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1 The Gamma function

The Gamma function is defined by:

Γ(x) =

∫ ∞
0

e−ttx−1dt

Notice that:

Γ(x+ 1) =

∫ ∞
0

e−ttxdt

= lim
B→∞

∫ B

0

e−ttxdt

= lim
B→∞

[
− e−ttx

∣∣∣B
0

+ x

∫ B

0

e−ttx−1dt
]

integrating by parts.

= x lim
B→∞

∫ B

0

e−ttx−1dt

= xΓ(x)

From this we obtain:

Γ(2) = 1 · Γ(1)

=

∫ ∞
0

e−tdt = 1

Γ(3) = 2 · Γ(2) = 2 · 1
Γ(4) = 3 · Γ(3) = 3 · 2 · 1

...

Γ(x) = (x− 1)!
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Therefore, the Gamma function is the extension of te factorial, such that, Γ(n+ 1) = n!
∀n ∈ Z.

1.1 Brief history

Leonhard Euler

Historically, the idea of extending the factorial to non-integers was
considered by Daniel Bernoulli and Christian Goldbach in the 1720s.
It was solved by Leonhard Euler at the end of the same decade.
Euler discovered many interesting properties, such as its reflexion

formula: Γ(x)Γ(1− x) =
π

sin(πx)
.

James Stirling, contemporary of Euler, also tried to extend the
factorial and came up with the Stirling formula, which gives a good
approximation of n! but it is not exact. Later on, Carl Gauss, the
prince of mathematics, introduced the Gamma function for complex
numbers using the Pochhammer factorial. In the early 1810s, it was
Adrien Legendre who first used the Γ symbol and named the Gamma
function.

1.2 Convergence of the Gamma function

Theorem 1
For every x > 0, the following integral converges.∫ ∞

0

e−ttx−1dt

Proof :
In order to prove this theorem, first we need to show the following lemmas.

Lemma 1.1
For every x > 0, the following improper integral converges.∫ ∞

0

e−xtdt

Proof : ∫ ∞
0

e−xtdt = lim
B→∞

∫ B

0

e−xtdt

= lim
B→∞

[−ext
x

]∣∣∣B
0

= lim
B→∞

−e−Bx − 1

x

=
1

x

[
��

���
��:0

lim
B→∞

−e−Bx −
��

��*
1

lim
B→∞

1
]

=
1

x
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Therefore, the limit exists, then the improper integral converges.

Lemma 1.2
Let n be a natural number. Then,

lim
t→∞

tn−1

e
1
2
t

= 0

Proof :
Using L’Hôpital,

lim
t→∞

tn−1

e
1
2
t

= lim
t→∞

(n− 1)tn−2

1
2
e

1
2
t

Since tn−1 is a polynomial of degree n− 1, then

dn

dtn
tn−1 = 0

Then, we find by induction that

lim
t→∞

tn−1

e
1
2
t

= lim
t→∞

0

(1
2
)ne

1
2
t

= 0

Let’s recall the definition of convergence.

limn→∞ an = L
an → L⇔ ∀ε > 0,∃N > 0 : ∀n > N, |an − L| < ε

Let ε = 1. Then it exists an M > 0 such that for every t ≥M the following is true:

∣∣∣∣∣tn−1e
1
2
t

∣∣∣∣∣ < ε = 1

Therefore, for every t ≥M , 0 ≤ tn−1 ≤ e
1
2
t.

This implies that

0 ≤ e−t · tn−1 ≤ e−t · e
1
2
t

0 ≤ e−t · tn−1 ≤ e−
1
2
t (1)

By lemma 1.1, we have that
∫∞
0
e−

1
2
tdt converges.
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(Theorem) Let’s recall the comparison test for improper integrals.

Let f(x) and g(x) be two continuous functions on the interval [α,∞)
such that 0 ≤ f(x) ≤ g(x) for every x ≥ α.

Then, if
∫∞
α
g(x)dx is convergent, then

∫∞
α
f(x)dx is too.

Let f(x) = e−ttn−1 and g(x) = e−
1
2
t.

Then by the comparison test and (1) we find that∫ ∞
0

e−ttn−1dt (2) (a)

is convergent for every n ∈ N.

Now, let x ≥ 1 be any real number.

The floor function bxc represents the biggest integer such that bxc ≤ x ≤ bxc+ 1.

Then, for t ≥ 0, we have that

0 ≤ e−t · tx−1 ≤ e−t · tbxc (3)

By (2) we obtain that the following integral is convergent.∫ ∞
0

e−ttbxcdt

Then by the comparison test and (3), we find that

∫ ∞
0

e−ttx−1dt (b)

is convergent for any x ∈ R, x ≥ 1.

To conclude this demonstration, let us study the case when 0 < x < 1.

We know that

1

e
1
2
t
≤ tx−1

e
1
2
t
≤ t

e
1
2
t

By lemma 1.2, we have that

lim
t→∞

t

e
1
2
t

= lim
t→∞

1

e
1
2
t

= 0
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Using the squeeze theorem,

1

e
1
2
t
≤ tx−1

e
1
2
t
≤ t

e
1
2
t

0 ≤ tx−1

e
1
2
t
≤ 0

⇒ tx−1

e
1
2
t

= 0

for 0 < x < 1.

In an analogous way, as we did in (1), this implies that

0 ≤ e−t · tx−1 ≤ e−
1
2
t

By the comparison test, then ∫ ∞
0

e−t · tx−1dt (c)

is convergent on the interval 0 < x < 1.

Thus, by (a), (b), and (c), the Gamma function

Γ(x) =

∫ ∞
0

e−t · tx−1dt

converges for every x > 0.

1.3 First and second derivative of Γ(x)

Differentiating, we find that on the interval 0 < x <∞

Γ′(x) =
d

dx

∫ ∞
0

e−ttx−1dt =

∫ ∞
0

e−ttx−1 ln(t)dt

Γ′′(x) =
d

dx
Γ′(x) =

∫ ∞
0

e−ttx−1(ln(t))2dt

Since the integrand of Γ”(x) is positive for 0 < x < ∞, then so it is Γ′′(x). Therefore,
the graph of Γ(x) is concave up on the interval (0,∞).
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1.4 Extension of the domain of the Gamma function

It is possible to extend the domain of Γ(x) to negative values of x.

Let’s recall that:

Γ(x+ 1) = xΓ(x) (4)

⇒ Γ(x) =
Γ(x+ 1)

x

⇒ Γ(0) =
Γ(1)

0
tends to infnity

Using (4) many times, we can see that Γ(−1),Γ(−2),Γ(−3), . . . also tend to infinity.

Examples:

Γ(−1) =
Γ(0)

−1
=

Γ(1)

−1 · 0

Γ(−2) =
Γ(−1)

−2
=

Γ(0)

−1 · −2
=

Γ(1)

2 · 0
For any other negative value of x, we can compute Γ(x) using (4) until Γ(x+1) has a positive
argument.

Examples:

Γ
(
− 3

2

)
=

Γ(−1
2
)

−3
2

=
Γ(1

2
)

−3
2
· −1

2

=
4

3

√
π

Γ
(
− 5

2

)
=

Γ(−3
2
)

−5
2

=
Γ(−1

2
)

−5
2
· −3

2

=
Γ(1

2
)

−5
2
· −3

2
· −1

2

= − 8

15

√
π

Hence, Γ(x) is well defined for any x ∈ R except x = 0,−1,−2,−3, ...

It is also possible to extend the Gamma function to the complex plane. From the explicit
formula, we know it is well defined in the right half plane {z ∈ C|Re(z) > 0}. Then it is
holomorphic in the right half plane.

Let us fix z and n such that Re(z + n) > 0. Notice that in a neighborhood of z + n, the
Γ-function is holomorphic.

Γ(z + n) = (z + n− 1)Γ(z + n− 1) = (z + n− 1)(z + n− 2) . . . (z + 1)(z)Γ(z)

Therefore,

Γ(z) =
Γ(z + n)

Pn(z)
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where Pn(z) is the Pochhammer factorial. Since Pn has a root z iff z ∈ {0,−1,−2,−3, ...},
then Γ(z) is holomorphic iff Pn(z) 6= 0, i.e., Γ is holomorphic outside the negative integers.

Hence, Γ(z) is a meromorphic function and has poles z ∈ {0,−1,−2,−3, ..}.

Now,

1

Γ(x)
=

Pn(z)

Γ(z + n)

Since the gamma function is meromorphic and nonzero everywhere in the complex plane,
then its reciprocal is an entire function.

Figure 1: Gamma Function

1.5 Incomplete functions of Gamma

The incomplete functions of Gamma are defined by,

γ(x, α) =

∫ α

0

e−ttx−1dt α > 0

Γ(x, α) =

∫ ∞
α

e−ttx−1dt

where it is evident that,

γ(x, α) + Γ(x, α) = Γ(x)
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2 The Beta function

The Beta function is defined by:

β(x, y) =

∫ 1

0

tx−1(1− t)y−1dt

for x, y > 0.

Fun fact!

? The Gamma function is also known as the Euler integral of the second kind.
? The Beta function is also known as the Euler integral of the first kind.

2.1 Relationship with Gamma function

β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(5)

From (5) it is evident that:

β(x, y) = β(y, x)

Exercise

Compute
3∫
1

(x− 1)10(x− 3)3dx.

Let us make the following change of variables t =
x− 1

2

⇒ x = 2t+ 1⇒ dx = 2t

Substituting, ∫ 1

0

(2t)10(2t− 2)32dt = −214

∫ 1

0

t10(1− t)3dt =

= −214β(11, 4) = −214Γ(11)Γ(4)

Γ(15)
= −214 · 10! · 3!

14!

Question

Could this method be applied to a family of functions?
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2.2 The beta function as an extension of the binomial coefficient

Just like the Gamma function being an extension of the factorial, the Beta function is the
extension of the binomial coefficient.

Theorem 2

(
n

k

)
=

1

(n+ 1)β(n− k + 1, k + 1)

where n, k in N.

Proof :

(
n

k

)
=

n!

k!(n− k)!
=

(n+ 1) · n!

(n+ 1) · k! · (n− k)!
=

(n+ 1)!

(n+ 1) · k!(n− k)
=

=
1

n+ 1

Γ(n+ 2)

Γ(k + 1)Γ(n− k + 1)
=

1

n+ 1

1

β(n− k + 1, k + 1)

Example

(
3

2

)
=

1

4β(2, 3)
=

Γ(5)

4Γ(2)Γ(3)
= 3

But also, (
3

2

)
=

3!

1! · 2!
= 3

Lemma 2.1

β(n, n+ 1) =
1

n ·
(
2n
n

)
Proof :
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1(
2n
n

) =
1

(2n)!

n! · n!

=
n! · n!

(2n)!
=

=
n · Γ(n)Γ(n+ 1)

Γ(2n+ 1)
= nβ(n, n+ 1)

∴ β(n, n+ 1) =
1

n ·
(
2n
n

)
Exercise

Find

S =
∞∑
n=1

1

n ·
(
2n
n

)
Solution:

S =
∞∑
n=1

1

n ·
(
2n
n

)

=
∞∑
n=1

β(n+ 1, n)

=
∞∑
n=1

∫ 1

0

tn(1− t)n−1dt

Given the absolute convergence of the integrand, we can switch
∑

and
∫

.

=

∫ 1

0

∞∑
n=1

tn(1− t)n−1dt

Using the sum of geometric progressions, we get

=

∫ 1

0

t

t2 − t+ 1
dt =

√
3

9
π
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2.3 Incomplete function of Beta

The incomplete function of Beta is defined by,

βα(x, y) =

∫ ∞
0

tx−1(1− t)y−1dt 0 ≤ α ≤ 1

2.4 The extension of the permutation

nPr =
n!

(n− k)!
=

Γ(n+ 1)

Γ(n− k + 1)

3 Pochhammer factorial

Also known as the rising factorial,

x(n) = x(x+ 1)(x+ 2) . . . (x+ n− 1)

The rising factorial counts the disposition of things.

Example

2(2) = 2 · 3 = 6{
2
1 , 1 2 , 1

2 ,
1
2 , 2 1 , 2

1

}
Example

2(3) = 2 · 3 · 4 = 24

x(3) = x(x+ 1)(x+ 2) = x3 + 3x2 + 2x

= 23 + 3(2)2 + 2(2) = 24

Question

Could this be extended to solve any kind of polynomials?
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3.1 Relationship with the Gamma function

x(n) =
Γ(x+ n)

Γ(x)

=
(x+ n− 1)!

(x− 1)!
= x(n)

Definition

Double fatorial

n!! =

{
n(n− 2) . . . 5 · 3 · 1 n > 0 odd
n(n− 2) . . . 6 · 4 · 2 n > 0 even

Example

4!! = 4 · 2 = 8

5!! = 5 · 3 · 1 = 15

Identities

n! = n!! · (n− 1)!!

1(n) = n!

Example

4!! = 4 · 2 = 8

5!! = 5 · 3 · 1 = 15

Exercise

Show that (2n− 1)!! = 2n · 1

2

(n)

Notice that
1

2

(n)

=
(1

2

)(3

2

)(5

2

)
. . .
(
n− 1

2

)
Now, observe that if n is impar of the form 2n− 1,

(2n− 1)!! = (2n− 1)(2n− 3) . . . 5 · 3 · 1

= 2n
(
n− 1

2

)(
n− 3

2

)
. . .
(5

2

)(3

2

)(1

2

)
= 2n

(1

2

)(n)
⇒ (2n− 1)!! = 2n · 1

2

(n)
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Exercise

Show that (2n)!! = 2n(1)(n)

Left as an exercise for the reader.

4 Falling factorial

x(n) = x(x+ 1)(x+ 2) . . . (x+ n− 1)

The falling factorial counts the words of longitude n in order and without repetition.

Example

5(3) = 5 · 4 · 3 = 60

4.1 Relationship with the Gamma function

x(n) =
Γ(x+ 1)

Γ(x− n+ 1)

=
x!

(x− n)!
= x(n)

Fun fact!

The coefficients that appear in the expansion of the falling factorial are
the Stirling numbers of the first kind.

Example: x(3) = x(x− 1)(x− 2) = x3 − 3x2 + 2x

5 Stirling formula

In this section we are going to study the behavior of the Gamma function for huge positive
values of x. It is a good approximation for big factorials.

As n tends to infinity, we have that

n! ≈ nne−n
√

2πn

That is,

lim
n→∞

n

nne−n
√

2πn
= 1
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Proof:

Using the Gamma function,

Γ(n+ 1) =

∫ ∞
0

e−ttndt = n!

Making the substitution t = nk, we get:

=

∫ ∞
0

e−nk(nk)nndk

= (n)n+1 =

∫ ∞
0

e−nkkndk

Once again, we substitute s by (k − 1)
√
n, we get:

= nn+1

∫ ∞
−
√
n

e
−n
( s√

n
+1

)( s√
n

+ 1
)n 1√

n
ds

= nn
√
ne−n

∫ ∞
−
√
n

e−s
√
ne
n log (1+ s√

n
)
ds

Let us now consider the Taylor series of log(1 + r),

log(1 + r) = r − r2

2
+
r3

3
− r4

4
+ . . .

Making the substitution r =
s√
n

, we get

log
(

1 +
s√
n

)
=

s√
n
− s2

2n
+

s3

3n
√
n
− s4

4n2
+ . . .

n log
(

1 +
s√
n

)
= n

( s√
n
− s2

2n
+

s3

3n
√
n
− s4

4n2
+ . . .

)

n log
(

1 +
s√
n

)
− s
√
n = n

( s√
n
− s2

2n
+

s3

3n
√
n
− s4

4n2
+ . . .

)
− s
√
n

n log
(

1 +
s√
n

)
− s
√
n =

(
s
√
n− s2

2
+

s3

3
√
n
− s4

4n
+ . . .

)
− s
√
n

n log
(

1 +
s√
n

)
− s
√
n = −s

2

2
+

s3

3
√
n
− s4

4n
+ . . .
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Now taking the limit on both sides as n→∞,

lim
n→∞

n log
(

1 +
s√
n

)
− s
√
n = −s

2

2

From this, we can deduce,

n! = nn
√
ne−n

∫ ∞
−
√
n

e−s
√
ne
n log (1+ s√

n
)
ds

n!

nn
√
ne−n

=

∫ ∞
−
√
n

e−s
√
ne
n log (1+ s√

n
)
ds

lim
n→∞

n!

nn
√
ne−n

=

∫ ∞
−∞

e−s
√
ne−

s2

2
+s
√
nds

lim
n→∞

n!

nn
√
ne−n

=

∫ ∞
−∞

e−
s2

2 ds

lim
n→∞

n!

nn
√
ne−n

=
√

2π

lim
n→∞

n!

nn
√

2πne−n
= 1

�

Lemma 3.1

β(x, y) ∼ 2
√
πxx+

1
2yy+

1
2

(x+ y)x+y+
1
2

Proof :
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β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

≈
xx
√

2πxe−xyy
√
wπye−y

(x+ y)x+y
√

2π(x+ y)e−x−y

≈ xx+
1
2yy+

1
2

√
2π

(x+ y)x+y+
1
2

Fun fact!

Notice that this approximation is very useful when computen large numbers,
since the approximation can be solved in polynomial time.

Corollary 3.2

Use Stirling’s formula to show that

lim
n→∞

nxβ(x, n) = Γ(x)

Proof :

nxβ(x, n) = nx
Γ(n)Γ(x)

Γ(x+ n)

= nx
(x+ n)(n)

(x+ n)(n)

Γ(n)Γ(x)

Γ(x+ n)

=
nx(x+ n)Γ(n+ 1)Γ(x)

nΓ(x+ n+ 1)

≈ nx(x+ n)nne−n
√

2πnΓ(x)

n(x+)x+ne−x−n
√

2π(x+ n)

≈ exΓ(x)nx+n−
1
2

(x+ n)x+n−
1
2

Hence, taking the limit when n→∞ in both sides,
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lim
n→∞

nxβ(x, n) = lim
n→∞

exΓ(x)nx+n−
1
2

(x+ n)x+n−
1
2

= exΓ(x) lim
n→∞

( n

x+ n

)x+n− 1
2

Now, we have to evaluate the limit on the right.

Notice that,

( n

x+ n

)x+n− 1
2

=
( n

x+ n

)n( n

x+ n

)x− 1
2

=
(x+ n

n

)−n(x+ n

n

) 1
2
−x

=
(

1 +
x

n

)−n(
1 +

x

n

) 1
2
−x

Evaluating those two limits,

lim
n→∞

(
1 +

x

n

)−n
= e−x

lim
n→∞

(
1 +

x

n

) 1
2
−x

= 1

Thus, obtaining

lim
n→∞

(
1 +

n

x+ n

)x+n− 1
2

= e−x

Therefore,

lim
n→∞

β(x, n) = exΓ(x) lim
n→∞

( n

x+ n

)x+n− 1
2

lim
n→∞

β(x, n) = Γ(x)

�
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