%matplotlib widget
from datetime import datetime, timedelta
import calendar
from glob import glob
import json
import pathlib
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from ipywidgets import Button, FileUpload, GridspecLayout
plt.ioff()
fig = plt.figure(figsize=(9, 3))
fig.set_tight_layout(dict(pad=0))
fig.canvas.toolbar_visible = False
fig.canvas.header_visible = False
fig.canvas.footer_visible = False
fig.patch.set_facecolor('white')
def update_figure(path):
global ax
global fig
data = []
for file in sorted(glob(str(pathlib.Path(path) / 'StreamingHistory*.json'))):
with open(file) as fobj:
data.extend(json.load(fobj))
streaming_history = pd.DataFrame(data)
streaming_history['endTime'] = pd.to_datetime(streaming_history['endTime'])
streaming_history["date"] = streaming_history["endTime"].dt.floor('d')
by_date = streaming_history.groupby("date")[["trackName"]].count()
by_date = by_date.sort_index()
by_date["weekday"] = by_date.index.weekday
by_date["week"] = by_date.index.week
week = 0
prev_week = by_date.iloc[0]["week"]
continuous_week = np.zeros(len(by_date)).astype(int)
sunday_dates = []
for i, (_, row) in enumerate(by_date.iterrows()):
if row["week"] != prev_week:
week += 1
prev_week = row["week"]
continuous_week[i] = week
by_date["continuous_week"] = continuous_week
songs = np.full((7, continuous_week.max()+1), np.nan)
for index, row in by_date.iterrows():
songs[row["weekday"]][row["continuous_week"]] = row["trackName"]
min_date = streaming_history["endTime"].min()
first_monday = min_date - timedelta(min_date.weekday())
mons = [first_monday + timedelta(weeks=wk) for wk in range(continuous_week.max())]
x_labels = [calendar.month_abbr[mons[0].month]]
x_labels.extend([
calendar.month_abbr[mons[i].month] if mons[i-1].month != mons[i].month else ""
for i in range(1, len(mons))])
y_labels = ["Mon", "", "Wed", "", "Fri", "", "Sun"]
songs = np.nan_to_num(songs)
plt.clf()
ax = plt.subplot()
ax.xaxis.tick_top()
ax.tick_params(axis='both', which='both', length=0, labelsize=7)
ax.set_facecolor("white")
ax.set_title('{:,} songs listened in the last year'.format(int(np.sum(songs))), loc='left')
sns.heatmap(songs, linewidths=2, linecolor='white', square=True,
cmap="Greens", cbar=True, cbar_kws=dict(orientation='horizontal', shrink=0.4),
vmin=0, vmax=np.max(songs), ax=ax)
ax.set_yticklabels(y_labels, rotation=0)
ax.set_xticklabels(x_labels, ha="left")
fig.canvas.draw()
fig.canvas.flush_events()
This work was inspired by Más visualización con tus datos de Spotify con Python, also available in english.
How does it work?
First request your data on Spotify following this link: https://www.spotify.com/account/privacy
Then come back to this dashboard and upload all the StreamingHistory*.json
files (don't worry, nothing is saved permanently onto the server, at least not if you see this application from https://voila-gallery.org) and click on the Show
button!
layout = GridspecLayout(20, 3, height='600px')
def on_sample_data_click(event):
update_figure('sample_data')
def on_upload(change):
value = change['new']
for filename in value:
with open(filename, 'wb') as outfile:
outfile.write(value[filename]['content'])
def show(event):
update_figure('.')
load_sample_data = Button(description='Show sample data', layout=dict(width='auto', height='auto'))
load_sample_data.on_click(on_sample_data_click)
upload_data = FileUpload(description='Upload your data:', layout=dict(width='auto', height='auto'))
upload_data.observe(on_upload, 'value')
plot = Button(description='Show', button_style='success', layout=dict(width='auto', height='auto'))
plot.on_click(show)
layout[0, 0] = load_sample_data
layout[1, 0] = upload_data
layout[1, 1] = plot
layout[3:, :] = fig.canvas
layout