Test multiple different methods for implementation of finite difference differentiation.
This includes using findiff
import findiff as fd
import numpy as np
import sympy as sp
from termcolor import colored
import discretisedfield as df
import discretisedfield.util as dfu
Create testing functions
def test_function(fun, verbose=1):
print(colored(f"Testing {fun.__name__}...", "blue"))
p1 = (0.0, 0.0, 0.0)
p2 = (10.0, 10.0, 10.0)
def f(pos):
x, y, z = pos
return (x**4, y**4, z**4)
total = 0
success = 0
for i in range(1, 7):
for order in range(1, 5):
total += 1
print(f"Test {i} cell(s) in z - order {order}", end=" ")
mesh = df.Mesh(p1=p1, p2=p2, n=(10, 10, i))
field = df.Field(mesh, dim=3, value=f)
try:
out = fun(field, "z", order=order)
if np.allclose(out.array, 0):
print(colored("Success with assumption", "yellow"))
else:
print(colored("Success", "green"))
success += 1
except Exception as e:
if verbose:
print(colored("Failed", "red"), end=" ")
print(e)
else:
print(colored("Failed", "red"))
print(colored(f"Success rate: {success}/{total}", "blue"))
def test_value(fun, verbose=1):
# Test results against sympy
print(colored(f"Testing {fun.__name__}...", "blue"))
p1 = (0, 0, 0)
p2 = (10, 10, 10)
x = sp.symbols("x")
fx = sp.sqrt(x)
lam_f = sp.lambdify(x, fx, "numpy")
def value_fun(point):
x, y, z = point
return lam_f(x)
total = 0
success = 0
for i in range(1, 5):
for order in range(1, 5):
value = float(fx.diff(x, order).subs(x, 5))
total += 1
print(f"Test {i} cell(s) in x - order {order}", end=" ")
mesh = df.Mesh(p1=p1, p2=p2, n=(i, 1, 1))
field = df.Field(mesh, dim=1, value=value_fun)
try:
fun_value = fun(field, "x", order=order)((5, 5, 5))
if np.allclose(fun_value, value, rtol=0.05):
if verbose:
print(colored("Success", "green"), end=" ")
print(f"Expected {value}, got {fun_value}")
else:
print(colored("Success", "green"))
success += 1
else:
if verbose:
print(colored("Failed", "red"), end=" ")
print(f"Expected {value}, got {fun_value}")
else:
print(colored("Failed", "red"))
except:
print("")
print(colored(f"Success rate: {success}/{total}", "blue"))
def test_accuracy(fun, verbose=1):
print(colored(f"Testing {fun.__name__}...", "blue"))
# Test results against sympy
p1 = (0, 0, 0)
p2 = (10, 10, 10)
n = (30, 1, 1)
mesh = df.Mesh(p1=p1, p2=p2, n=n)
x = sp.symbols("x")
fx = x**6
lam_f = sp.lambdify(x, fx, "numpy")
def value_fun(point):
x, y, z = point
return lam_f(x)
field = df.Field(mesh, nvdim=1, value=value_fun)
total = 0
success = 0
for order in [1, 2, 3, 4, 5]:
value = float(fx.diff(x, order).integrate((x, 0, 10)) / 10)
for acc in [2, 4, 6, 8, 10]:
print(f"Test {order=}, {acc=}", end=" ")
total += 1
try:
fun_value = fun(field, "x", order=order).mean()
if np.allclose(fun_value, value, rtol=0.05):
if verbose:
print(colored("Success", "green"), end=" ")
print(f"Expected {value}, got {fun_value}")
else:
print(colored("Success", "green"))
success += 1
else:
if verbose:
print(colored("Failed", "red"), end=" ")
print(f"Expected {value}, got {fun_value}")
else:
print(colored("Failed", "red"))
except:
print("")
print(colored(f"Success rate: {success}/{total}", "blue"))
def diff_original(self, direction, order=1):
direction = dfu.axesdict[direction]
# If there are no neighbouring cells in the specified direction, zero
# field is returned.
if self.mesh.n[direction] <= 1:
return self.zero
padded_array = self.array
if order not in (1, 2):
msg = f"Derivative of the n={order} order is not implemented."
raise NotImplementedError(msg)
elif order == 1:
if self.nvdim == 1:
derivative_array = np.gradient(
padded_array[..., 0], self.mesh.cell[direction], axis=direction
)[..., np.newaxis]
else:
derivative_array = np.gradient(
padded_array, self.mesh.cell[direction], axis=direction
)
elif order == 2:
derivative_array = np.zeros_like(padded_array)
for i in range(padded_array.shape[direction]):
if i == 0:
i1, i2, i3 = i + 2, i + 1, i
elif i == padded_array.shape[direction] - 1:
i1, i2, i3 = i, i - 1, i - 2
else:
i1, i2, i3 = i + 1, i, i - 1
index1 = dfu.assemble_index(slice(None), 4, {direction: i1})
index2 = dfu.assemble_index(slice(None), 4, {direction: i2})
index3 = dfu.assemble_index(slice(None), 4, {direction: i3})
index = dfu.assemble_index(slice(None), 4, {direction: i})
derivative_array[index] = (
padded_array[index1] - 2 * padded_array[index2] + padded_array[index3]
) / self.mesh.cell[direction] ** 2
return self.__class__(
self.mesh, dim=self.nvdim, value=derivative_array, vdims=self.vdims
)
test_function(diff_original)
Testing diff_original... Test 1 cell(s) in z - order 1 Success with assumption Test 1 cell(s) in z - order 2 Success with assumption Test 1 cell(s) in z - order 3 Success with assumption Test 1 cell(s) in z - order 4 Success with assumption Test 2 cell(s) in z - order 1 Success Test 2 cell(s) in z - order 2 Failed index 2 is out of bounds for axis 2 with size 2 Test 2 cell(s) in z - order 3 Failed Derivative of the n=3 order is not implemented. Test 2 cell(s) in z - order 4 Failed Derivative of the n=4 order is not implemented. Test 3 cell(s) in z - order 1 Success Test 3 cell(s) in z - order 2 Success Test 3 cell(s) in z - order 3 Failed Derivative of the n=3 order is not implemented. Test 3 cell(s) in z - order 4 Failed Derivative of the n=4 order is not implemented. Test 4 cell(s) in z - order 1 Success Test 4 cell(s) in z - order 2 Success Test 4 cell(s) in z - order 3 Failed Derivative of the n=3 order is not implemented. Test 4 cell(s) in z - order 4 Failed Derivative of the n=4 order is not implemented. Test 5 cell(s) in z - order 1 Success Test 5 cell(s) in z - order 2 Success Test 5 cell(s) in z - order 3 Failed Derivative of the n=3 order is not implemented. Test 5 cell(s) in z - order 4 Failed Derivative of the n=4 order is not implemented. Test 6 cell(s) in z - order 1 Success Test 6 cell(s) in z - order 2 Success Test 6 cell(s) in z - order 3 Failed Derivative of the n=3 order is not implemented. Test 6 cell(s) in z - order 4 Failed Derivative of the n=4 order is not implemented. Success rate: 13/24
Accounts for order=2
and number of cells 2
.
def diff_original_edit(self, direction, order=1):
direction_idx = dfu.axesdict[direction]
# If there are no neighbouring cells in the specified direction, zero
# field is returned.
if self.mesh.n[direction_idx] <= order:
return self.zero
padded_array = self.array
if order not in (1, 2):
msg = f"Derivative of the n={order} order is not implemented."
raise NotImplementedError(msg)
elif order == 1:
if self.nvdim == 1:
derivative_array = np.gradient(
padded_array[..., 0], self.mesh.cell[direction_idx], axis=direction_idx
)[..., np.newaxis]
else:
derivative_array = np.gradient(
padded_array, self.mesh.cell[direction_idx], axis=direction_idx
)
elif order == 2:
derivative_array = np.zeros_like(padded_array)
for i in range(padded_array.shape[direction_idx]):
if i == 0:
i1, i2, i3 = i + 2, i + 1, i
elif i == padded_array.shape[direction_idx] - 1:
i1, i2, i3 = i, i - 1, i - 2
else:
i1, i2, i3 = i + 1, i, i - 1
index1 = dfu.assemble_index(slice(None), 4, {direction_idx: i1})
index2 = dfu.assemble_index(slice(None), 4, {direction_idx: i2})
index3 = dfu.assemble_index(slice(None), 4, {direction_idx: i3})
index = dfu.assemble_index(slice(None), 4, {direction_idx: i})
derivative_array[index] = (
padded_array[index1] - 2 * padded_array[index2] + padded_array[index3]
) / self.mesh.cell[direction_idx] ** 2
return self.__class__(
self.mesh, dim=self.nvdim, value=derivative_array, vdims=self.vdims
)
test_function(diff_original_edit)
Testing diff_original_edit... Test 1 cell(s) in z - order 1 Success with assumption Test 1 cell(s) in z - order 2 Success with assumption Test 1 cell(s) in z - order 3 Success with assumption Test 1 cell(s) in z - order 4 Success with assumption Test 2 cell(s) in z - order 1 Success Test 2 cell(s) in z - order 2 Success with assumption Test 2 cell(s) in z - order 3 Success with assumption Test 2 cell(s) in z - order 4 Success with assumption Test 3 cell(s) in z - order 1 Success Test 3 cell(s) in z - order 2 Success Test 3 cell(s) in z - order 3 Success with assumption Test 3 cell(s) in z - order 4 Success with assumption Test 4 cell(s) in z - order 1 Success Test 4 cell(s) in z - order 2 Success Test 4 cell(s) in z - order 3 Failed Derivative of the n=3 order is not implemented. Test 4 cell(s) in z - order 4 Success with assumption Test 5 cell(s) in z - order 1 Success Test 5 cell(s) in z - order 2 Success Test 5 cell(s) in z - order 3 Failed Derivative of the n=3 order is not implemented. Test 5 cell(s) in z - order 4 Failed Derivative of the n=4 order is not implemented. Test 6 cell(s) in z - order 1 Success Test 6 cell(s) in z - order 2 Success Test 6 cell(s) in z - order 3 Failed Derivative of the n=3 order is not implemented. Test 6 cell(s) in z - order 4 Failed Derivative of the n=4 order is not implemented. Success rate: 19/24
Accounts for order=2
and number of cells 2
and faster implementation of order=2
.
Pad array so the same stencil can be used everywhere \begin{align} f(1) + f(-1) - 2f(0) &= f(2) + f(0) - 2 f(1) \\ f(-1) &= f(2) - 3 f(1) + 3f(0) \end{align}
def diff_original_fast(self, direction, order=1):
direction_idx = dfu.axesdict[direction]
# If there are no neighbouring cells in the specified direction, zero
# field is returned.
if self.mesh.n[direction_idx] <= order:
return self.zero
padded_array = self.array
if order not in (1, 2):
msg = f"Derivative of the n={order} order is not implemented."
raise NotImplementedError(msg)
elif order == 1:
if self.nvdim == 1:
derivative_array = np.gradient(
padded_array[..., 0], self.mesh.cell[direction_idx], axis=direction_idx
)[..., np.newaxis]
else:
derivative_array = np.gradient(
padded_array, self.mesh.cell[direction_idx], axis=direction_idx
)
elif order == 2:
def pad_fun(vector, pad_width, iaxis, kwargs):
if iaxis == direction_idx:
vector[0] = vector[3] - 3 * vector[2] + 3 * vector[1]
vector[-1] = vector[-4] - 3 * vector[-3] + 3 * vector[-2]
pad_width = [(0, 0)] * 4
pad_width[direction_idx] = (1, 1)
padded_array = np.pad(padded_array, pad_width, pad_fun)
# padded_array = self.pad({'x': (1, 1)}, mode='constant').array
# padded_array[0] = padded_array[3] - 3*padded_array[2] + 3*padded_array[1]
# padded_array[-1] = padded_array[-4] - 3*padded_array[-3] + 3*padded_array[-2]
# derivative_array = np.empty_like(padded_array)
index_p1 = slice(2, None)
index_0 = slice(1, -1)
index_m1 = slice(None, -2)
derivative_array = (
padded_array[index_p1] - 2 * padded_array[index_0] + padded_array[index_m1]
) / self.mesh.cell[direction_idx] ** 2
# derivative_array[0] = derivative_array[1]
# derivative_array[-1] = derivative_array[-2]
return self.__class__(
self.mesh, dim=self.nvdim, value=derivative_array, vdims=self.vdims
)
%%timeit
diff_original_fast(field, "x", order=2)
--------------------------------------------------------------------------- NameError Traceback (most recent call last) /home/sam/repos/ubermag-devtools/repos/discretisedfield/dev/diff.ipynb Cell 13 in <cell line: 1>() ----> <a href='vscode-notebook-cell://ssh-remote%2B10.15.40.246/home/sam/repos/ubermag-devtools/repos/discretisedfield/dev/diff.ipynb#X50sdnNjb2RlLXJlbW90ZQ%3D%3D?line=0'>1</a> get_ipython().run_cell_magic('timeit', '', "diff_original_fast(field, 'x', order=2)\n") File ~/miniconda3/envs/ubermagdev/lib/python3.8/site-packages/IPython/core/interactiveshell.py:2358, in InteractiveShell.run_cell_magic(self, magic_name, line, cell) 2356 with self.builtin_trap: 2357 args = (magic_arg_s, cell) -> 2358 result = fn(*args, **kwargs) 2359 return result File ~/miniconda3/envs/ubermagdev/lib/python3.8/site-packages/IPython/core/magics/execution.py:1162, in ExecutionMagics.timeit(self, line, cell, local_ns) 1160 for index in range(0, 10): 1161 number = 10 ** index -> 1162 time_number = timer.timeit(number) 1163 if time_number >= 0.2: 1164 break File ~/miniconda3/envs/ubermagdev/lib/python3.8/site-packages/IPython/core/magics/execution.py:156, in Timer.timeit(self, number) 154 gc.disable() 155 try: --> 156 timing = self.inner(it, self.timer) 157 finally: 158 if gcold: File <magic-timeit>:1, in inner(_it, _timer) NameError: name 'field' is not defined
%%timeit
diff_original_edit(field, "x", order=2)
5.02 ms ± 19.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
test_function(diff_original_fast)
Testing diff_original_fast... Test 1 cell(s) in z - order 1 Success with assumption Test 1 cell(s) in z - order 2 Success with assumption Test 1 cell(s) in z - order 3 Success with assumption Test 1 cell(s) in z - order 4 Success with assumption Test 2 cell(s) in z - order 1 Success Test 2 cell(s) in z - order 2 Success with assumption Test 2 cell(s) in z - order 3 Success with assumption Test 2 cell(s) in z - order 4 Success with assumption Test 3 cell(s) in z - order 1 Success Test 3 cell(s) in z - order 2 Success Test 3 cell(s) in z - order 3 Success with assumption Test 3 cell(s) in z - order 4 Success with assumption Test 4 cell(s) in z - order 1 Success Test 4 cell(s) in z - order 2 Success Test 4 cell(s) in z - order 3 Failed Derivative of the n=3 order is not implemented. Test 4 cell(s) in z - order 4 Success with assumption Test 5 cell(s) in z - order 1 Success Test 5 cell(s) in z - order 2 Success Test 5 cell(s) in z - order 3 Failed Derivative of the n=3 order is not implemented. Test 5 cell(s) in z - order 4 Failed Derivative of the n=4 order is not implemented. Test 6 cell(s) in z - order 1 Success Test 6 cell(s) in z - order 2 Success Test 6 cell(s) in z - order 3 Failed Derivative of the n=3 order is not implemented. Test 6 cell(s) in z - order 4 Failed Derivative of the n=4 order is not implemented. Success rate: 19/24
def diff_a(self, direction, order=1, acc=None):
direction_idx = dfu.axesdict[direction]
# If there are no neighbouring cells in the specified direction, zero
# field is returned.
# ASSUME that needs more cells than curvature!
if self.mesh.n[direction_idx] <= order:
return self.zero
# Create FinDiff object.
diff_fd = fd.FinDiff(direction_idx, self.mesh.cell[direction_idx], order, acc=acc)
derivative_array = diff_fd(self.array)
return self.__class__(
self.mesh,
nvdim=self.nvdim,
value=derivative_array,
vdims=self.vdims,
)
test_function(diff_a)
Testing diff_a... Test 1 cell(s) in z - order 1 Success with assumption Test 1 cell(s) in z - order 2 Success with assumption Test 1 cell(s) in z - order 3 Success with assumption Test 1 cell(s) in z - order 4 Success with assumption Test 2 cell(s) in z - order 1 Failed Shift slice out of bounds Test 2 cell(s) in z - order 2 Success with assumption Test 2 cell(s) in z - order 3 Success with assumption Test 2 cell(s) in z - order 4 Success with assumption Test 3 cell(s) in z - order 1 Success Test 3 cell(s) in z - order 2 Failed Shift slice out of bounds Test 3 cell(s) in z - order 3 Success with assumption Test 3 cell(s) in z - order 4 Success with assumption Test 4 cell(s) in z - order 1 Success Test 4 cell(s) in z - order 2 Success Test 4 cell(s) in z - order 3 Failed Shift slice out of bounds Test 4 cell(s) in z - order 4 Success with assumption Test 5 cell(s) in z - order 1 Success Test 5 cell(s) in z - order 2 Success Test 5 cell(s) in z - order 3 Failed Shift slice out of bounds Test 5 cell(s) in z - order 4 Failed Shift slice out of bounds Test 6 cell(s) in z - order 1 Success Test 6 cell(s) in z - order 2 Success Test 6 cell(s) in z - order 3 Success Test 6 cell(s) in z - order 4 Failed Shift slice out of bounds Success rate: 18/24
Allowing for mixed accuracy default behaviour
def fd_diff_edit_b(array, h, order, dim, acc=None):
"""Edit of findiff.diff.diff to allow differnt accuracies"""
if acc is None:
coefs = {}
coefs["center"] = fd.coefficients(order, acc=2)["center"]
coefs["forward"] = fd.coefficients(order, offsets=range(0, order + 1))
coefs["backward"] = fd.coefficients(order, offsets=range(-order, 1))
else:
coefs = fd.coefficients(order, acc=acc)
try:
npts = array.shape[dim]
except AttributeError as err:
raise ValueError(
"FinDiff objects can only be applied to arrays or evaluated(!) functions"
" returning arrays"
) from err
yd = np.zeros_like(array)
scheme = "center"
weights = coefs[scheme]["coefficients"]
offsets = coefs[scheme]["offsets"]
num_bndry_points = len(weights) // 2
ref_slice = slice(num_bndry_points, npts - num_bndry_points, 1)
off_slices = [
fd.diff.Diff._shift_slice(..., ref_slice, offsets[k], npts)
for k in range(len(offsets))
]
fd.diff.Diff._apply_to_array(..., yd, array, weights, off_slices, ref_slice, dim)
scheme = "forward"
weights = coefs[scheme]["coefficients"]
offsets = coefs[scheme]["offsets"]
ref_slice = slice(0, num_bndry_points, 1)
off_slices = [
fd.diff.Diff._shift_slice(..., ref_slice, offsets[k], npts)
for k in range(len(offsets))
]
fd.diff.Diff._apply_to_array(..., yd, array, weights, off_slices, ref_slice, dim)
scheme = "backward"
weights = coefs[scheme]["coefficients"]
offsets = coefs[scheme]["offsets"]
ref_slice = slice(npts - num_bndry_points, npts, 1)
off_slices = [
fd.diff.Diff._shift_slice(..., ref_slice, offsets[k], npts)
for k in range(len(offsets))
]
fd.diff.Diff._apply_to_array(..., yd, array, weights, off_slices, ref_slice, dim)
h_inv = 1.0 / h**order
return yd * h_inv
def diff_b(self, direction, order=1, acc=None):
direction_idx = dfu.axesdict[direction]
# If there are no neighbouring cells in the specified direction, zero
# field is returned.
# ASSUME that needs more cells than curvature!
if self.mesh.n[direction_idx] <= order:
return self.zero
# Create FinDiff object.
derivative_array = fd_diff_edit_b(
self.array, self.mesh.cell[direction_idx], order, direction_idx, acc=acc
)
return self.__class__(
self.mesh,
nvdim=self.nvdim,
value=derivative_array,
vdims=self.vdims,
)
test_function(diff_b)
Testing diff_b... Test 1 cell(s) in z - order 1 Success with assumption Test 1 cell(s) in z - order 2 Success with assumption Test 1 cell(s) in z - order 3 Success with assumption Test 1 cell(s) in z - order 4 Success with assumption Test 2 cell(s) in z - order 1 Success Test 2 cell(s) in z - order 2 Success with assumption Test 2 cell(s) in z - order 3 Success with assumption Test 2 cell(s) in z - order 4 Success with assumption Test 3 cell(s) in z - order 1 Success Test 3 cell(s) in z - order 2 Success Test 3 cell(s) in z - order 3 Success with assumption Test 3 cell(s) in z - order 4 Success with assumption Test 4 cell(s) in z - order 1 Success Test 4 cell(s) in z - order 2 Success Test 4 cell(s) in z - order 3 Failed Shift slice out of bounds Test 4 cell(s) in z - order 4 Success with assumption Test 5 cell(s) in z - order 1 Success Test 5 cell(s) in z - order 2 Success Test 5 cell(s) in z - order 3 Success Test 5 cell(s) in z - order 4 Failed Shift slice out of bounds Test 6 cell(s) in z - order 1 Success Test 6 cell(s) in z - order 2 Success Test 6 cell(s) in z - order 3 Success Test 6 cell(s) in z - order 4 Success Success rate: 22/24
Generalise defaults to work for all orders
def fd_diff_edit_c(array, h, order, dim, acc=None):
"""Edit of findiff.diff.diff to allow differnt accuracies"""
if acc is None:
coefs = {}
coefs["center"] = fd.coefficients(order, acc=2)["center"]
coefs["forward"] = fd.coefficients(order, offsets=range(0, order + 1))
coefs["backward"] = fd.coefficients(order, offsets=range(-order, 1))
else:
coefs = fd.coefficients(order, acc=acc)
try:
npts = array.shape[dim]
except AttributeError as err:
raise ValueError(
"FinDiff objects can only be applied to arrays or evaluated(!) functions"
" returning arrays"
) from err
yd = np.zeros_like(array)
len_needed = len(coefs["center"]["coefficients"]) // 2 - 1 + order
if npts <= len_needed:
for i in range(npts):
coefs = fd.coefficients(order, offsets=(np.arange(npts) - i).tolist())
weights = coefs["coefficients"]
offsets = coefs["offsets"]
ref_slice = slice(i, i + 1, 1)
off_slices = [
fd.diff.Diff._shift_slice(..., ref_slice, offsets[k], npts)
for k in range(len(offsets))
]
fd.diff.Diff._apply_to_array(
..., yd, array, weights, off_slices, ref_slice, dim
)
else:
scheme = "center"
weights = coefs[scheme]["coefficients"]
offsets = coefs[scheme]["offsets"]
num_bndry_points = len(weights) // 2
ref_slice = slice(num_bndry_points, npts - num_bndry_points, 1)
off_slices = [
fd.diff.Diff._shift_slice(..., ref_slice, offsets[k], npts)
for k in range(len(offsets))
]
fd.diff.Diff._apply_to_array(
..., yd, array, weights, off_slices, ref_slice, dim
)
scheme = "forward"
weights = coefs[scheme]["coefficients"]
offsets = coefs[scheme]["offsets"]
ref_slice = slice(0, num_bndry_points, 1)
off_slices = [
fd.diff.Diff._shift_slice(..., ref_slice, offsets[k], npts)
for k in range(len(offsets))
]
fd.diff.Diff._apply_to_array(
..., yd, array, weights, off_slices, ref_slice, dim
)
scheme = "backward"
weights = coefs[scheme]["coefficients"]
offsets = coefs[scheme]["offsets"]
ref_slice = slice(npts - num_bndry_points, npts, 1)
off_slices = [
fd.diff.Diff._shift_slice(..., ref_slice, offsets[k], npts)
for k in range(len(offsets))
]
fd.diff.Diff._apply_to_array(
..., yd, array, weights, off_slices, ref_slice, dim
)
h_inv = 1.0 / h**order
return yd * h_inv
def diff_c(self, direction, order=1, acc=None):
direction_idx = dfu.axesdict[direction]
# If there are no neighbouring cells in the specified direction, zero
# field is returned.
# ASSUME that needs more cells than curvature!
if self.mesh.n[direction_idx] <= order:
return self.zero
# Create FinDiff object.
derivative_array = fd_diff_edit_c(
self.array, self.mesh.cell[direction_idx], order, direction_idx, acc=acc
)
return self.__class__(
self.mesh,
nvdim=self.nvdim,
value=derivative_array,
vdims=self.vdims,
)
test_function(diff_c)
Testing diff_c... Test 1 cell(s) in z - order 1 Success with assumption Test 1 cell(s) in z - order 2 Success with assumption Test 1 cell(s) in z - order 3 Success with assumption Test 1 cell(s) in z - order 4 Success with assumption Test 2 cell(s) in z - order 1 Success Test 2 cell(s) in z - order 2 Success with assumption Test 2 cell(s) in z - order 3 Success with assumption Test 2 cell(s) in z - order 4 Success with assumption Test 3 cell(s) in z - order 1 Success Test 3 cell(s) in z - order 2 Success Test 3 cell(s) in z - order 3 Success with assumption Test 3 cell(s) in z - order 4 Success with assumption Test 4 cell(s) in z - order 1 Success Test 4 cell(s) in z - order 2 Success Test 4 cell(s) in z - order 3 Success Test 4 cell(s) in z - order 4 Success with assumption Test 5 cell(s) in z - order 1 Success Test 5 cell(s) in z - order 2 Success Test 5 cell(s) in z - order 3 Success Test 5 cell(s) in z - order 4 Success Test 6 cell(s) in z - order 1 Success Test 6 cell(s) in z - order 2 Success Test 6 cell(s) in z - order 3 Success Test 6 cell(s) in z - order 4 Success Success rate: 24/24
def diff_d(self, direction, order=1, acc=None):
direction_idx = dfu.axesdict[direction]
# If there are no neighbouring cells in the specified direction, zero
# field is returned.
if self.mesh.n[direction_idx] <= order:
return self.zero
padded_array = self.array
# Only use our implimentation if we have to
if order in (1, 2) and acc is None:
if order == 1:
if self.nvdim == 1:
derivative_array = np.gradient(
padded_array[..., 0],
self.mesh.cell[direction_idx],
axis=direction_idx,
)[..., np.newaxis]
else:
derivative_array = np.gradient(
padded_array, self.mesh.cell[direction_idx], axis=direction_idx
)
elif order == 2:
derivative_array = np.zeros_like(padded_array)
for i in range(padded_array.shape[direction_idx]):
if i == 0:
i1, i2, i3 = i + 2, i + 1, i
elif i == padded_array.shape[direction_idx] - 1:
i1, i2, i3 = i, i - 1, i - 2
else:
i1, i2, i3 = i + 1, i, i - 1
index1 = dfu.assemble_index(slice(None), 4, {direction_idx: i1})
index2 = dfu.assemble_index(slice(None), 4, {direction_idx: i2})
index3 = dfu.assemble_index(slice(None), 4, {direction_idx: i3})
index = dfu.assemble_index(slice(None), 4, {direction_idx: i})
derivative_array[index] = (
padded_array[index1]
- 2 * padded_array[index2]
+ padded_array[index3]
) / self.mesh.cell[direction_idx] ** 2
else:
if acc is None:
acc = 2
coeffs = fd.coefficients(order, acc=acc)
stencil_len_back = len(coeffs["backward"]["offsets"]) - 1
stencil_max_cent = max(coeffs["center"]["offsets"]) - 1
len_needed = stencil_len_back + stencil_max_cent
if self.mesh.n[direction_idx] <= len_needed:
raise ValueError(
f"The minimum size of the mesh in the direction {direction} "
f"is {len_needed+1} for an order order {order} and acc {acc}."
)
diff_fd = fd.FinDiff(
direction_idx, self.mesh.cell[direction_idx], order, acc=acc
)
derivative_array = diff_fd(padded_array)
return self.__class__(
self.mesh, dim=self.nvdim, value=derivative_array, vdims=self.vdims
)
test_function(diff_d)
Testing diff_d... Test 1 cell(s) in z - order 1 Success with assumption Test 1 cell(s) in z - order 2 Success with assumption Test 1 cell(s) in z - order 3 Success with assumption Test 1 cell(s) in z - order 4 Success with assumption Test 2 cell(s) in z - order 1 Success Test 2 cell(s) in z - order 2 Success with assumption Test 2 cell(s) in z - order 3 Success with assumption Test 2 cell(s) in z - order 4 Success with assumption Test 3 cell(s) in z - order 1 Success Test 3 cell(s) in z - order 2 Success Test 3 cell(s) in z - order 3 Success with assumption Test 3 cell(s) in z - order 4 Success with assumption Test 4 cell(s) in z - order 1 Success Test 4 cell(s) in z - order 2 Success Test 4 cell(s) in z - order 3 Failed The minimum size of the mesh in the direction z is 6 for an order order 3 and acc 2. Test 4 cell(s) in z - order 4 Success with assumption Test 5 cell(s) in z - order 1 Success Test 5 cell(s) in z - order 2 Success Test 5 cell(s) in z - order 3 Failed The minimum size of the mesh in the direction z is 6 for an order order 3 and acc 2. Test 5 cell(s) in z - order 4 Failed The minimum size of the mesh in the direction z is 7 for an order order 4 and acc 2. Test 6 cell(s) in z - order 1 Success Test 6 cell(s) in z - order 2 Success Test 6 cell(s) in z - order 3 Success Test 6 cell(s) in z - order 4 Failed The minimum size of the mesh in the direction z is 7 for an order order 4 and acc 2. Success rate: 20/24
test_value(diff_d)
Testing diff_d... Test 1 cell(s) in x - order 1 Failed Expected 0.22360679774997896, got 0.0 Test 1 cell(s) in x - order 2 Failed Expected -0.022360679774997897, got 0.0 Test 1 cell(s) in x - order 3 Failed Expected 0.006708203932499369, got 0.0 Test 1 cell(s) in x - order 4 Failed Expected -0.0033541019662496844, got 0.0 Test 2 cell(s) in x - order 1 Success Expected 0.22360679774997896, got 0.23149479148832816 Test 2 cell(s) in x - order 2 Failed Expected -0.022360679774997897, got 0.0 Test 2 cell(s) in x - order 3 Failed Expected 0.006708203932499369, got 0.0 Test 2 cell(s) in x - order 4 Failed Expected -0.0033541019662496844, got 0.0 Test 3 cell(s) in x - order 1 Failed Expected 0.22360679774997896, got 0.2393635345818485 Test 3 cell(s) in x - order 2 Failed Expected -0.022360679774997897, got -0.02649511442840804 Test 3 cell(s) in x - order 3 Failed Expected 0.006708203932499369, got 0.0 Test 3 cell(s) in x - order 4 Failed Expected -0.0033541019662496844, got 0.0 Test 4 cell(s) in x - order 1 Failed Expected 0.22360679774997896, got 0.20430964368921992 Test 4 cell(s) in x - order 2 Failed Expected -0.022360679774997897, got -0.016874949655437347 Test 4 cell(s) in x - order 3 Test 4 cell(s) in x - order 4 Failed Expected -0.0033541019662496844, got 0.0 Success rate: 1/16
from scipy import ndimage
p1 = (0.0, 0.0, 0.0)
p2 = (10.0, 10.0, 10.0)
def f(pos):
x, y, z = pos
return (x**4, y**4, z**4)
mesh = df.Mesh(p1=p1, p2=p2, n=(10, 10, 20), bc="xyz")
field = df.Field(mesh, dim=3, value=f)
field.diff("x").array[0, 5, 5]
array([-4070., 0., 0.])
k = np.zeros((3, 1, 1, 1))
k[0, 0, 0, 0] = 0.5
k[2, 0, 0, 0] = -0.5
(
ndimage.convolve(field.array, k, mode="wrap", origin=(0, 0, 0, 0))
/ field.mesh.cell[0]
)[0, 5, 5]
array([-4070., 0., 0.])