshod") + ylab("Fold enrichment of SNPs in OCRs")+
scale_color_manual(values=color)+theme(legend.position="right")+ggtitle(trait)
p1
## Leaf , Sheath
trait <- "rice3k_Endosperm_type_final.fastGWA"
res_lst <- list()
a <- 1
for (i in as.numeric(c(0.1, 0.01, 0.001, 0.0001,0.00001,0.000001,0.0000001))){
gwas_p_snp <- read.table(sprintf("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/diff_p/%s_%s", trait, format(i, scientific = FALSE)))
if (nrow(gwas_p_snp) >0){
snp <- read.table(sprintf("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/nip_peak_file/overlap/%s_%s.overlap",trait, format(i, scientific = FALSE)))
snp$V2 <- snp$V1 / nrow(gwas_p_snp)
bg <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/nip_peak_file/noncoding_snp/xiewb_noncoding_overalpping_peak_num.txt")
colnames(bg) <- c("tissue","bg")
res <- cbind(snp, bg)
res$fc <- res$V2 / res$bg
final <- res[,c("tissue","fc")]
final$group <- format(i, scientific = FALSE)
res_lst[[a]] <- final
a <- a+1
}
}
df <- bind_rows(res_lst)
df$tissue <- gsub(".bed","",df$tissue)
options(repr.plot.width = 9, repr.plot.height = 6, repr.plot.res = 100)
p2 <- ggplot(df, aes(x =factor(group,levels=c("0.1", "0.01", "0.001", "0.0001","0.00001", "0.000001","0.0000001")) , y = fc, color = tissue, group = tissue)) +
geom_point(size=3) + geom_line(size=0.8)+theme_pubr()+xlab("GWAS P-value threshod") + ylab("Fold enrichment of SNPs in OCRs")+
scale_color_manual(values=color)+theme(legend.position="right")+ggtitle(trait)
p2
##palea ,lemma
trait <- "MAF.2_Stigma_Traits.Spikeletwidth.fastGWA"
res_lst <- list()
a <- 1
for (i in as.numeric(c(0.1, 0.01, 0.001, 0.0001,0.00001,0.000001,0.0000001))){
gwas_p_snp <- read.table(sprintf("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/diff_p/%s_%s", trait, format(i, scientific = FALSE)))
if (nrow(gwas_p_snp) >0){
snp <- read.table(sprintf("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/nip_peak_file/overlap/%s_%s.overlap",trait, format(i, scientific = FALSE)))
snp$V2 <- snp$V1 / nrow(gwas_p_snp)
bg <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/nip_peak_file/noncoding_snp/xiewb_noncoding_overalpping_peak_num.txt")
colnames(bg) <- c("tissue","bg")
res <- cbind(snp, bg)
res$fc <- res$V2 / res$bg
final <- res[,c("tissue","fc")]
final$group <- format(i, scientific = FALSE)
res_lst[[a]] <- final
a <- a+1
}
}
df <- bind_rows(res_lst)
df$tissue <- gsub(".bed","",df$tissue)
options(repr.plot.width = 9, repr.plot.height = 6, repr.plot.res = 100)
p2 <- ggplot(df, aes(x =factor(group,levels=c("0.1", "0.01", "0.001", "0.0001","0.00001", "0.000001","0.0000001")) , y = fc, color = tissue, group = tissue)) +
geom_point(size=3) + geom_line(size=0.8)+theme_pubr()+xlab("GWAS P-value threshod") + ylab("Fold enrichment of SNPs in OCRs")+
scale_color_manual(values=color)+theme(legend.position="right")+ggtitle(trait)
p2
trait <- "MAF.Matsuoka_pheno.AwnLength2013.fastGWA"
res_lst <- list()
a <- 1
for (i in as.numeric(c(0.1, 0.01, 0.001, 0.0001,0.00001,0.000001,0.0000001))){
gwas_p_snp <- read.table(sprintf("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/diff_p/%s_%s", trait, format(i, scientific = FALSE)))
if (nrow(gwas_p_snp) >0){
snp <- read.table(sprintf("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/nip_peak_file/overlap/%s_%s.overlap",trait, format(i, scientific = FALSE)))
snp$V2 <- snp$V1 / nrow(gwas_p_snp)
bg <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/nip_peak_file/noncoding_snp/Matsuoka_noncoding_overalpping_peak_num.txt")
colnames(bg) <- c("tissue","bg")
res <- cbind(snp, bg)
res$fc <- res$V2 / res$bg
final <- res[,c("tissue","fc")]
final$group <- format(i, scientific = FALSE)
res_lst[[a]] <- final
a <- a+1
}
}
df <- bind_rows(res_lst)
df$tissue <- gsub(".bed","",df$tissue)
options(repr.plot.width = 9, repr.plot.height = 6, repr.plot.res = 100)
p3 <- ggplot(df, aes(x =factor(group,levels=c("0.1", "0.01", "0.001", "0.0001","0.00001", "0.000001","0.0000001")) , y = fc, color = tissue, group = tissue)) +
geom_point(size=3) + geom_line(size=0.8)+theme_pubr()+xlab("GWAS P-value threshod") + ylab("Fold enrichment of SNPs in OCRs")+
scale_color_manual(values=color)+theme(legend.position="right")+ggtitle(trait)
p3
meta <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/our_gwas/cheers_LeadSNP_LD_0.8/final_snp/meta.group",sep='|',row.names=1)
head(meta)
V2 | V3 | V4 | |
---|---|---|---|
<chr> | <chr> | <chr> | |
Xie_PNAS_2015_Primary_branch_number_2013HN | Primary_branch_number_2013HN | Morphological_characteristics | Xie_PNAS_2015 |
Xie_PNAS_2015_Panicle_length_2013HN | Panicle_length_2013HN | Morphological_characteristics | Xie_PNAS_2015 |
Xie_PNAS_2015_Primary_branch_length_2013HN | Primary_branch_length_2013HN | Morphological_characteristics | Xie_PNAS_2015 |
Xie_PNAS_2015_Secondary_branch_length_2013HN | Secondary_branch_length_2013HN | Morphological_characteristics | Xie_PNAS_2015 |
Xie_PNAS_2015_Secondary_branch_number_2013HN | Secondary_branch_number_2013HN | Morphological_characteristics | Xie_PNAS_2015 |
Xie_PNAS_2015_Spikelets_per_panicle_2013HN | Spikelets_per_panicle_2013HN | Yield_components | Xie_PNAS_2015 |
trait <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/our_gwas/cheers_LeadSNP_LD_0.8/final_snp/cheers/all_traits_final.txt")
head(trait)
V1 | |
---|---|
<chr> | |
1 | Liang_SCLS_2020_1000-grain_weight_CNMix_LingS16_CK |
2 | Liang_SCLS_2020_1000-grain_weight_CNMix_LingS16_NoN |
3 | Liang_SCLS_2020_1000-grain_weight_CNMix_WenJ15 |
4 | Liang_SCLS_2020_1000-grain_weight_NE_JiL16.QS |
5 | Liang_SCLS_2020_Blighted_grains_per_panicle_NE_JiL16.ZS |
6 | Liang_SCLS_2020_Blighted_grains_per_plant_CNMix_YangZ15 |
meta <- meta[rownames(meta) %in%trait$V1, ]
head(meta)
V2 | V3 | V4 | |
---|---|---|---|
<chr> | <chr> | <chr> | |
Xie_PNAS_2015_Primary_branch_number_2013HN | Primary_branch_number_2013HN | Morphological_characteristics | Xie_PNAS_2015 |
Xie_PNAS_2015_Panicle_length_2013HN | Panicle_length_2013HN | Morphological_characteristics | Xie_PNAS_2015 |
Xie_PNAS_2015_Primary_branch_length_2013HN | Primary_branch_length_2013HN | Morphological_characteristics | Xie_PNAS_2015 |
Xie_PNAS_2015_Secondary_branch_length_2013HN | Secondary_branch_length_2013HN | Morphological_characteristics | Xie_PNAS_2015 |
Xie_PNAS_2015_Secondary_branch_number_2013HN | Secondary_branch_number_2013HN | Morphological_characteristics | Xie_PNAS_2015 |
Xie_PNAS_2015_Spikelets_per_panicle_2013HN | Spikelets_per_panicle_2013HN | Yield_components | Xie_PNAS_2015 |
df <- list()
for (i in unique(rownames(meta))){
enrich <- read.table(sprintf("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/our_gwas/cheers_LeadSNP_LD_0.8/final_snp/cheers/%s_disease_enrichment_pValues.txt", i))
enrich <- enrich[enrich$V2 <0.05, ]
tissue <- read.table(sprintf("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/our_gwas/cheers_LeadSNP_LD_0.8/final_snp/cheers/%s_new_SNPsOverlappingPeaks.txt", i),head=T)
library(reshape2)
res <- melt(tissue[,-c(2,3,4,5)],id.vars = c("snp"))
res$value <- res$value / 88010
res$group <- ifelse(res$variable %in% enrich$V1, "Enrich","NOT")
res$type <- meta[sprintf("%s", i), "V3"]
df[[i]] <- res
}
Attaching package: ‘reshape2’ The following object is masked from ‘package:tidyr’: smiths
library(dplyr)
final <- bind_rows(df, .id = "column_label")
final$label <- paste(final$type, final$group, sep='_')
final$type <- factor(final$type, levels=c("Grain_quality", "Coloration","Resistance","Others","Morphological_characteristics","Physiological_features","Yield_components"))
head(final)
column_label | snp | variable | value | group | type | label | |
---|---|---|---|---|---|---|---|
<chr> | <chr> | <fct> | <dbl> | <chr> | <fct> | <chr> | |
1 | Xie_PNAS_2015_Primary_branch_number_2013HN | 7_5446488 | AM1 | 0.8269401 | Enrich | Morphological_characteristics | Morphological_characteristics_Enrich |
2 | Xie_PNAS_2015_Primary_branch_number_2013HN | 8_1193172 | AM1 | 0.7882059 | Enrich | Morphological_characteristics | Morphological_characteristics_Enrich |
3 | Xie_PNAS_2015_Primary_branch_number_2013HN | 7_5356548 | AM1 | 0.7278491 | Enrich | Morphological_characteristics | Morphological_characteristics_Enrich |
4 | Xie_PNAS_2015_Primary_branch_number_2013HN | 7_5465140 | AM1 | 0.5506761 | Enrich | Morphological_characteristics | Morphological_characteristics_Enrich |
5 | Xie_PNAS_2015_Primary_branch_number_2013HN | 8_1200461 | AM1 | 0.6339393 | Enrich | Morphological_characteristics | Morphological_characteristics_Enrich |
6 | Xie_PNAS_2015_Primary_branch_number_2013HN | 7_5356357 | AM1 | 0.7278491 | Enrich | Morphological_characteristics | Morphological_characteristics_Enrich |
library(paletteer)
library(ggplot2)
library(ggpubr)
options(repr.plot.width = 12, repr.plot.height = 6, repr.plot.res = 100)
my_comparisons <- list(c("Enrich","NOT"))
p10 <- ggplot(final, aes(x=type, y=value, fill=group)) +
geom_boxplot(outlier.shape = NA) +scale_fill_manual(values= c("#1F77B4","#C5BFBE"))+theme_pubr()+
ylab('Normalized specificity rank score') +xlab("") +theme(axis.text.x = element_text(angle = 30, vjust = 1, hjust=1)) +
theme(legend.title = element_blank())+ggtitle("") + theme(legend.position='right') +theme(plot.title = element_text(hjust = 0.5))+
stat_compare_means(comparisons = my_comparisons)
p10
Warning message: “Computation failed in `stat_signif()`: missing value where TRUE/FALSE needed”
library(paletteer)
library(ggplot2)
library(ggpubr)
trait1 <- final[final$column_label =="Liang_SCLS_2020_Grain_width_CNMix_WenJ15",]
options(repr.plot.width = 6, repr.plot.height = 6, repr.plot.res = 100)
my_comparisons <- list(c("Enrich","NOT"))
p11 <- ggplot(trait1, aes(x=group, y=value, fill=group)) +
geom_boxplot(outlier.shape = NA) +scale_fill_manual(values= c("#1F77B4","#C5BFBE"))+theme_pubr()+
ylab('Tissue specificity score') +xlab("") +
theme(legend.title = element_blank())+ggtitle("") + theme(legend.position='right') +theme(plot.title = element_text(hjust = 0.5))+
stat_compare_means(comparisons = my_comparisons)+ggtitle("Liang_SCLS_2020_Grain_width_CNMix_WenJ15")
p11
trait2 <- final[final$column_label =="Matsuoka_NG_2016_Leaf_blade_width_2013",]
library(paletteer)
library(ggplot2)
library(ggpubr)
options(repr.plot.width = 6, repr.plot.height = 6, repr.plot.res = 100)
my_comparisons <- list(c("Enrich","NOT"))
ggplot(trait2, aes(x=group, y=value, fill=group)) +
geom_boxplot(outlier.shape = NA) +scale_fill_manual(values= c("#1F77B4","#C5BFBE"))+theme_pubr()+
ylab('Tissue specificity score') +xlab("") +
theme(legend.title = element_blank())+ggtitle("") + theme(legend.position='right') +theme(plot.title = element_text(hjust = 0.5))+
stat_compare_means(comparisons = my_comparisons)+ggtitle("Matsuoka_NG_2016_Leaf_blade_width_2013")
gwas <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/4_liangcz/MAF.LiangCZ_CNMix_pheno.WenJ15.GW.fastGWA", sep='\t', head=T)
head(gwas)
CHR | SNP | POS | A1 | A2 | N | AF1 | BETA | SE | P | |
---|---|---|---|---|---|---|---|---|---|---|
<int> | <chr> | <int> | <chr> | <chr> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | |
1 | 1 | 1_1131 | 1131 | C | T | 606 | 0.0825083 | -0.01025970 | 0.0583392 | 0.860402 |
2 | 1 | 1_1132 | 1132 | G | A | 606 | 0.0808581 | -0.00931136 | 0.0580847 | 0.872640 |
3 | 1 | 1_1151 | 1151 | A | C | 606 | 0.0948845 | 0.00538894 | 0.0197179 | 0.784621 |
4 | 1 | 1_1203 | 1203 | C | T | 606 | 0.0816832 | -0.01482380 | 0.0586666 | 0.800517 |
5 | 1 | 1_1249 | 1249 | C | A | 606 | 0.0816832 | -0.01482380 | 0.0586666 | 0.800517 |
6 | 1 | 1_1266 | 1266 | A | G | 606 | 0.0816832 | -0.01482380 | 0.0586666 | 0.800517 |
gwas_f <- gwas[gwas$CHR==5 & gwas$POS>=5021581-2000000 & gwas$POS <=5021581+2000000, ]
#gwas_f <- gwas[gwas$Chr==5, ]
#gwas_f$id <- sprintf("%s_%s", gwas_f$CHR, gwas_f$POS)
gwas_f$Value <- -log10(gwas_f$P)
head(gwas_f)
CHR | SNP | POS | A1 | A2 | N | AF1 | BETA | SE | P | Value | |
---|---|---|---|---|---|---|---|---|---|---|---|
<int> | <chr> | <int> | <chr> | <chr> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | |
1439756 | 5 | 5_3029668 | 3029668 | A | T | 606 | 0.157591 | 0.01337720 | 0.0277057 | 0.629214 | 0.20120162 |
1439757 | 5 | 5_3029669 | 3029669 | A | T | 606 | 0.110561 | 0.01285280 | 0.0288909 | 0.656411 | 0.18282415 |
1439758 | 5 | 5_3029670 | 3029670 | C | T | 606 | 0.113861 | 0.01835900 | 0.0294992 | 0.533708 | 0.27269629 |
1439759 | 5 | 5_3029671 | 3029671 | A | T | 606 | 0.151815 | -0.01866250 | 0.0301876 | 0.536432 | 0.27048532 |
1439760 | 5 | 5_3029675 | 3029675 | C | G | 606 | 0.207921 | 0.00622288 | 0.0270881 | 0.818304 | 0.08708533 |
1439761 | 5 | 5_3029684 | 3029684 | G | A | 606 | 0.451320 | -0.01579120 | 0.0187416 | 0.399467 | 0.39851909 |
ld_snp <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/bed/4_LiangCZ_data/merge/snp_5_5021581.ld",head=T)
ld_snp_plot <- merge(gwas_f, ld_snp, by.x ="SNP", by.y ="SNP_B", all=F)
head(ld_snp_plot)
SNP | CHR | POS | A1 | A2 | N | AF1 | BETA | SE | P | Value | CHR_A | BP_A | SNP_A | CHR_B | BP_B | R2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<chr> | <int> | <int> | <chr> | <chr> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <int> | <int> | <chr> | <int> | <int> | <dbl> | |
1 | 5_3029668 | 5 | 3029668 | A | T | 606 | 0.157591 | 0.01337720 | 0.0277057 | 0.629214 | 0.20120162 | 5 | 5021581 | 5_5021581 | 5 | 3029668 | 0.288530 |
2 | 5_3029669 | 5 | 3029669 | A | T | 606 | 0.110561 | 0.01285280 | 0.0288909 | 0.656411 | 0.18282415 | 5 | 5021581 | 5_5021581 | 5 | 3029669 | 0.176613 |
3 | 5_3029670 | 5 | 3029670 | C | T | 606 | 0.113861 | 0.01835900 | 0.0294992 | 0.533708 | 0.27269629 | 5 | 5021581 | 5_5021581 | 5 | 3029670 | 0.168567 |
4 | 5_3029671 | 5 | 3029671 | A | T | 606 | 0.151815 | -0.01866250 | 0.0301876 | 0.536432 | 0.27048532 | 5 | 5021581 | 5_5021581 | 5 | 3029671 | 0.283589 |
5 | 5_3029675 | 5 | 3029675 | C | G | 606 | 0.207921 | 0.00622288 | 0.0270881 | 0.818304 | 0.08708533 | 5 | 5021581 | 5_5021581 | 5 | 3029675 | 0.371797 |
6 | 5_3029684 | 5 | 3029684 | G | A | 606 | 0.451320 | -0.01579120 | 0.0187416 | 0.399467 | 0.39851909 | 5 | 5021581 | 5_5021581 | 5 | 3029684 | 0.542679 |
# plant_height <- gwas[, c("CHR","SNPID","position.MSU.v6.corrected", trait)]
# plant_height$position.MSU.v6.corrected <- as.numeric(plant_height$position.MSU.v6.corrected)
# plant_height <- plant_height[complete.cases(plant_height), ]
library(ggrastr)
options(repr.plot.width = 6.5, repr.plot.height = 3, repr.plot.res = 100)
don <- ld_snp_plot %>%
# Compute chromosome size
group_by(CHR) %>%
summarise(chr_len=max(POS)) %>%
# Calculate cumulative position of each chromosome
mutate(tot=cumsum(chr_len)-chr_len) %>%
select(-chr_len) %>%
# Add this info to the initial dataset
left_join(ld_snp_plot, ., by=c("CHR"="CHR")) %>%
# Add a cumulative position of each SNP
arrange(CHR, POS) %>%
mutate( BPcum=POS+tot)
axisdf = don %>% group_by(CHR) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )
# don$P <- -log10(don[,c(4)])
p12 <- ggplot(don, aes(x=POS, y=Value)) +
# Show all points
rasterise(geom_point(aes(color=R2), alpha=0.8, size=0.6), dpi = 300) +
scale_color_gradientn(colors = paletteer_c("grDevices::Viridis", 30))+
#scale_color_manual(values = c(paletteer_d("ggthemes::Tableau_10"),paletteer_d("ggthemes::Winter"))) +
# custom X axis:
#scale_x_continuous( label = axisdf$Chr, breaks= axisdf$center ) +
scale_y_continuous(expand = c(0, 0) ) + theme(legend.position = "right")+#geom_hline(yintercept = 4, color = "#999999", size=0.5)+
ylab(expression(paste("-log10(", italic("P"),")",sep="")))+xlab('Chr 5') +
geom_vline(xintercept = 5021581,linetype="dashed", size=0.8, color = "#999999")+
# annotate(geom="text", x=5500000, y=50, label="vg0505382632",color="black")+
theme_pubr(
base_size = 12,
base_family = "",
border = TRUE,
margin = TRUE,
legend = c( "right"),
x.text.angle = 0
)
p12
#ggtitle(trait)+theme(plot.title = element_text(hjust = 0.5,size = 16))
gwas <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/8_Matsuoka/MAF.Matsuoka_pheno.LeafBladeWidth2013.fastGWA", sep='\t', head=T)
gwas_f <- gwas[gwas$CHR==4 & gwas$POS>=31427332-2000000 & gwas$POS <=31427332+2000000, ]
#gwas_f <- gwas[gwas$Chr==5, ]
#gwas_f$id <- sprintf("%s_%s", gwas_f$CHR, gwas_f$POS)
gwas_f$Value <- -log10(gwas_f$P)
ld_snp <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/bed/8_Masuoka/merge/snp_4_31427332.ld",head=T)
ld_snp_plot <- merge(gwas_f, ld_snp, by.x ="SNP", by.y ="SNP_B", all=F)
# plant_height <- gwas[, c("CHR","SNPID","position.MSU.v6.corrected", trait)]
# plant_height$position.MSU.v6.corrected <- as.numeric(plant_height$position.MSU.v6.corrected)
# plant_height <- plant_height[complete.cases(plant_height), ]
options(repr.plot.width = 6.5, repr.plot.height = 3, repr.plot.res = 100)
don <- ld_snp_plot %>%
# Compute chromosome size
group_by(CHR) %>%
summarise(chr_len=max(POS)) %>%
# Calculate cumulative position of each chromosome
mutate(tot=cumsum(chr_len)-chr_len) %>%
select(-chr_len) %>%
# Add this info to the initial dataset
left_join(ld_snp_plot, ., by=c("CHR"="CHR")) %>%
# Add a cumulative position of each SNP
arrange(CHR, POS) %>%
mutate( BPcum=POS+tot)
axisdf = don %>% group_by(CHR) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )
# don$P <- -log10(don[,c(4)])
p13 <- ggplot(don, aes(x=POS, y=Value)) +
# Show all points
rasterise(geom_point(aes(color=R2), alpha=0.8, size=0.6), dpi = 300) +
scale_color_gradientn(colors = paletteer_c("grDevices::Viridis", 30))+
#scale_color_manual(values = c(paletteer_d("ggthemes::Tableau_10"),paletteer_d("ggthemes::Winter"))) +
# custom X axis:
#scale_x_continuous( label = axisdf$Chr, breaks= axisdf$center ) +
scale_y_continuous(expand = c(0, 0) ) + theme(legend.position = "right")+#geom_hline(yintercept = 4, color = "#999999", size=0.5)+
ylab(expression(paste("-log10(", italic("P"),")",sep="")))+xlab('Chr 5') +
geom_vline(xintercept = 31427332,linetype="dashed", size=0.8, color = "#999999")+
# annotate(geom="text", x=5500000, y=50, label="vg0505382632",color="black")+
theme_pubr(
base_size = 12,
base_family = "",
border = TRUE,
margin = TRUE,
legend = c( "right"),
x.text.angle = 0
)
p13
#ggtitle(trait)+theme(plot.title = element_text(hjust = 0.5,size = 16))
Warning message: “Removed 1 rows containing missing values (geom_point).”
library(ggrastr)
gwas_plot_list <- list()
for (i in Sys.glob("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/8_Matsuoka/MAF.Matsuoka_pheno.LeafBladeWidth2013.fastGWA")){
gwas <- read.table(i,head=T)
gwas <- gwas[gwas$P<0.05,]
gwas$CHR <- factor(gwas$CHR, levels=c("1","2","3","4","5","6","7","8","9","10","11","12"))
options(repr.plot.width = 10, repr.plot.height = 4, repr.plot.res = 100)
don <- gwas %>%
# Compute chromosome size
group_by(CHR) %>%
summarise(chr_len=max(POS)) %>%
# Calculate cumulative position of each chromosome
mutate(tot=cumsum(chr_len)-chr_len) %>%
select(-chr_len) %>%
# Add this info to the initial dataset
left_join(gwas, ., by=c("CHR"="CHR")) %>%
# Add a cumulative position of each SNP
arrange(CHR, POS) %>%
mutate( BPcum=POS+tot)
axisdf = don %>% group_by(CHR) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )
don$Value<- -log10(don$P)
gwas_plot_list[[i]] <- ggplot(don, aes(x=BPcum, y=Value)) +
# Show all points
rasterise(geom_point(aes(color=CHR), alpha=0.8, size=0.6), dpi = 300) +
scale_color_manual(values = c(paletteer_d("ggthemes::Tableau_10"),paletteer_d("ggthemes::Winter"))) +
# custom X axis:
scale_x_continuous(expand = c(0.01, 0.01) ,label = axisdf$CHR, breaks= axisdf$center ) +
scale_y_continuous(expand = c(0, 0) ) + theme(legend.position = "right")+#geom_hline(yintercept = 4, color = "#999999", size=0.5)+
ylab(expression(paste("-log10(", italic("P"),")",sep="")))+xlab('Chr') +
theme_pubr(base_size = 12, base_family = "", border = TRUE,margin = TRUE, legend = c( "none"), x.text.angle = 0)+
geom_hline(yintercept = 5,linetype="dashed", size=0.8, color = "#999999")+ggtitle(gsub(".fastGWA","", basename(i))) +
theme(plot.title = element_text(hjust = 0.5))
}
gwas_plot_list[[1]]
Warning message: “Removed 15 rows containing missing values (geom_point).”
gwas <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/4_liangcz/MAF.LiangCZ_CNMix_pheno.WenJ15.GW.fastGWA",head=T)
gwas <- gwas[gwas$P<0.05,]
gwas$CHR <- factor(gwas$CHR, levels=c("1","2","3","4","5","6","7","8","9","10","11","12"))
options(repr.plot.width = 10, repr.plot.height = 4, repr.plot.res = 100)
don <- gwas %>%
# Compute chromosome size
group_by(CHR) %>%
summarise(chr_len=max(POS)) %>%
# Calculate cumulative position of each chromosome
mutate(tot=cumsum(chr_len)-chr_len) %>%
select(-chr_len) %>%
# Add this info to the initial dataset
left_join(gwas, ., by=c("CHR"="CHR")) %>%
# Add a cumulative position of each SNP
arrange(CHR, POS) %>%
mutate( BPcum=POS+tot)
axisdf = don %>% group_by(CHR) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )
don$Value<- -log10(don$P)
ggplot(don, aes(x=BPcum, y=Value)) +
# Show all points
rasterise(geom_point(aes(color=CHR), alpha=0.8, size=0.6), dpi = 300) +
scale_color_manual(values = c(paletteer_d("ggthemes::Tableau_10"),paletteer_d("ggthemes::Winter"))) +
# custom X axis:
scale_x_continuous(expand = c(0.01, 0.01) ,label = axisdf$CHR, breaks= axisdf$center ) +
scale_y_continuous(expand = c(0, 0) ) + theme(legend.position = "right")+#geom_hline(yintercept = 4, color = "#999999", size=0.5)+
ylab(expression(paste("-log10(", italic("P"),")",sep="")))+xlab('Chr') +
theme_pubr(base_size = 12, base_family = "", border = TRUE,margin = TRUE, legend = c( "none"), x.text.angle = 0)+
geom_hline(yintercept = 5,linetype="dashed", size=0.8, color = "#999999")+ggtitle("Grain Width") +
theme(plot.title = element_text(hjust = 0.5))
ocr <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/meta/diff_p/res/all_peak_num.txt")
ocr$density <- ocr$V3 / 76015188
ocr$group <- "OCRs"
cds <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/meta/diff_p/res/all_cds_num.txt")
cds$density <- cds$V3 / 78548089
cds$group <- "CDS"
ss <- rbind(ocr, cds)
ss$group <- factor(ss$group,levels=c("OCRs","CDS"))
ss$V2 <- factor(ss$V2, levels=c("e2","e3","e4","e5","e6","e10"))
head(ss)
V1 | V2 | V3 | density | group | |
---|---|---|---|---|---|
<chr> | <fct> | <int> | <dbl> | <fct> | |
1 | 529_PNAS | e2 | 32404 | 0.0004262832 | OCRs |
2 | Huang2015NC | e2 | 14051 | 0.0001848446 | OCRs |
3 | LiangCZ | e2 | 41998 | 0.0005524949 | OCRs |
4 | Matsuoka | e2 | 13939 | 0.0001833712 | OCRs |
5 | rice3k | e2 | 29307 | 0.0003855414 | OCRs |
6 | Susan_NC2011 | e2 | 22123 | 0.0002910339 | OCRs |
data_summary <- function(data, varname, groupnames){
require(plyr)
summary_func <- function(x, col){
c(mean = mean(x[[col]], na.rm=TRUE),
sd = sd(x[[col]], na.rm=TRUE))
}
data_sum<-ddply(data, groupnames, .fun=summary_func,
varname)
data_sum <- rename(data_sum, c("mean" = varname))
return(data_sum)
}
df2 <- data_summary(ss, varname="density",
groupnames=c("V2", "group"))
head(df2)
V2 | group | density | sd | |
---|---|---|---|---|
<fct> | <fct> | <dbl> | <dbl> | |
1 | e2 | OCRs | 3.372615e-04 | 1.453488e-04 |
2 | e2 | CDS | 2.962665e-04 | 1.454060e-04 |
3 | e3 | OCRs | 1.741319e-04 | 6.303524e-05 |
4 | e3 | CDS | 1.066268e-04 | 6.943044e-05 |
5 | e4 | OCRs | 7.663819e-05 | 2.152162e-05 |
6 | e4 | CDS | 3.978455e-05 | 3.291918e-05 |
library(dplyr)
library(ggpubr)
library(rstatix)
stat.test <- ss %>%
group_by(V2) %>%
t_test(density ~ group) %>%
adjust_pvalue(method = "bonferroni") %>%
add_significance("p.adj")
stat.test
V2 | .y. | group1 | group2 | n1 | n2 | statistic | df | p | p.adj | p.adj.signif | |
---|---|---|---|---|---|---|---|---|---|---|---|
<fct> | <chr> | <chr> | <chr> | <int> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <chr> | |
1 | e2 | density | OCRs | CDS | 6 | 6 | 0.4884221 | 9.999998 | 0.636000 | 1.000000 | ns |
2 | e3 | density | OCRs | CDS | 6 | 6 | 1.7632664 | 9.908055 | 0.109000 | 0.654000 | ns |
3 | e4 | density | OCRs | CDS | 6 | 6 | 2.2952589 | 8.613955 | 0.048600 | 0.291600 | ns |
4 | e5 | density | OCRs | CDS | 6 | 6 | 3.2636036 | 9.179251 | 0.009530 | 0.057180 | ns |
5 | e6 | density | OCRs | CDS | 6 | 6 | 5.0355624 | 9.003983 | 0.000703 | 0.004218 | ** |
6 | e10 | density | OCRs | CDS | 6 | 6 | 3.4424619 | 7.664199 | 0.009390 | 0.056340 | ns |
options(repr.plot.width = 6.5, repr.plot.height = 6, repr.plot.res = 100)
bp <- ggbarplot(
ss, x = "V2", y = "density", add = "mean_sd",
fill= "group",color="#8D8680", palette = c("#00AFBB", "#E7B800"),
position = position_dodge(0.8))
stat.test <- stat.test %>%
add_xy_position(fun = "mean_sd", x = "V2", dodge = 0.8)
p1 <- bp + stat_pvalue_manual(
stat.test, label = "p", tip.length = 0.01,y.position=rev(sort(df2[df2$group=="OCRs",]$density)+5e-5))+xlab("GWAS P-value")+ylab("Normalized SNPs density")
p1
phe <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/our_gwas/cheers/new_snp/enrich_out/loop.txt",sep='|')
res_lst <- list()
for (i in phe$V1){
aa <- read.table(sprintf("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/our_gwas/cheers/new_snp/enrich_out/%s_disease_enrichment_pValues.txt",i),row.names=1)
colnames(aa) <- i
#aa$score <- -log10(aa$V2)
res_lst[[i]] <- aa
}
library(rlist)
all_res <- list.cbind(res_lst)
all_res <- -log10(all_res)
#colnames(all_res) <- gsub("out","",colnames(all_res))
#rownames(all_res) <- gsub("_raw_new_quant", "", rownames(all_res))
colnames(all_res) <- phe$V1
all_meta <- phe[,c(4,3)]
rownames(all_meta) <- colnames(all_res)
colnames(all_meta) <- c("Type","Study")
all_meta$Type <- factor(all_meta$Type, levels = c("Morphological_characteristics","Physiological_features","Yield_components","Grain_quality","Resistance","Coloration","Others"))
head(all_meta)
Type | Study | |
---|---|---|
<fct> | <chr> | |
Huang_2015_NC_Alkali_digestion_value_21stCN | Grain_quality | Huang_2015_NC |
Huang_2015_NC_Amylose_content_21stCN | Grain_quality | Huang_2015_NC |
Huang_2015_NC_Blast_resistance_2013HZ | Resistance | Huang_2015_NC |
Huang_2015_NC_Chalkiness_degree_21stCN | Grain_quality | Huang_2015_NC |
Huang_2015_NC_Gel_consistency_21stCN | Others | Huang_2015_NC |
Huang_2015_NC_Grain_length_2012HZ | Yield_components | Huang_2015_NC |
snp_num <- read.table("/mnt/public2/zhutao/encode/encode_related/figure/fig7/hxh_ng2021_gwas/our_gwas/cheers/new_snp/enrich_out/all_snp_num_overlapping.txt")
snp_num$V4 <-snp_num$V2 - snp_num$V3+1
snp_num$percentage <- snp_num$V3 / snp_num$V2
snp_num$percentage <- round(snp_num$percentage,4)*100
snp_num <- snp_num[snp_num$V2 >= 20,]
head(snp_num)
V1 | V2 | V3 | V4 | percentage | |
---|---|---|---|---|---|
<chr> | <int> | <int> | <dbl> | <dbl> | |
1 | Huang_2015_NC_Alkali_digestion_value_21stCN | 20 | 3 | 18 | 15.00 |
2 | Huang_2015_NC_Amylose_content_21stCN | 30 | 5 | 26 | 16.67 |
4 | Huang_2015_NC_Chalkiness_degree_21stCN | 27 | 7 | 21 | 25.93 |
6 | Huang_2015_NC_Grain_length_2012HZ | 40 | 6 | 35 | 15.00 |
7 | Huang_2015_NC_Grain_length_2012SY | 33 | 5 | 29 | 15.15 |
9 | Huang_2015_NC_Grain_width_2012HZ | 55 | 7 | 49 | 12.73 |
per_res <- merge(all_meta,snp_num, by.x=0, by.y="V1", all=F)
data_summary <- function(data, varname, groupnames){
require(plyr)
summary_func <- function(x, col){
c(mean = mean(x[[col]], na.rm=TRUE),
sd = sd(x[[col]], na.rm=TRUE))
}
data_sum<-ddply(data, groupnames, .fun=summary_func,
varname)
data_sum <- rename(data_sum, c("mean" = varname))
return(data_sum)
}
df2 <- data_summary(per_res, varname="percentage",
groupnames=c("Type"))
df2$Type <- factor(df2$Type, levels=c("Grain_quality","Coloration","Resistance","Others",
"Morphological_characteristics","Physiological_features","Yield_components"))
head(df2)
Type | percentage | sd | |
---|---|---|---|
<fct> | <dbl> | <dbl> | |
1 | Morphological_characteristics | 19.09912 | 9.452407 |
2 | Physiological_features | 21.79824 | 10.957696 |
3 | Yield_components | 20.57173 | 9.273777 |
4 | Grain_quality | 16.70600 | 8.474876 |
5 | Resistance | 14.93500 | 1.774838 |
6 | Coloration | 20.47000 | 7.645338 |
library(ggplot2)
library(paletteer)
options(repr.plot.width = 8, repr.plot.height = 6, repr.plot.res = 100)
library(ggpubr)
gcols <- setNames(as.character(paletteer_d("ggthemes::Tableau_10")[1:7]),c("Morphological_characteristics","Physiological_features","Yield_components","Grain_quality","Resistance","Coloration","Others"))
p<- ggplot(df2, aes(x=Type, y=percentage, fill=Type)) +
geom_bar(stat="identity", color="black",
position=position_dodge()) +
geom_errorbar(aes(ymin=percentage-sd, ymax=percentage+sd), width=.2,
position=position_dodge(.9)) + scale_fill_manual(values=gcols)+theme_pubr()+
theme(axis.text.x = element_text(angle = 30, vjust = 1, hjust=1))+xlab("")+ylab("% GWAS associted SNPs in peak")+
theme(legend.position="none")+ggtitle("# SNPs >= 20 included")
p
library(readxl)
all_qtn <- as.data.frame(read_excel("/public/workspace/zhutao/encode/figure/df/RiceNaviQTRSite.xlsx"))
all_qtn <- all_qtn[, c(2,3,8,9)]
all_qtn$Chr <- gsub("Chr","",all_qtn$Chr)
head(all_qtn)
Chr | Pos_7.0 | Ref_geno | Alt_geno | |
---|---|---|---|---|
<chr> | <chr> | <chr> | <chr> | |
1 | 1 | 5271719 | TTCAGCCATGGG | T |
2 | 1 | 5270928 | A | C |
3 | 1 | 5568692 | T | C |
4 | 1 | 8657646 | T | <INS> |
5 | 1 | 18722895 | C | T |
6 | 1 | 22376434 | C | T |
#all_qtn[nchar(all_qtn$Ref_geno)!=1 | nchar(all_qtn$Alt_geno)!=1, ]
#write.table(all_qtn[nchar(all_qtn$Ref_geno)!=1 | nchar(all_qtn$Alt_geno)!=1, ], "/public/workspace202011/encode/zhutao/analysis/Figure/Fig7/riceNavi/QTN_INDEL.txt",sep='\t',quote=F,col.names=F,row.names=F)
qtn_peak<- read.table("/public/workspace/zhutao/encode/figure/df/qtn_overlapping_peak.txt")
qtn_peak$peak<- sprintf("%s:%s-%s",qtn_peak$V8, qtn_peak$V9,qtn_peak$V10)
head(qtn_peak)
V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | peak | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
<int> | <int> | <int> | <chr> | <chr> | <chr> | <chr> | <int> | <int> | <int> | <dbl> | <chr> | |
1 | 1 | 5244076 | 5244076 | Plant_Architecture | D2/CYP90D2/SMG11 | LOC_Os01g10040 | NA | 1 | 5243791 | 5245854 | 0.2750 | 1:5243791-5245854 |
2 | 1 | 29568422 | 29568422 | Abiotic_Stress | OsCBL10 | LOC_Os01g51420 | decreasing_flooding_tolerance | 1 | 29567874 | 29569078 | 0.1986 | 1:29567874-29569078 |
3 | 1 | 33453244 | 33453244 | Others | OsPME1 | LOC_Os01g57854 | more_MeOH-Jasmonates | 1 | 33453031 | 33454407 | 0.2896 | 1:33453031-33454407 |
4 | 1 | 36461792 | 36461792 | Seed_Morphology | qSH1 | LOC_Os01g62920 | seed_shattering | 1 | 36460723 | 36462038 | 0.2904 | 1:36460723-36462038 |
5 | 1 | 37694037 | 37694037 | Others | OsPsbS1 | LOC_Os01g64960 | decreasing_nonphotochemical_quenching | 1 | 37693554 | 37694138 | 0.2012 | 1:37693554-37694138 |
6 | 2 | 1663821 | 1663821 | Abiotic_Stress | NRAT1 | LOC_Os02g03900 | decreasing_Al_tolerance | 2 | 1663194 | 1665900 | 0.2166 | 2:1663194-1665900 |
merge(qtn_peak, all_qtn, by.x=c("V1","V2"), by.y=c("Chr","Pos_7.0"),all =F)
V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | peak | Ref_geno | Alt_geno |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<int> | <int> | <int> | <chr> | <chr> | <chr> | <chr> | <int> | <int> | <int> | <dbl> | <chr> | <chr> | <chr> |
1 | 29568422 | 29568422 | Abiotic_Stress | OsCBL10 | LOC_Os01g51420 | decreasing_flooding_tolerance | 1 | 29567874 | 29569078 | 0.1986 | 1:29567874-29569078 | GGCC | G |
1 | 33453244 | 33453244 | Others | OsPME1 | LOC_Os01g57854 | more_MeOH-Jasmonates | 1 | 33453031 | 33454407 | 0.2896 | 1:33453031-33454407 | C | T |
1 | 36461792 | 36461792 | Seed_Morphology | qSH1 | LOC_Os01g62920 | seed_shattering | 1 | 36460723 | 36462038 | 0.2904 | 1:36460723-36462038 | T | G |
1 | 37694037 | 37694037 | Others | OsPsbS1 | LOC_Os01g64960 | decreasing_nonphotochemical_quenching | 1 | 37693554 | 37694138 | 0.2012 | 1:37693554-37694138 | A | <DEL> |
1 | 5244076 | 5244076 | Plant_Architecture | D2/CYP90D2/SMG11 | LOC_Os01g10040 | NA | 1 | 5243791 | 5245854 | 0.2750 | 1:5243791-5245854 | G | T |
11 | 7659694 | 7659694 | Biotic_Stress | LHCB5 | LOC_Os11g13890 | increasing_blast_resistance | 11 | 7659207 | 7659980 | 0.1049 | 11:7659207-7659980 | T | C |
2 | 1663821 | 1663821 | Abiotic_Stress | NRAT1 | LOC_Os02g03900 | decreasing_Al_tolerance | 2 | 1663194 | 1665900 | 0.2166 | 2:1663194-1665900 | G | A |
2 | 23991055 | 23991055 | Heading_date | OsCOL4 | LOC_Os02g39710 | promoting_heading_date | 2 | 23988750 | 23992452 | 0.1470 | 2:23988750-23992452 | GTGCA | G |
2 | 35370598 | 35370598 | Secondary_metabolism | Trigonelline_gwas | LOC_Os02g57760 | fewer_trigonelline | 2 | 35369938 | 35371558 | 0.1530 | 2:35369938-35371558 | G | T |
3 | 1270327 | 1270327 | Heading_date | OsMADS50/Hd9/OsSOC1/DTH3 | LOC_Os03g03070 | delaying_heading_date | 3 | 1269961 | 1270424 | 0.2054 | 3:1269961-1270424 | T | C |
3 | 28428731 | 28428731 | Plant_Architecture | SCM3/OsTB1 | LOC_Os03g49880 | increasing_lodging_resistance | 3 | 28427919 | 28429846 | 0.3795 | 3:28427919-28429846 | G | GTGTA |
3 | 35382034 | 35382034 | Secondary_metabolism | OsUGT706C2 | LOC_Os03g62480 | more_tricin-lignan-glycosides | 3 | 35381997 | 35382464 | 0.4727 | 3:35381997-35382464 | T | A |
3 | 36150781 | 36150781 | Yield_components | GNP1 | LOC_Os03g63970 | increaing_grain_number_and_plant_height | 3 | 36150422 | 36151111 | 0.2510 | 3:36150422-36151111 | G | A |
4 | 27940807 | 27940807 | Seed_Morphology | Kala4 | LOC_Os04g47059 | black_seed_coat | 4 | 27940636 | 27940924 | 0.3560 | 4:27940636-27940924 | A | <DEL> |
5 | 3339934 | 3339934 | Taste_quality | Chalk5 | LOC_Os05g06480 | decreasing_of_chalkiness | 5 | 3338890 | 3340409 | 0.4256 | 5:3338890-3340409 | G | C |
6 | 1468526 | 1468526 | Yield_components | GS6/DLT/OsGRAS-32/SMOS2/D62 | LOC_Os06g03710 | decreasing_grain_size | 6 | 1468502 | 1469353 | 0.1596 | 6:1468502-1469353 | T | TCTCTCACTCTCA,TCTCTCA,TCTCTCACTCTCACTCTCA |
6 | 27024794 | 27024794 | Seed_Morphology | Hairy_Leaf_6/HL6 | LOC_Os06g44750 | increasing_grain_weight_and_plant_height | 6 | 27024597 | 27025523 | 0.5870 | 6:27024597-27025523 | C | CCAAAGTTTAACAGTATAGT |
6 | 5758523 | 5758523 | Yield_components | S5-4/ORF4 | NA | hybrid_incompatibility | 6 | 5758451 | 5758909 | 0.3100 | 6:5758451-5758909 | AGCCGCGTAGCT | A |
7 | 19103249 | 19103249 | Yield_components | OsSPL13/GLW7 | LOC_Os07g32170 | increasing_grain_size | 7 | 19102707 | 19103489 | 0.2070 | 7:19102707-19103489 | AGTGGAAGGC | A |
7 | 24669233 | 24669233 | Yield_components | GW7 | LOC_Os07g41200 | increasing_grain_length | 7 | 24668860 | 24669707 | 0.1938 | 7:24668860-24669707 | CTATCACTTTCT | C |
7 | 28306257 | 28306257 | Yield_components | SGDP7/FZP | LOC_Os07g47330 | loose_panicle | 7 | 28305972 | 28306257 | 0.2843 | 7:28305972-28306257 | C | CGCGTGCGCGTCCGTGCGT |
8 | 20379883 | 20379883 | Taste_quality | Badh2 | LOC_Os08g32870 | fragrance | 8 | 20379632 | 20380931 | 0.1694 | 8:20379632-20380931 | ATCG | A |
8 | 25282468 | 25282468 | Yield_components | qWS8/ipa1-2D/IPA1 | LOC_Os08g39890 | increasing_grain_number_and_lodging_resistance | 8 | 25281770 | 25283332 | 0.2821 | 8:25281770-25283332 | G | <DUP:TANDEM> |
8 | 26887943 | 26887943 | Plant_Architecture | OsOTUB1/WTG1 | LOC_Os08g42540 | decreasing_tiller_number_and_increasing_grain_number | 8 | 26887110 | 26888555 | 0.0849 | 8:26887110-26888555 | C | T |
8 | 26909531 | 26909531 | Biotic_Stress | OsCERK1 | LOC_Os08g42580 | increasing_blast_resistance | 8 | 26908072 | 26909807 | 0.1439 | 8:26908072-26909807 | T | C |
8 | 7573789 | 7573789 | Others | ARE1 | LOC_Os08g12780 | higher_nitrogen_use_efficiency | 8 | 7573012 | 7574115 | 0.1834 | 8:7573012-7574115 | G | GAGAAGA,GAGA |
8 | 7573877 | 7573877 | Others | ARE1 | LOC_Os08g12780 | higher_nitrogen_use_efficiency | 8 | 7573012 | 7574115 | 0.1834 | 8:7573012-7574115 | G | GGGCGGT |
quant <- read.table("/public/workspace/zhutao/encode/figure/df/all_nip_norm_quant_nonumi.csv",row.names=1,head=T)
head(quant)
AM1 | AM2 | Callus | DBuds | Leaf | Lemma | Palea | Panicle1 | Panicle2 | Panicle3 | ⋯ | Radicle | Root | SAM1 | SAM2 | Seed1 | Seed2 | Seed3 | Sheath | Stamen | Stem | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | |
1:932-1367 | 29.592998 | 24.778384 | 39.674464 | 26.045605 | 43.241376 | 25.322551 | 28.897345 | 42.485936 | 47.680312 | 42.724650 | ⋯ | 21.601305 | 26.933062 | 25.379986 | 23.320625 | 15.318369 | 17.555257 | 27.503044 | 44.506075 | 30.861125 | 23.856659 |
1:1545-1998 | 11.335790 | 7.931271 | 6.061957 | 8.677175 | 4.387354 | 7.087727 | 8.790089 | 6.457198 | 5.654643 | 6.014897 | ⋯ | 6.042248 | 3.062709 | 6.861881 | 5.837531 | 5.157944 | 5.151602 | 3.985935 | 2.601420 | 7.013793 | 7.298351 |
1:2880-3185 | 8.533536 | 7.572785 | 4.650813 | 9.441819 | 5.469038 | 7.611844 | 6.229068 | 8.544288 | 8.398536 | 8.600257 | ⋯ | 6.291209 | 7.870277 | 10.191581 | 7.922741 | 7.490575 | 6.421707 | 7.772640 | 5.519641 | 5.255528 | 6.122505 |
1:10786-12288 | 12.738729 | 11.979256 | 7.361524 | 10.552038 | 3.473444 | 9.191867 | 10.413689 | 7.665979 | 8.374417 | 6.295128 | ⋯ | 20.440145 | 15.922940 | 11.828428 | 13.128515 | 10.474541 | 11.874800 | 9.797109 | 7.083662 | 7.432293 | 14.205680 |
1:12553-13989 | 10.678965 | 10.127125 | 5.876215 | 13.569387 | 3.583657 | 9.597135 | 9.659905 | 11.592298 | 10.276884 | 9.458964 | ⋯ | 9.255321 | 4.830805 | 11.756270 | 12.033285 | 11.124700 | 10.650355 | 6.543620 | 4.830071 | 8.431680 | 12.598888 |
1:16207-16945 | 9.102782 | 8.809453 | 6.333020 | 8.829585 | 4.472388 | 7.329082 | 8.181477 | 9.224296 | 8.832764 | 8.486252 | ⋯ | 9.520681 | 7.579503 | 10.094199 | 10.255366 | 10.107924 | 9.204151 | 5.775428 | 4.927290 | 9.967929 | 10.784901 |
selected_qtn <- merge(qtn_peak, quant, by.x="peak",by.y=0,all=F)
selected_qtn
peak | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | ⋯ | Radicle | Root | SAM1 | SAM2 | Seed1 | Seed2 | Seed3 | Sheath | Stamen | Stem |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<chr> | <int> | <int> | <int> | <chr> | <chr> | <chr> | <chr> | <int> | <int> | ⋯ | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> |
1:29567874-29569078 | 1 | 29568422 | 29568422 | Abiotic_Stress | OsCBL10 | LOC_Os01g51420 | decreasing_flooding_tolerance | 1 | 29567874 | ⋯ | 10.288760 | 8.688213 | 9.548040 | 6.380766 | 10.551413 | 11.378676 | 15.476408 | 6.068397 | 6.252554 | 7.856537 |
1:33453031-33454407 | 1 | 33453244 | 33453244 | Others | OsPME1 | LOC_Os01g57854 | more_MeOH-Jasmonates | 1 | 33453031 | ⋯ | 5.003759 | 3.985146 | 4.479121 | 5.318094 | 3.584821 | 6.897511 | 7.855527 | 4.159788 | 13.479840 | 7.675379 |
1:36460723-36462038 | 1 | 36461792 | 36461792 | Seed_Morphology | qSH1 | LOC_Os01g62920 | seed_shattering | 1 | 36460723 | ⋯ | 9.763615 | 5.610253 | 31.320706 | 19.520101 | 6.265017 | 6.971872 | 5.118773 | 16.719687 | 12.995014 | 6.238903 |
1:37693554-37694138 | 1 | 37694037 | 37694037 | Others | OsPsbS1 | LOC_Os01g64960 | decreasing_nonphotochemical_quenching | 1 | 37693554 | ⋯ | 6.426342 | 11.350553 | 4.909693 | 7.143444 | 6.816415 | 7.367662 | 12.914173 | 8.532761 | 3.872063 | 7.076526 |
1:5243791-5245854 | 1 | 5244076 | 5244076 | Plant_Architecture | D2/CYP90D2/SMG11 | LOC_Os01g10040 | NA | 1 | 5243791 | ⋯ | 7.454565 | 5.454878 | 23.965173 | 18.807443 | 4.849195 | 5.342923 | 8.216577 | 5.516431 | 4.634207 | 3.872937 |
11:7659207-7659980 | 11 | 7659694 | 7659694 | Biotic_Stress | LHCB5 | LOC_Os11g13890 | increasing_blast_resistance | 11 | 7659207 | ⋯ | 13.616151 | 14.045292 | 20.626279 | 24.064680 | 23.666637 | 24.596644 | 26.743343 | 14.069016 | 10.923723 | 19.959526 |
2:1663194-1665900 | 2 | 1663821 | 1663821 | Abiotic_Stress | NRAT1 | LOC_Os02g03900 | decreasing_Al_tolerance | 2 | 1663194 | ⋯ | 16.476096 | 15.251240 | 6.327855 | 6.731137 | 9.357451 | 8.770380 | 6.441183 | 5.636521 | 7.838240 | 9.514093 |
2:23988750-23992452 | 2 | 23991055 | 23991055 | Heading_date | OsCOL4 | LOC_Os02g39710 | promoting_heading_date | 2 | 23988750 | ⋯ | 21.929487 | 23.955684 | 24.878635 | 24.816359 | 46.761829 | 41.911987 | 31.723272 | 26.730303 | 43.886823 | 37.368451 |
2:35369938-35371558 | 2 | 35370598 | 35370598 | Secondary_metabolism | Trigonelline_gwas | LOC_Os02g57760 | fewer_trigonelline | 2 | 35369938 | ⋯ | 14.701189 | 12.520105 | 13.381874 | 10.061447 | 9.732948 | 9.524288 | 9.083493 | 6.567692 | 8.021748 | 14.852744 |
3:1269961-1270424 | 3 | 1270327 | 1270327 | Heading_date | OsMADS50/Hd9/OsSOC1/DTH3 | LOC_Os03g03070 | delaying_heading_date | 3 | 1269961 | ⋯ | 5.485125 | 14.364460 | 8.449972 | 5.120611 | 3.289597 | 6.232916 | 16.209562 | 19.416501 | 6.615017 | 13.289671 |
3:28427919-28429846 | 3 | 28428731 | 28428731 | Plant_Architecture | SCM3/OsTB1 | LOC_Os03g49880 | increasing_lodging_resistance | 3 | 28427919 | ⋯ | 2.972620 | 1.382824 | 7.717821 | 5.749419 | 2.353210 | 2.838377 | 3.155256 | 1.852102 | 5.570289 | 3.590260 |
3:35381997-35382464 | 3 | 35382034 | 35382034 | Secondary_metabolism | OsUGT706C2 | LOC_Os03g62480 | more_tricin-lignan-glycosides | 3 | 35381997 | ⋯ | 4.833905 | 9.997291 | 1.204997 | 1.366818 | 4.892131 | 4.127122 | 4.576605 | 2.162943 | 2.819481 | 2.687609 |
3:36150422-36151111 | 3 | 36150781 | 36150781 | Yield_components | GNP1 | LOC_Os03g63970 | increaing_grain_number_and_plant_height | 3 | 36150422 | ⋯ | 6.552783 | 6.776103 | 5.950530 | 6.617290 | 2.838574 | 6.365835 | 10.892638 | 4.300353 | 6.563962 | 7.375442 |
4:27940636-27940924 | 4 | 27940807 | 27940807 | Seed_Morphology | Kala4 | LOC_Os04g47059 | black_seed_coat | 4 | 27940636 | ⋯ | 6.368628 | 8.487775 | 2.977426 | 2.928725 | 2.463953 | 2.966292 | 6.141594 | 1.519818 | 3.379205 | 7.759425 |
5:3338890-3340409 | 5 | 3339934 | 3339934 | Taste_quality | Chalk5 | LOC_Os05g06480 | decreasing_of_chalkiness | 5 | 3338890 | ⋯ | 5.851643 | 2.841592 | 5.380535 | 5.087581 | 24.075913 | 17.036732 | 5.183359 | 2.903717 | 8.668186 | 6.005617 |
6:1468502-1469353 | 6 | 1468526 | 1468526 | Yield_components | GS6/DLT/OsGRAS-32/SMOS2/D62 | LOC_Os06g03710 | decreasing_grain_size | 6 | 1468502 | ⋯ | 54.545805 | 43.889400 | 72.990661 | 78.381611 | 109.073509 | 80.431893 | 30.614148 | 56.300992 | 28.657493 | 50.721107 |
6:27024597-27025523 | 6 | 27024794 | 27024794 | Seed_Morphology | Hairy_Leaf_6/HL6 | LOC_Os06g44750 | increasing_grain_weight_and_plant_height | 6 | 27024597 | ⋯ | 5.210869 | 2.140400 | 5.845529 | 7.976336 | 1.925162 | 2.182646 | 2.851928 | 2.217990 | 2.720194 | 2.148827 |
6:5758451-5758909 | 6 | 5758523 | 5758523 | Yield_components | S5-4/ORF4 | NA | hybrid_incompatibility | 6 | 5758451 | ⋯ | 5.175339 | 5.529626 | 3.978569 | 5.226287 | 1.624965 | 2.934382 | 3.996059 | 2.793565 | 6.562238 | 3.876695 |
7:19102707-19103489 | 7 | 19103249 | 19103249 | Yield_components | OsSPL13/GLW7 | LOC_Os07g32170 | increasing_grain_size | 7 | 19102707 | ⋯ | 10.717037 | 7.209358 | 28.955654 | 32.329145 | 7.502984 | 10.018520 | 9.974199 | 13.261256 | 16.032289 | 18.712005 |
7:24668860-24669707 | 7 | 24669233 | 24669233 | Yield_components | GW7 | LOC_Os07g41200 | increasing_grain_length | 7 | 24668860 | ⋯ | 16.924090 | 7.904120 | 26.638644 | 25.757159 | 8.418890 | 11.180802 | 8.338645 | 16.298257 | 15.748191 | 10.806547 |
7:28305972-28306257 | 7 | 28306257 | 28306257 | Yield_components | SGDP7/FZP | LOC_Os07g47330 | loose_panicle | 7 | 28305972 | ⋯ | 6.930717 | 1.545427 | 7.992037 | 7.438879 | 5.951443 | 5.117710 | 3.534110 | 2.008375 | 7.532594 | 6.766980 |
8:20379632-20380931 | 8 | 20379883 | 20379883 | Taste_quality | Badh2 | LOC_Os08g32870 | fragrance | 8 | 20379632 | ⋯ | 15.184239 | 10.867064 | 11.964713 | 12.688158 | 18.480272 | 16.802247 | 10.789158 | 6.194831 | 17.363818 | 14.021904 |
8:25281770-25283332 | 8 | 25282468 | 25282468 | Yield_components | qWS8/ipa1-2D/IPA1 | LOC_Os08g39890 | increasing_grain_number_and_lodging_resistance | 8 | 25281770 | ⋯ | 10.730759 | 6.513648 | 40.195245 | 47.242307 | 16.022427 | 14.546788 | 7.336884 | 10.540678 | 9.730646 | 8.407666 |
8:26887110-26888555 | 8 | 26887943 | 26887943 | Plant_Architecture | OsOTUB1/WTG1 | LOC_Os08g42540 | decreasing_tiller_number_and_increasing_grain_number | 8 | 26887110 | ⋯ | 34.173953 | 31.882854 | 42.837839 | 39.629739 | 33.166234 | 32.177442 | 23.010787 | 30.803801 | 31.931944 | 31.565858 |
8:26908072-26909807 | 8 | 26909531 | 26909531 | Biotic_Stress | OsCERK1 | LOC_Os08g42580 | increasing_blast_resistance | 8 | 26908072 | ⋯ | 24.395897 | 33.027155 | 20.835115 | 23.295856 | 23.752043 | 22.271519 | 25.479649 | 26.489507 | 16.514399 | 16.444308 |
8:7573012-7574115 | 8 | 7573789 | 7573789 | Others | ARE1 | LOC_Os08g12780 | higher_nitrogen_use_efficiency | 8 | 7573012 | ⋯ | 5.704983 | 3.813478 | 13.799274 | 11.181271 | 8.614655 | 9.086404 | 7.850994 | 3.388349 | 7.759323 | 7.604562 |
8:7573012-7574115 | 8 | 7573877 | 7573877 | Others | ARE1 | LOC_Os08g12780 | higher_nitrogen_use_efficiency | 8 | 7573012 | ⋯ | 5.704983 | 3.813478 | 13.799274 | 11.181271 | 8.614655 | 9.086404 | 7.850994 | 3.388349 | 7.759323 | 7.604562 |
df <- selected_qtn[,c(13:36)]
rownames(df) <- paste(selected_qtn$V1,selected_qtn$V2,sep=":")
head(df)
AM1 | AM2 | Callus | DBuds | Leaf | Lemma | Palea | Panicle1 | Panicle2 | Panicle3 | ⋯ | Radicle | Root | SAM1 | SAM2 | Seed1 | Seed2 | Seed3 | Sheath | Stamen | Stem | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | |
1:29568422 | 9.610955 | 12.907450 | 6.147549 | 9.741877 | 5.011126 | 9.682274 | 10.181095 | 8.194021 | 6.954185 | 8.765212 | ⋯ | 10.288760 | 8.688213 | 9.548040 | 6.380766 | 10.551413 | 11.378676 | 15.476408 | 6.068397 | 6.252554 | 7.856537 |
1:33453244 | 7.412705 | 8.040512 | 4.638983 | 5.820248 | 2.630841 | 8.041210 | 9.324564 | 4.328917 | 4.153855 | 3.842169 | ⋯ | 5.003759 | 3.985146 | 4.479121 | 5.318094 | 3.584821 | 6.897511 | 7.855527 | 4.159788 | 13.479840 | 7.675379 |
1:36461792 | 16.101557 | 22.248055 | 9.431760 | 17.998967 | 1.916221 | 7.700518 | 7.441529 | 19.574886 | 17.022751 | 18.385594 | ⋯ | 9.763615 | 5.610253 | 31.320706 | 19.520101 | 6.265017 | 6.971872 | 5.118773 | 16.719687 | 12.995014 | 6.238903 |
1:37694037 | 5.721473 | 4.736192 | 10.618805 | 5.470987 | 8.386469 | 7.358652 | 7.219419 | 6.602445 | 10.016297 | 8.077867 | ⋯ | 6.426342 | 11.350553 | 4.909693 | 7.143444 | 6.816415 | 7.367662 | 12.914173 | 8.532761 | 3.872063 | 7.076526 |
1:5244076 | 15.037183 | 15.411541 | 23.245828 | 20.632923 | 2.735337 | 4.788755 | 4.768619 | 19.914935 | 14.927770 | 19.594705 | ⋯ | 7.454565 | 5.454878 | 23.965173 | 18.807443 | 4.849195 | 5.342923 | 8.216577 | 5.516431 | 4.634207 | 3.872937 |
11:7659694 | 17.517752 | 16.489157 | 14.374602 | 23.984134 | 14.324781 | 24.698003 | 22.625066 | 20.055740 | 16.865666 | 20.070889 | ⋯ | 13.616151 | 14.045292 | 20.626279 | 24.064680 | 23.666637 | 24.596644 | 26.743343 | 14.069016 | 10.923723 | 19.959526 |
anno <- selected_qtn[,c(2,3,5,8)]
#anno$loc <- paste(anno$V1, anno$V2,sep=":")
rownames(anno) <- paste(anno$V1, anno$V2,sep=":")
anno
V1 | V2 | V4 | V7 | |
---|---|---|---|---|
<int> | <int> | <chr> | <chr> | |
1:29568422 | 1 | 29568422 | Abiotic_Stress | decreasing_flooding_tolerance |
1:33453244 | 1 | 33453244 | Others | more_MeOH-Jasmonates |
1:36461792 | 1 | 36461792 | Seed_Morphology | seed_shattering |
1:37694037 | 1 | 37694037 | Others | decreasing_nonphotochemical_quenching |
1:5244076 | 1 | 5244076 | Plant_Architecture | NA |
11:7659694 | 11 | 7659694 | Biotic_Stress | increasing_blast_resistance |
2:1663821 | 2 | 1663821 | Abiotic_Stress | decreasing_Al_tolerance |
2:23991055 | 2 | 23991055 | Heading_date | promoting_heading_date |
2:35370598 | 2 | 35370598 | Secondary_metabolism | fewer_trigonelline |
3:1270327 | 3 | 1270327 | Heading_date | delaying_heading_date |
3:28428731 | 3 | 28428731 | Plant_Architecture | increasing_lodging_resistance |
3:35382034 | 3 | 35382034 | Secondary_metabolism | more_tricin-lignan-glycosides |
3:36150781 | 3 | 36150781 | Yield_components | increaing_grain_number_and_plant_height |
4:27940807 | 4 | 27940807 | Seed_Morphology | black_seed_coat |
5:3339934 | 5 | 3339934 | Taste_quality | decreasing_of_chalkiness |
6:1468526 | 6 | 1468526 | Yield_components | decreasing_grain_size |
6:27024794 | 6 | 27024794 | Seed_Morphology | increasing_grain_weight_and_plant_height |
6:5758523 | 6 | 5758523 | Yield_components | hybrid_incompatibility |
7:19103249 | 7 | 19103249 | Yield_components | increasing_grain_size |
7:24669233 | 7 | 24669233 | Yield_components | increasing_grain_length |
7:28306257 | 7 | 28306257 | Yield_components | loose_panicle |
8:20379883 | 8 | 20379883 | Taste_quality | fragrance |
8:25282468 | 8 | 25282468 | Yield_components | increasing_grain_number_and_lodging_resistance |
8:26887943 | 8 | 26887943 | Plant_Architecture | decreasing_tiller_number_and_increasing_grain_number |
8:26909531 | 8 | 26909531 | Biotic_Stress | increasing_blast_resistance |
8:7573789 | 8 | 7573789 | Others | higher_nitrogen_use_efficiency |
8:7573877 | 8 | 7573877 | Others | higher_nitrogen_use_efficiency |
qtn_anno <- data.frame(Type=anno$V4)
rownames(qtn_anno) <- rownames(anno)
qtn_anno
Type | |
---|---|
<chr> | |
1:29568422 | Abiotic_Stress |
1:33453244 | Others |
1:36461792 | Seed_Morphology |
1:37694037 | Others |
1:5244076 | Plant_Architecture |
11:7659694 | Biotic_Stress |
2:1663821 | Abiotic_Stress |
2:23991055 | Heading_date |
2:35370598 | Secondary_metabolism |
3:1270327 | Heading_date |
3:28428731 | Plant_Architecture |
3:35382034 | Secondary_metabolism |
3:36150781 | Yield_components |
4:27940807 | Seed_Morphology |
5:3339934 | Taste_quality |
6:1468526 | Yield_components |
6:27024794 | Seed_Morphology |
6:5758523 | Yield_components |
7:19103249 | Yield_components |
7:24669233 | Yield_components |
7:28306257 | Yield_components |
8:20379883 | Taste_quality |
8:25282468 | Yield_components |
8:26887943 | Plant_Architecture |
8:26909531 | Biotic_Stress |
8:7573789 | Others |
8:7573877 | Others |
qtn_cols <- setNames(as.character(paletteer_d("ggthemes::gdoc")[1:9]),unique(qtn_anno$Type))
qtn_col <- list(Type=qtn_cols)
source("/public/workspace/zhutao/scripts/colorpal.R")
options(repr.plot.width = 12, repr.plot.height = 12, repr.plot.res = 100)
p_df <- df/do.call(pmax, df)
pheatmap(p_df,color=paletteContinuous(set = "blueYellow", n = 100),annotation_row = qtn_anno, annotation_colors= qtn_col,cellwidth=16, cellheight=16)
Warning message: “The input is a data frame, convert it to the matrix.”
library(ComplexHeatmap)
ha = rowAnnotation(QTNs=anno_text(rownames(p_df), location = 0.5, just = "center",
gp = gpar(col = rep(paletteer_d("ggthemes::gdoc")[1:9],3), border = "#989CA3"),
width = max_text_width(rownames(p_df))*1.2), foo2 = anno_text(c(selected_qtn$V5), location = 0.5, just = "center",
gp = gpar(col = rep(paletteer_d("ggthemes::gdoc")[1:9],3), border = "#989CA3"),
width = max_text_width(selected_qtn$V5)*1.2),foo3 = anno_text(c(anno$V7), location = 0.5, just = "center",
gp = gpar(col = rep(paletteer_d("ggthemes::gdoc")[1:9],3), border = "#989CA3"),
width = max_text_width(anno$V7)*1.2))
ha
A HeatmapAnnotation object with 3 annotations name: heatmap_annotation_2 position: row items: 27 width: 237.303919607029mm height: 1npc this object is subsetable name annotation_type color_mapping width QTNs anno_text() 26.83256mm foo2 anno_text() 81.4578mm foo3 anno_text() 128.31064mm
options(repr.plot.width = 20, repr.plot.height = 10, repr.plot.res = 100)
p14 <- ComplexHeatmap::pheatmap(p_df,color=paletteContinuous(set = "blueYellow", n = 100),annotation_row = qtn_anno, annotation_colors= qtn_col,cellwidth=16, cellheight=16,right_annotation=ha,show_rownames=F,main="Wei et al. Nat Genet 2021",fontsize =12)
p14
Warning message: “The input is a data frame, convert it to the matrix.”