Predicting the bed elevation of Antarctica using our trained Super Resolution Deep Neural Network. The results will be compared against other interpolated grid products along groundtruth tracks in small regions. Finally we will produce an Antarctic-wide DeepBedMap Digital Elevation Model (DEM) at the very end!
import dataclasses
import math
import os
import typing
os.environ["CUDA_VISIBLE_DEVICES"] = ""
import xarray as xr
import salem
import geopandas as gpd
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
import numpy as np
import pandas as pd
import pygmt as gmt
import quilt
import rasterio
import skimage
import comet_ml
import chainer
import cupy
from features.environment import _load_ipynb_modules, _download_model_weights_from_comet
data_prep = _load_ipynb_modules("data_prep.ipynb")
Basically predict on an place where we have groundtruth data to validate against.
def get_image_with_bounds(filepaths: list, indexers: dict = None) -> xr.DataArray:
"""
Retrieve raster image in xarray.DataArray format patched
with projected coordinate bounds as (xmin, ymin, xmax, ymax)
Note that if more than one filepath is passed in,
the output groundtruth image array will not be valid
(see https://github.com/pydata/xarray/issues/2159),
but the window_bound extents will be correct
"""
with xr.open_mfdataset(
paths=filepaths, combine="nested", concat_dim=None
) as dataset:
# Retrieve dataarray from NetCDF datasets
dataarray = dataset.z.isel(indexers=indexers)
# Patch projection information into xarray grid
dataarray.attrs["pyproj_srs"] = "epsg:3031"
sgrid = dataarray.salem.grid.corner_grid
assert sgrid.origin == "lower-left" # should be "lower-left", not "upper-left"
# Patch bounding box extent into xarray grid
if len(filepaths) == 1:
left, right, bottom, top = sgrid.extent
elif len(filepaths) > 1:
print("WARN: using multiple inputs, output groundtruth image may look funny")
x_offset, y_offset = sgrid.dx / 2, sgrid.dy / 2
left, right = (
float(dataarray.x[0] - x_offset),
float(dataarray.x[-1] + x_offset),
)
assert sgrid.x0 == left
bottom, top = (
float(dataarray.y[0] - y_offset),
float(dataarray.y[-1] + y_offset),
)
assert sgrid.y0 == bottom # dataarray.y.min()-y_offset
# check that y-axis and x-axis lengths are divisible by 4
try:
shape = int((top - bottom) / sgrid.dy), int((right - left) / sgrid.dx)
assert all(i % 4 == 0 for i in shape)
except AssertionError:
print(f"WARN: Image shape {shape} should be divisible by 4 for DeepBedMap")
finally:
dataarray.attrs["bounds"] = [left, bottom, right, top]
return dataarray
test_filepaths = ["highres/2007tx", "highres/2010tr", "highres/istarxx"]
groundtruth = get_image_with_bounds(
filepaths=[f"{t}.nc" for t in test_filepaths],
# indexers={"y": slice(1, -2), "x": slice(1, -2)}, # for 2007tx
indexers={"x": slice(1, -2)}, # for 2007tx, 2010tr and istarxx
)
window_bound = rasterio.coords.BoundingBox(*groundtruth.bounds)
print(window_bound)
WARN: using multiple inputs, output groundtruth image may look funny BoundingBox(left=-1631500.0, bottom=-259000.0, right=-1536500.0, top=-95000.0)
Collect BEDMAP2 (X), REMA (W1), MEaSUREs Ice Flow (W2) and Antarctic Snow Accumulation (W3) datasets cropped to our area of interest that will be fed into our trained neural network later.
def get_deepbedmap_model_inputs(
window_bound: rasterio.coords.BoundingBox,
padding: int = 1000,
use_whole_rema: bool = False,
) -> (np.ndarray, np.ndarray, np.ndarray, np.ndarray):
"""
Outputs one large tile for each of:
BEDMAP2, REMA, MEASURES Ice Flow Velocity and Antarctic Snow Accumulation
according to a given window_bound in the form of (xmin, ymin, xmax, ymax).
"""
data_prep = _load_ipynb_modules("data_prep.ipynb")
if window_bound == rasterio.coords.BoundingBox(
left=-1_594_000.0, bottom=-166_500.0, right=-1_575_000.0, top=-95_500.0
):
# Quickly pull from cached quilt storage if using (hardcoded) test region
quilt.install(package="weiji14/deepbedmap/model/test", force=True)
pkg = quilt.load(pkginfo="weiji14/deepbedmap/model/test")
X_tile = pkg.X_tile()
W1_tile = pkg.W1_tile()
W2_tile = pkg.W2_tile()
W3_tile = pkg.W3_tile()
else:
X_tile = data_prep.selective_tile(
filepath="lowres/bedmap2_bed.tif",
window_bounds=[[*window_bound]],
padding=padding,
gapfiller=-5000.0,
)
W3_tile = data_prep.selective_tile(
filepath="misc/Arthern_accumulation_bedmap2_grid1.tif",
window_bounds=[[*window_bound]],
padding=padding,
gapfiller=0.0,
)
W2_tile = np.concatenate(
[
data_prep.selective_tile(
filepath="netcdf:misc/antarctic_ice_vel_phase_map_v01.nc:VX",
window_bounds=[[*window_bound]],
resolution=500,
padding=padding,
),
data_prep.selective_tile(
filepath="netcdf:misc/antarctic_ice_vel_phase_map_v01.nc:VY",
window_bounds=[[*window_bound]],
resolution=500,
padding=padding,
),
],
axis=1,
)
if not use_whole_rema:
W1_tile = data_prep.selective_tile(
filepath="misc/REMA_100m_dem_filled.tif",
window_bounds=[[*window_bound]],
padding=padding,
)
elif use_whole_rema:
print("Getting: misc/REMA_100m_dem_filled.tif ...", end="")
with xr.open_rasterio("misc/REMA_100m_dem_filled.tif") as ds:
W1_tile = np.expand_dims(a=ds.values, axis=0)
# special zero padding for REMA, 10pixels on top, bottom, left and right
W1_tile = np.pad(
array=W1_tile,
pad_width=[(0, 0), (0, 0), (10, 10), (10, 10)],
mode="constant",
)
print("Done!")
return X_tile, W1_tile, W2_tile, W3_tile
X_tile, W1_tile, W2_tile, W3_tile = get_deepbedmap_model_inputs(
window_bound=window_bound
)
print(X_tile.shape, W1_tile.shape, W2_tile.shape, W3_tile.shape)
# Build quilt package for datasets covering our test region
reupload = False
if reupload == True:
quilt.build(package="weiji14/deepbedmap/model/test/W1_tile", path=W1_tile)
quilt.build(package="weiji14/deepbedmap/model/test/W2_tile", path=W2_tile)
quilt.build(package="weiji14/deepbedmap/model/test/W3_tile", path=W3_tile)
quilt.build(package="weiji14/deepbedmap/model/test/X_tile", path=X_tile)
quilt.push(package="weiji14/deepbedmap/model/test", is_public=True)
Tiling: lowres/bedmap2_bed.tif ... done! Tiling: misc/Arthern_accumulation_bedmap2_grid1.tif ... done! Tiling: netcdf:misc/antarctic_ice_vel_phase_map_v01.nc:VX ... done! Tiling: netcdf:misc/antarctic_ice_vel_phase_map_v01.nc:VY ... done! Tiling: misc/REMA_100m_dem_filled.tif ... done! (1, 1, 166, 97) (1, 1, 1660, 970) (1, 2, 332, 194) (1, 1, 166, 97)
def subplot(directive: str, row: int = None, col: int = None, **kwargs):
"""Thin wrapper around https://docs.generic-mapping-tools.org/latest/subplot.html"""
with gmt.clib.Session() as lib:
rowcol = "" # default is blank, e.g. when directive == "end"
if row is not None and col is not None:
if directive == "begin":
rowcol = f"{row}x{col}"
elif directive == "set":
rowcol = f"{row},{col}"
arg_str = " ".join(
filter(None, [directive, rowcol, gmt.helpers.build_arg_string(kwargs)])
)
lib.call_module(module="subplot", args=arg_str)
def grdview(reliefgrid: str, **kwargs):
"""Thin wrapper around https://docs.generic-mapping-tools.org/latest/grdview.html"""
kind = gmt.helpers.data_kind(reliefgrid, None, None)
with gmt.clib.Session() as lib:
if kind == "file":
file_context = gmt.helpers.dummy_context(reliefgrid)
elif kind == "grid":
file_context = lib.virtualfile_from_grid(reliefgrid)
with file_context as fname:
arg_str = " ".join([fname, gmt.helpers.build_arg_string(kwargs)])
lib.call_module(module="grdview", args=arg_str)
def plot_3d_view(
img: str, # filename (or xr.DataArray in the future) of the DEM to plot
ax: tuple = None, # optional (row, col) specifying gmt subplot position to use
elev: int = 60, # elevation angle above z-plane, value between 0-90
azim: int = 202.5, # azimuth from North, e.g. SouthEast is 135
zmin: int = -1400, # z-plane minimum elevation, in metres below or above datum
cmap: str = "oleron", # colormap to use
title: str = None, # title/label for the plot
zlabel: str = None, # z-axis label
):
"""
Creates a 3D perspective view plot of an elevation surface using gmt grdview.
The elevation (elev) and azimuth (azim) angle will need to be set accordingly,
here it is looking from the SSW (202.5deg) at an angle 60deg above the z-plane.
You can also provide a title (actually an annotation) and z-axis label. Note that
there are several hardcoded defaults like the vertical exaggeration and axis labels.
"""
if ax:
row, col = ax # split ax tuple into (row, col)
subplot(directive="set", row=row, col=col, A=f'"{title}"')
grdview(
reliefgrid=img,
B=f"SWZ", # plot South, West axes, and Z-axis
Bx='af+l"Polar Stereographic X (m)"', # add x-axis annotations and minor ticks
By='af+l"Polar Stereographic Y (m)"', # add y-axis annotations and minor ticks
Bz=f'af+l"{zlabel}"', # add z-axis annotations, minor ticks and axis label
C=cmap, # colormap to use
Jz=0.01, # zscaling factor, default to 10x vertical exaggeration
Q="sim", # surface, image and mesh plot
N=f"{zmin}", # z-plane to plot on
p=f"{azim}/{elev}", # perspective using azimuth/elevation
)
return None # should return instantiated PyGMT fig/Figure class
fig, axarr = plt.subplots(nrows=1, ncols=4, squeeze=False, figsize=(16, 12))
axarr[0, 0].imshow(X_tile[0, 0, :, :], cmap="BrBG")
axarr[0, 0].set_title("BEDMAP2\n(1000m resolution)")
axarr[0, 1].imshow(W1_tile[0, 0, :, :], cmap="BrBG")
axarr[0, 1].set_title("Reference Elevation Model of Antarctica\n(100m resolution)")
axarr[0, 2].imshow(np.linalg.norm(W2_tile, axis=(0, 1)), cmap="BrBG")
axarr[0, 2].set_title("MEaSUREs Ice Speed\n(450m resolution)")
axarr[0, 3].imshow(W3_tile[0, 0, :, :], cmap="BrBG")
axarr[0, 3].set_title("Antarctic Snow Accumulation\n(1000m resolution)")
plt.show()
We'll also have two other grids (interpolated to spatial resolution of 250m) to compare with our DeepBedMap model's prediction. They are:
cubicbedmap = skimage.transform.rescale(
image=X_tile[0, 0, 1:-1, 1:-1].astype(np.int32),
scale=4, # 4x upscaling
order=3, # cubic interpolation
mode="reflect",
anti_aliasing=True,
multichannel=False,
preserve_range=True,
)
cubicbedmap = np.expand_dims(np.expand_dims(cubicbedmap, axis=0), axis=0)
print(cubicbedmap.shape)
# Save Bicubic Resampled BEDMAP2 to GeoTiff and NetCDF format
cubicbedmap_grid = data_prep.save_array_to_grid(
outfilepath="model/cubicbedmap",
window_bound=window_bound,
array=cubicbedmap[0, :, :, :],
save_netcdf=True,
)
(1, 1, 656, 380)
S_tile = data_prep.selective_tile(
filepath="model/hres.tif", window_bounds=[[*window_bound]], interpolate=False
)
print(S_tile.shape)
synthetichr = skimage.transform.rescale(
image=S_tile[0, 0, :, :].astype(np.int32),
scale=1 / 2.5, # 2.5 downscaling
order=1, # billinear interpolation
mode="reflect",
anti_aliasing=True,
multichannel=False,
preserve_range=True,
)
synthetichr = np.expand_dims(np.expand_dims(synthetichr, axis=0), axis=0)
print(synthetichr.shape)
# Save Billinear Resampled Synthetic High Resolution grid to GeoTiff and NetCDF format
synthetichr_grid = data_prep.save_array_to_grid(
outfilepath="model/synthetichr",
window_bound=window_bound,
array=synthetichr[0, :, :, :],
save_netcdf=True,
)
Tiling: model/hres.tif ... done! (1, 1, 1640, 950) (1, 1, 656, 380)
Fully convolutional networks rock!! Since we have a fully convolutional model architecture, we can use the same trained weights on different sized inputs/outputs! That way we can predict directly on an arbitrarily sized window.
def load_trained_model(
experiment_key: str = "055b697548e048b78202cfebb78d6d8c", # or simply use "latest"
model_weights_path: str = "model/weights/srgan_generator_model_weights.npz",
):
"""
Returns a trained Generator DeepBedMap neural network model.
The model's weights and hyperparameters settings are retrieved from
https://comet.ml/weiji14/deepbedmap using an `experiment_key` setting
which can be set to 'latest' or some 32-character alphanumeric string.
"""
srgan_train = _load_ipynb_modules("srgan_train.ipynb")
# Download either 'latest' model weights from Comet.ML or one using experiment_key
# Will also get the hyperparameters "num_residual_blocks" and "residual_scaling"
num_residual_blocks, residual_scaling = _download_model_weights_from_comet(
experiment_key=experiment_key, download_path=model_weights_path
)
# Architect the model with appropriate "num_residual_blocks" and "residual_scaling"
model = srgan_train.GeneratorModel(
num_residual_blocks=num_residual_blocks, residual_scaling=residual_scaling
)
# Load trained neural network weights into model
chainer.serializers.load_npz(file=model_weights_path, obj=model)
return model
model = load_trained_model()
with chainer.using_config(name="enable_backprop", value=False):
Y_hat = model.forward(x=X_tile, w1=W1_tile, w2=W2_tile, w3=W3_tile).array
# Save BEDMAP3 to GeoTiff and NetCDF format
deepbedmap3_grid = data_prep.save_array_to_grid(
outfilepath="model/deepbedmap3",
window_bound=window_bound,
array=Y_hat[0, :, :, :],
save_netcdf=True,
)
deepbedmap3_grid = xr.DataArray(
data=np.flipud(cupy.asnumpy(Y_hat[0, 0, :, :])),
dims=["y", "x"],
coords={"y": deepbedmap3_grid.y, "x": deepbedmap3_grid.x}, # for multiple grids
# coords={"y": groundtruth.y, "x": groundtruth.x}, # for single grid
)
deepbedmap3_grid = xr.open_dataarray("model/deepbedmap3.nc")
# Get elevation difference between DeepBedMap and CubicBedMap
elevdiffmap = deepbedmap3_grid - cubicbedmap_grid
elevdiffmap_grid = data_prep.save_array_to_grid(
outfilepath="model/elevdiffmap",
window_bound=window_bound,
array=elevdiffmap,
save_netcdf=True,
)
fig, axarr = plt.subplots(nrows=1, ncols=4, squeeze=False, figsize=(22, 12))
axarr[0, 0].imshow(X_tile[0, 0, :, :], cmap="BrBG")
axarr[0, 0].set_title("BEDMAP2")
axarr[0, 1].imshow(Y_hat[0, 0, :, :], cmap="BrBG")
axarr[0, 1].set_title("Super Resolution Generative Adversarial Network prediction")
axarr[0, 2].imshow(S_tile[0, 0, :, :], cmap="BrBG")
axarr[0, 2].set_title("Synthetic High Resolution Grid")
groundtruth.plot(ax=axarr[0, 3], cmap="BrBG")
axarr[0, 3].set_title("Groundtruth grids")
plt.show()
fig = gmt.Figure()
subplot(directive="begin", row=2, col=2, A="+jCT+o-4c/-5c", Fs="9c/9c", M="2c/3c")
plot_3d_view(
img="model/deepbedmap3.nc", # DeepBedMap
ax=(0, 0),
zmin=-1400,
title="DeepBedMap", # ours
zlabel="Bed elevation (metres)",
)
plot_3d_view(
img="model/cubicbedmap.nc", # BEDMAP2
ax=(0, 1),
zmin=-1400,
title="BEDMAP2",
zlabel="Bed elevation (metres)",
)
plot_3d_view(
img="model/elevdiffmap.nc", # DeepBedMap - BEDMAP2
ax=(1, 0),
zmin=-400,
title="Elevation Diff",
zlabel="Difference (metres)",
)
plot_3d_view(
img="model/synthetichr.nc", # Synthetic High Resolution product
ax=(1, 1),
zmin=-1400,
title="Synthetic HRES",
zlabel="Bed elevation (metres)",
)
subplot(directive="end")
fig.savefig(fname="esrgan_prediction.eps", crop=False)
fig.show()
Here we compare the elevation error (or difference) between our grid and many many points! We use PyGMT's grdtrack to sample the grid along the survey track points.
The survey tracks are basically geographic points (x, y) with an elevation (z) that were collected from an airplane or ground vehicle crossing Antarctica. The four grids we sample from all have a spatial resolution of 250m and they are:
References:
tracks = [data_prep.ascii_to_xyz(pipeline_file=f"{pf}.json") for pf in test_filepaths]
points: pd.DataFrame = pd.concat(objs=tracks) # concatenate all tracks into one table
df_groundtruth = gmt.grdtrack(
points=points, grid=groundtruth, newcolname="z_interpolated"
)
# df_deepbedmap3 = gmt.grdtrack(
# points=points, grid=deepbedmap3_grid, newcolname="z_interpolated"
# )
df_deepbedmap3 = gmt.grdtrack(
points=points, grid="model/deepbedmap3.nc", newcolname="z_interpolated"
)
df_cubicbedmap = gmt.grdtrack(
points=points, grid="model/cubicbedmap.nc", newcolname="z_interpolated"
)
df_synthetichr = gmt.grdtrack(
points=points, grid="model/synthetichr.nc", newcolname="z_interpolated"
)
df_groundtruth["error"] = df_groundtruth.z_interpolated - df_groundtruth.z
df_groundtruth.describe()
x | y | z | z_interpolated | error | |
---|---|---|---|---|---|
count | 5.242860e+05 | 524286.000000 | 524286.000000 | 524286.000000 | 524286.000000 |
mean | -1.570025e+06 | -164891.006356 | -987.608968 | -987.541573 | 0.067395 |
std | 2.514203e+04 | 43699.447384 | 254.286011 | 253.962068 | 7.327829 |
min | -1.630901e+06 | -256118.350000 | -1444.852133 | -1439.215672 | -133.928328 |
25% | -1.584227e+06 | -189898.228700 | -1188.379363 | -1188.262847 | -2.010458 |
50% | -1.565156e+06 | -148015.400850 | -1063.172355 | -1063.630824 | -0.017107 |
75% | -1.548072e+06 | -128862.578450 | -763.656094 | -763.516736 | 1.957939 |
max | -1.536883e+06 | -97873.097970 | -335.762065 | -337.858087 | 263.408316 |
df_deepbedmap3["error"] = df_deepbedmap3.z_interpolated - df_deepbedmap3.z
df_deepbedmap3.describe()
x | y | z | z_interpolated | error | |
---|---|---|---|---|---|
count | 5.242860e+05 | 524286.000000 | 524286.000000 | 524286.000000 | 524286.000000 |
mean | -1.570025e+06 | -164891.006356 | -987.608968 | -1000.542688 | -12.933720 |
std | 2.514203e+04 | 43699.447384 | 254.286011 | 261.859615 | 49.341153 |
min | -1.630901e+06 | -256118.350000 | -1444.852133 | -1433.379951 | -351.980612 |
25% | -1.584227e+06 | -189898.228700 | -1188.379363 | -1202.281424 | -35.754654 |
50% | -1.565156e+06 | -148015.400850 | -1063.172355 | -1079.837265 | -12.948500 |
75% | -1.548072e+06 | -128862.578450 | -763.656094 | -787.182532 | 13.154136 |
max | -1.536883e+06 | -97873.097970 | -335.762065 | -320.919735 | 229.834332 |
df_cubicbedmap["error"] = df_cubicbedmap.z_interpolated - df_cubicbedmap.z
df_cubicbedmap.describe()
x | y | z | z_interpolated | error | |
---|---|---|---|---|---|
count | 5.242860e+05 | 524286.000000 | 524286.000000 | 524286.000000 | 524286.000000 |
mean | -1.570025e+06 | -164891.006356 | -987.608968 | -1004.467615 | -16.858647 |
std | 2.514203e+04 | 43699.447384 | 254.286011 | 238.854563 | 68.011194 |
min | -1.630901e+06 | -256118.350000 | -1444.852133 | -1426.400722 | -392.758124 |
25% | -1.584227e+06 | -189898.228700 | -1188.379363 | -1188.213110 | -52.133806 |
50% | -1.565156e+06 | -148015.400850 | -1063.172355 | -1084.424856 | -20.976275 |
75% | -1.548072e+06 | -128862.578450 | -763.656094 | -786.345662 | 20.583943 |
max | -1.536883e+06 | -97873.097970 | -335.762065 | -379.431970 | 210.218452 |
df_synthetichr["error"] = df_synthetichr.z_interpolated - df_synthetichr.z
df_synthetichr.describe()
x | y | z | z_interpolated | error | |
---|---|---|---|---|---|
count | 5.242860e+05 | 524286.000000 | 524286.000000 | 524286.000000 | 524286.000000 |
mean | -1.570025e+06 | -164891.006356 | -987.608968 | -988.175162 | -0.566195 |
std | 2.514203e+04 | 43699.447384 | 254.286011 | 276.775098 | 154.842501 |
min | -1.630901e+06 | -256118.350000 | -1444.852133 | -1759.910364 | -533.979190 |
25% | -1.584227e+06 | -189898.228700 | -1188.379363 | -1194.140637 | -102.850291 |
50% | -1.565156e+06 | -148015.400850 | -1063.172355 | -1045.691569 | 0.304299 |
75% | -1.548072e+06 | -128862.578450 | -763.656094 | -772.906113 | 101.177358 |
max | -1.536883e+06 | -97873.097970 | -335.762065 | 2.006351 | 669.322908 |
# https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
rmse_groundtruth = (df_groundtruth.error ** 2).mean() ** 0.5
rmse_deepbedmap3 = (df_deepbedmap3.error ** 2).mean() ** 0.5
rmse_cubicbedmap = (df_cubicbedmap.error ** 2).mean() ** 0.5
rmse_synthetichr = (df_synthetichr.error ** 2).mean() ** 0.5
bins = 50
fig, ax = plt.subplots(figsize=(16, 9))
# ax.set_yscale(value="symlog")
ax.set_xlim(left=-150, right=100)
df_groundtruth.hist(
column="error",
bins=25,
ax=ax,
histtype="step",
label=f"Groundtruth RMSE: {rmse_groundtruth:.2f}",
)
df_deepbedmap3.hist(
column="error",
bins=25,
ax=ax,
histtype="step",
label=f"DeepBedMap RMSE: {rmse_deepbedmap3:.2f}",
)
df_cubicbedmap.hist(
column="error",
bins=25,
ax=ax,
histtype="step",
label=f"CubicBedMap RMSE: {rmse_cubicbedmap:.2f}",
)
"""
df_synthetichr.hist(
column="error",
bins=bins,
ax=ax,
histtype="step",
label=f"SyntheticHR RMSE: {rmse_synthetichr:.2f}",
)
"""
ax.set_title("Elevation error between interpolated bed and groundtruth", fontsize=32)
ax.set_xlabel("Error in metres", fontsize=32)
ax.set_ylabel("Number of data points", fontsize=32)
ax.legend(loc="upper left", fontsize=32)
plt.tick_params(axis="both", labelsize=20)
plt.axvline(x=0)
# plt.savefig(fname="elevation_error_histogram.pdf", format="pdf", bbox_inches="tight")
plt.show()
print(f"Groundtruth RMSE: {rmse_groundtruth}")
print(f"DeepBedMap3 RMSE: {rmse_deepbedmap3}")
print(f"SyntheticHR RMSE: {rmse_synthetichr}")
print(f"CubicBedMap RMSE: {rmse_cubicbedmap}")
print(f"Difference : {rmse_deepbedmap3 - rmse_cubicbedmap}")
Groundtruth RMSE: 7.328131636821937 DeepBedMap3 RMSE: 51.008095856173746 SyntheticHR RMSE: 154.84338835240177 CubicBedMap RMSE: 70.06944906098977 Difference : -19.061353204816022
Using our neural network to predict the bed elevation of the whole Antarctic continent! A previous version (April 2019) presented at EGU2019 can be found in this issue with reproducible code in this pull request.
# Bounding Box region in EPSG:3031 covering Antarctica
window_bound_big = rasterio.coords.BoundingBox(
left=-2_700_000.0, bottom=-2_200_000.0, right=2_800_000.0, top=2_300_000.0
)
print(window_bound_big)
BoundingBox(left=-2700000.0, bottom=-2200000.0, right=2800000.0, top=2300000.0)
try:
X_tile = np.load(file="X_tile_big.npy")
W1_tile = np.load(file="W1_tile_big.npy")
W2_tile = np.load(file="W2_tile_big.npy")
W3_tile = np.load(file="W3_tile_big.npy")
except FileNotFoundError:
X_tile, W1_tile, W2_tile, W3_tile = get_deepbedmap_model_inputs(
window_bound=window_bound_big, use_whole_rema=True
)
np.save(file="X_tile_big.npy", arr=X_tile)
np.save(file="W1_tile_big.npy", arr=W1_tile)
np.save(file="W2_tile_big.npy", arr=W2_tile)
np.save(file="W3_tile_big.npy", arr=W3_tile)
# Oh we will definitely need a GPU for this
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
model.to_gpu()
<srgan_train.GeneratorModel at 0x7f69ede96a20>
# clip Ice Surface Elevation, Velocity and Accummulation values to above 0.0
W1_tile = np.clip(a=W1_tile, a_min=0.0, a_max=None)
W2_tile = np.clip(a=W2_tile, a_min=0.0, a_max=None)
W3_tile = np.clip(a=W3_tile, a_min=0.0, a_max=None)
print(X_tile.shape, W1_tile.shape, W2_tile.shape, W3_tile.shape)
(1, 1, 4502, 5502) (1, 1, 45020, 55020) (1, 2, 9004, 11004) (1, 1, 4502, 5502)
Antarctica won't fit into our 16GB of GPU memory, so we have to:
@dataclasses.dataclass(frozen=True)
class Shape:
y: int # size in y-direction
x: int # size in x-direction
# The whole of Antarctica tile and predictor
with chainer.using_config(name="cudnn_deterministic", value=True):
# Size are in kilometres, same as BEDMAP2's 1km resolution
final_shape = Shape(y=18000, x=22000) # 4x that of BEDMAP2
ary_shape = Shape(y=1000, x=1000) # 1000pixels * 250m = 250km
stride = Shape(y=1000, x=1000) # cut a tile every 1000 metres
xtrapad = Shape(y=18, x=18) # extra padding at borders (which will be clipped off)
Y_hat = np.full(
shape=(1, final_shape.y, final_shape.x), fill_value=np.nan, dtype=np.float32
)
steps = []
for y_step in range(0, final_shape.y, stride.y):
for x_step in range(0, final_shape.x, stride.x):
steps.append(Shape(y=y_step, x=x_step))
for step in steps:
# plus `xtrapad.y` pixels and 1 pixel on bottom and top
y0 = max(0, (step.y // 4) - xtrapad.y - 1)
y1 = min(final_shape.y // 4, ((step.y + ary_shape.y) // 4) + xtrapad.y + 1)
# plus `xtrapad.x` pixels and 1 pixel on left and right
x0 = max(0, (step.x // 4) - xtrapad.x - 1)
x1 = min(final_shape.x // 4, ((step.x + ary_shape.x) // 4) + xtrapad.x + 1)
# print(str(x0).zfill(4), str(x1).zfill(4), str(y0).zfill(4), str(y1).zfill(4))
# Hardcoded crops of BEDMAP2 (X), REMA (W1), MEaSUREs (W2), Accumulation (W3)
X_tile_crop = model.xp.asarray(a=X_tile[:, :, y0:y1, x0:x1], dtype="float32")
W1_tile_crop = model.xp.asarray(
a=W1_tile[:, :, y0 * 10 : y1 * 10, x0 * 10 : x1 * 10], dtype="float32"
)
W2_tile_crop = model.xp.asarray(
a=W2_tile[:, :, y0 * 2 : y1 * 2, x0 * 2 : x1 * 2], dtype="float32"
)
W3_tile_crop = model.xp.asarray(a=W3_tile[:, :, y0:y1, x0:x1], dtype="float32")
# DeepBedMap terrain inference
with chainer.using_config(name="enable_backprop", value=False):
Y_pred = model.forward(
x=X_tile_crop, w1=W1_tile_crop, w2=W2_tile_crop, w3=W3_tile_crop
)
try:
y_slice = slice((y0 + xtrapad.y + 1) * 4, (y1 - xtrapad.y - 1) * 4)
x_slice = slice((x0 + xtrapad.x + 1) * 4, (x1 - xtrapad.x - 1) * 4)
Y_pred_uncut: np.ndarray = cupy.asnumpy(Y_pred.array)[0, :, :, :]
Y_hat[:, y_slice, x_slice] = Y_pred_uncut[
:, xtrapad.y * 4 : -xtrapad.y * 4, xtrapad.x * 4 : -xtrapad.x * 4
]
except ValueError:
raise
finally:
X_tile_crop = W1_tile_crop = W2_tile_crop = W3_tile_crop = None
# Save BEDMAP3 to GeoTiff and NetCDF format
# Using LZW compression and int16 instead of float32 to keep things smaller
_ = data_prep.save_array_to_grid(
window_bound=window_bound_big,
array=Y_hat.astype(dtype=np.int16),
outfilepath="model/deepbedmap3_big_int16",
dtype=np.int16,
tiled=True,
compression=rasterio.enums.Compression.lzw.value, # Lempel-Ziv-Welch, lossless
)
# Adapted from https://docs.generic-mapping-tools.org/latest/gallery/ex42.html
fig = gmt.Figure()
#!gmt makecpt -Coleron -T-4500/4500 > deepbedmap.cpt
fig.grdimage(
grid="model/deepbedmap3_big_int16.tif",
region="-2700000/2800000/-2200000/2300000",
projection="x1:60000000",
frame="f", # add minor tick labels only
C="deepbedmap.cpt",
Q=True,
)
fig.savefig(fname="deepbedmap.png")
fig.show()