Chapter 1: Crafting a Rust-Based Network Sniffer

Network sniffers, essential tools in understanding and analyzing data flow
across networks, can be crafted from scratch with Rust. Rust’s unique blend of
performance and safety makes it an ideal choice for low-level network program-
ming. In this exploration, we’ll leverage the capabilities of the socket2 crate, a
powerful Rust library that provides abstractions for working with raw sockets.

Building a network sniffer requires a solid understanding of the fundamentals
of raw network packets in Rust. In Rust, handling raw packets involves close
interaction with sockets and meticulous byte manipulation. The socket?2 crate
simplifies this process, offering abstractions that facilitate efficient packet capture
and processing.

Before we dive into the complexities of network sniffing, let’s establish a foun-
dation by understanding how Rust manages raw network packets. This under-
standing is pivotal as we construct our custom network sniffer, allowing us to
delve deep into the world of low-level networking.

1. Crafting a Rust-Based UDP Host Discovery Tool

In our pursuit to develop a robust UDP host discovery tool using Rust, the
primary objective is to identify hosts within a target network. This tool holds
significance in scenarios where a comprehensive overview of potential targets is
sought, facilitating the streamlining of reconnaissance and exploitation efforts.
The methodology relies on leveraging a well-established behavior exhibited by
most operating systems when confronted with UDP datagrams directed at closed
ports. Typically, a responsive host generates an ICMP message indicating that
the port is unreachable. This ICMP response serves as a valuable indicator of
an active host, forming the basis for our host discovery mechanism.

The deliberate selection of the User Datagram Protocol (UDP) stems from its
inherent advantages in efficiently broadcasting messages across a subnet with
minimal overhead. The lightweight nature of this protocol positions it as an ideal
candidate for our purposes, emphasizing the goal of maximizing coverage while
minimizing potential disruptions. A pivotal aspect of our approach involves the
careful selection of a UDP port that is unlikely to be in active use, enabling us
to probe multiple ports for comprehensive host coverage.

Understanding the role of UDP in our host discovery tool necessitates a closer
examination of its characteristics. UDP, characterized by its connectionless and
lightweight nature, aligns seamlessly with our objective of quick and efficient
host identification. The absence of overhead associated with connection-oriented
protocols renders UDP well-suited for our purpose, as we intend to seamlessly
broadcast messages and await ICMP responses. This strategic choice is not
arbitrary; rather, it is a deliberate selection based on the efficiency and simplicity
afforded by UDP in the context of host discovery.

https://en.wikipedia.org/wiki/Packet_analyzer
https://github.com/rust-lang/socket2
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/Footprinting
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

Delving into the complexities of our approach, the emphasis extends beyond
constructing a basic host discovery tool to meticulous decoding and analysis of
various network protocol headers. The true potency of our tool lies not only in
its ability to identify hosts but also in its capacity to decipher the complex layers
of network communications. Decoding network protocol headers necessitates
a nuanced understanding of underlying structures, and Rust, with its focus on
performance and safety, emerges as a dependable companion in this journey.

As we kick off the implementation of this UDP host discovery tool, the scope
extends beyond a singular operating system. The objective is to create a tool tran-
scending platform limitations, catering to both Windows and Linux environments.
This versatility is not merely a convenience but a strategic decision to enhance
the tool’s applicability, particularly in enterprise environments characterized by
diverse operating systems.

The prospective evolution of our tool goes beyond basic host discovery. We
envision the incorporation of additional logic that could trigger comprehensive
Nmap port scans on any discovered hosts. This strategic enhancement adds a
layer of sophistication, allowing for a deeper exploration of the network attack
surface associated with each identified host. The decision to leave this as an
exercise for the user underscores our commitment to fostering creativity and
innovation within the realm of network exploration.

1.1 Network Exploration: Decoding the Essence of UDP

Packet sniffing, a fundamental aspect of network analysis, extends on Windows
and Linux platforms, each requiring a distinct approach. To ensure adaptability
across operating systems, we adopt a strategy that involves creating a socket
object and dynamically determining the underlying platform. This platform
awareness becomes particularly crucial as the complexities of raw socket access
vary between Windows and Linux environments.

On Windows, the process entails additional steps due to the need for setting
specific flags via a socket input/output control (IOCTL) mechanism. This
mechanism serves as a means of communication between user-space programs
and kernel-mode components, facilitating the configuration of network interfaces
to operate in promiscuous mode. Promiscuous mode, a powerful but privileged
state, allows the network interface to capture all incoming packets, regardless
of their destination, providing a comprehensive view of network activity. The
initiation of promiscuous mode on Windows involves the strategic use of IOCTL
to enable the reception of all packets.

In contrast, the Linux counterpart focuses on the specificity of protocols, where
the example utilizes the Internet Control Message Protocol (ICMP) for packet
sniffing. Linux, by default, requires a more targeted approach, necessitating the
selection of a specific protocol for packet capture. The Rust implementation
adeptly accommodates these differences, showcasing its platform-aware design.

https://en.wikipedia.org/wiki/Nmap
https://en.wikipedia.org/wiki/Promiscuous_mode

use socket2::{Domain, Protocol, Socket, Typel;
use std::70::Result;

use std::mem::MaybeUninit;

use std::net::SocketAddr;

fn main() -> Result<()> {
// Define the host to listen on
let host: SocketAddr = "0.0.0.0:12345".parse() .unwrap();

let socket_protocol = if cfg/ (target_os = "windows") {
0

} else {
1

};

// Create a raw socket
let sniffer = Socket::new(

Domain: : IPV4,

Type: : RAW,

Some (Protocol: : from(socket_protocol)),
)?;
// bind to the public interface
sniffer.bind(&host.into())7;

// Read one packet
let mut buffer: [MaybeUninit<u8>; 65535] = unsafe { MaybeUninit::uninit().assume_init()
let _ = sniffer.recv_from(&mut buffer)?;
let raw_buffer: &[u8] =
unsafe { std::slice::from_raw_parts(buffer.as_ptr() as *const u8, buffer.len()) I};

// Print the captured packet
println! ("{:7}", raw_buffer);

0k (O)
}

The provided Rust code exemplifies the initiation of a raw socket sniffer, starting
with the definition of the host IP address to listen on. The subsequent steps
involve the creation of a socket object, taking into account the protocol variations
between Windows and Linux. In this context, the cfg! (windows) macro plays
a pivotal role in conditionally determining the platform and adjusting the socket
protocol accordingly.

The default configuration of the socket will include IP headers in the captured
packets, enhancing the depth of information gathered during the sniffing process.
Moreover, the script automatically handles the complexities of promiscuous

mode, a critical feature for comprehensive packet capture.

While the provided Rust code captures a single packet for simplicity, it serves as
a foundational example for more extensive network analysis tasks. The flexibility
of Rust, combined with its platform-aware features, positions it as a reliable
choice for crafting network tools that seamlessly operate across diverse operating
systems. This illustrative example demystifies the complexities of packet sniffing
on Windows and Linux, laying the groundwork for more sophisticated network
exploration and analysis endeavors.

:dep socket2 = {version = "0.5.5", features = ["all"]}

use std::process::{Command, Output, Stdiol};

// A helper function to execute a shell command from a Rust script
fn execute_command(command: &str) -> Result<(), std::%0::Error> {
let status = Command::new("bash")
.arg("-c")
.arg(command)
.stderr(Stdio:: inherit())
.status () 7;

if status.success() {
0k(O))
} else {
Err(std::io::Error::from_raw_os_error(status.code() .unwrap_or(1)))
}
}

// The following command will execute the sniffer.
// Set your sudo password below by replacing 'your-passowrd' accordingly

let command = "cd decoding-the-essence-of-udp && cargo build && echo 'your-passowrd' | sudo
if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

}

// In another terminal or shell window, choose a host to ping, for example: ping google.com

[sudo] password for mahmoud: Compiling decoding-the-essence-of-udp v0.1.0 (/home/mahmoud,
Finished dev [unoptimized + debuginfo] target(s) in 0.28s

[69, 0, O, 84, 0, O, O, O, 113, 1, 211, 15, 142, 251, 37, 238, 192, 168, 1, 8, 0, 0, 249, 9

0O

The displayed output indicates the successful capture of the initial ICMP ping
request destined for the specified host. Running this example on Linux would
yield the response from the pinged host.

Capturing a single packet is limited in utility, prompting us to enhance the
functionality to process more packets and decode their contents. Let’s proceed
by incorporating additional features into our sniffer code.

1.2 Decoding the IP Layer and Uncover Packet Secrets

Within the current implementation of our sniffer, we capture a lot of data,
including IP headers and higher-level protocols such as TCP, UDP, or ICMP.
However, this information currently exists in an encoded binary form, presenting
a significant challenge for comprehension. Our immediate objective is to decode
the IP segment of a packet, a pivotal step that enables us to extract valuable
insights. This includes determining the protocol type (TCP, UDP, or ICMP) and
identifying the source and destination IP addresses. This decoding process sets
the stage for a more profound understanding, forming the ground for parsing
additional protocols in subsequent stages of our exploration.

When examining an actual packet traversing the network, it becomes evident
that decoding incoming packets requires a clear comprehension of their structure.
The following table provides insight into the composition of an IP header,
delineating its various fields.

Bit Offset Field Size (in bits)
0-3 Version 4

4-7 HDR length 4

8-15 Type of service 8

16-31 Total length 16
32-39 Identification 8

40-47 Flags 8

48-63 Fragment offset 16
64-71 Time to live 8

72-79 Protocol 8

80-95 Header checksum 16
96-127 Source IP address 32
128-159 Destination IP address 32

160 onward Options Variable

Our goal is to make sense of the IP header, excluding the last Options field, and

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://en.wikipedia.org/wiki/IP_header

focus on pulling out important information like the type of protocol, where the
data is coming from (source IP), and where it’s going (destination IP). To do
this, we need a smart approach to break down each part of the IP header. For
this task, we are using Rust which is good at handling this kind of challenge.

As you may know, Rust provides us with a special tool called “struct”, which is
like a blueprint that helps us understand and organize the data we're dealing
with. This tool works well with binary data, the language that computers speak.

Now, let’s dive into how we can use this Rust struct tool to read an IP header.
Think of it like having a map that shows us the layout of the information we’re
looking for. Rust’s struct acts like a guide, helping us decode the binary data
that represents an IP header. It’s like a decoder ring that makes sense of the
mysterious binary language.

Understanding Rust’s struct is like learning the rules of a game. The rules help
us play efficiently and understand how the game works. Similarly, Rust’s struct
has its own set of rules that help us interpret the binary data and understand
what each part of the IP header means.

As we go through the steps of using Rust’s struct to read an IP header, think
of it as following a recipe. The recipe (Rust’s struct) tells us what ingredients
(binary data) we need and how to combine them to get the final dish (decoded
IP header). Rust’s struct acts as our recipe book, guiding us through the process
of turning complex binary data into something we can easily understand.

The flexibility of Rust’s struct is like having a Swiss Army knife. It not only helps
us decode the IP header but also opens up possibilities for doing more advanced
tasks, like understanding different types of protocols and analyzing networks in
more detail. This journey with Rust’s struct is not just about reading data; it’s
about unlocking the secrets hidden in the binary language and using them to
understand networks better.

In a nutshell, our exploration of decoding the IP header in Rust is like embarking
on an exciting adventure. Rust, our trusty companion, makes the journey
smoother by providing us with the right tools to decipher the language of
computers. As we navigate through Rust’s struct, it’s not just about decoding
binary data; it’s about gaining insights and understanding the fascinating world
of networks.

1.3 The IP Header Struct

In the following code snippet, we encounter the definition of a new Rust struct
object named IP, meticulously crafted to read and parse packet headers into
distinct fields. The IP struct is equiped with a set of fields, each meticulously
aligned with the components of the IP header, as illustrated in the earlier-
mentioned IP header table. Each field is assigned a specific name, such as
ver_ihl or offset, along with its corresponding data type, like u8 or u16. The
ability to specify bit width adds a layer of flexibility, offering the liberty to dictate

https://doc.rust-lang.org/std/keyword.struct.html

lengths beyond the byte level, an important feature that exceeds conventional
constraints.

struct IP {
ver_ihl: u8,
tos: u8,
len: ulé6,
id: ulé,
offset: ul6,
ttl: u8,
protocol_num: u8,
sum: ulé6,
src: u32,
dst: u32,

}

This struct, being the cornerstone of our packet parsing work, demands a well-
defined structure before instantiation. The new method comes to the forefront,
adept at filling the fields with appropriate values. As we traverse the complexities
of the new method, it takes a buffer as its first argument and crafts an object of
the IP struct. The utilization of format characters within the method becomes
pivotal, outlining the structure of binary data with precision.
impl IP {
fn new(buff: &[u8]) -> Option<Self> {
if buff.len() >= 20 {
let header = IP {
ver_ihl: buff[0],
tos: buff[1],
len: ul6::from_be_bytes([buff[2], buff[3]]),
id: ul6::from_be_bytes([buff[4], buff[5]]),
offset: ul6::from_be_bytes([buff[6], buff[7]]),
ttl: buff[8],
protocol_num: buff[9],
sum: ul6::from_be_bytes([buff[10], buff[11]1]),
src: u32::from_be_bytes([buff[12], buff[13], buff[14], buff[15]]),
dst: u32::from_be_bytes([buff[16], buff[17], buff[18], buff[19]]),
Irg

Some (header)
} else {
None

}

}

The new method unfolds as a meticulous orchestra of data extraction, where

each field of the IP struct is populated by interpreting the corresponding bytes
from the input buffer. The method meticulously adheres to the complexities
of the IP header, ensuring that each field, from version and type of service to
source and destination IP addresses, is accurately represented. This methodical
approach not only adheres to the Rust language’s conventions but also aligns
seamlessly with the binary nature of network data.
impl IP {
fn protocol(&self) -> String {
match self.protocol_num {
1 => String::from("ICMP"),
4 => String::from("IPv4"),
6 => String::from("TCP"),
17 => String::from("UDP"),
255 => String::from("Reserved"),
_ => format! ("{}", self.protocol_num),

fn src_address(&self) -> String {
Ipv4Addr: : from(self.src).to_string()

fn dst_address(&self) -> String {
Ipu4Addr: : from(self.dst).to_string()

fn offset(&self) -> String {
self.offset.to_string()

fn ttl(&self) -> String {
self.ttl.to_string()

fn ver(&self) -> String {
self.ver_ihl.to_string()

fn len(&self) -> String {
self.len.to_string()

}

Beyond the instantiation complexities, the IP struct extends its capabilities with
additional methods designed to provide meaningful insights into the parsed IP

header. The protocol method, for instance, translates the protocol number
into human-readable format, offering clarity on whether it corresponds to ICMP,
IPv4, TCP, UDP, or falls under the category of reserved protocols. This method
encapsulates an important understanding of the IP header’s composition, bridging
the gap between raw data and comprehensible information.

Further enriching the IP struct’s functionality are methods such as src_address,
dst_address, offset, ttl, ver, and len, each meticulously crafted to ex-
tract and present specific elements of the IP header. The src_address and
dst_address methods, for instance, leverage Rust’s ability to convert raw IP
addresses into human-readable strings, providing insights into the source and
destination addresses with clarity. Meanwhile, offset, ttl, ver, and len offer
a glimpse into the fragment offset, time to live, version, and total length of the
IP header, respectively.

In essence, this Rust code snippet not only materializes the complexities of
creating a robust IP struct for parsing IP headers but also unfolds as a complex
symphony of methods that bridge the gap between raw binary data and compre-
hensible insights. The thoughtful design choices and meticulous data extraction
techniques showcased here underscore Rust’s prowess in low-level programming
and its ability to handle network data with finesse.

1.4 Putting It All Together

To integrate the recently developed IP decoding struct into our network sniffer,
we will incorporate the functionality within our script:

use socket2::{Domain, Protocol, Socket, Typel;
use std::70::Result;

use std::mem::MaybeUninit;

use std::net::SocketAddr;

use std::met::Ipv4Addr;

struct IP {

ver_ihl: u8,
tos: u8,
len: ul6,
id: ulé6,
offset: ulé6,
ttl: u8,
protocol_num: u8,
sum: ulé6,
src: u32,
dst: u32,

impl IP {
fn new(buff: &[u8]) -> Option<Self> {
if buff.len() >= 20 {

let header = IP {
ver_ihl: buff[0],
tos: buffl[1],
len: ul6::from_be_bytes([buff[2], buff[3]]),
id: ul6::from_be_bytes([buff[4], buff[5]]),
offset: ul6::from_be_bytes([buff[6], buff[7]]),
ttl: buff[8],
protocol_num: buff[9],
sum: ul6::from_be_bytes([buff[10], buff[11]]),
src: u32::from_be_bytes([buff[12], buff[13], buff[14], buff[15]]),
dst: u32::from_be_bytes([buff[16], buff[17], buff[18], buff[19]]),

g

Some (header)
} else {
None
}
}

fn protocol(&self) -> String {
// Refer to —---> https://www.iana.org/assignments/protocol-numbers/protocol-numbers
match self.protocol_num {
=> String:: from("HOPOPT"),
=> String::from("ICMP"),
=> String:: from("IGMP"),
=> String::from("GGP"),
=> String::from("IPv4"),
String:: from("ST"),
=> String::from("TCP"),
=> String::from("CBT"),
=> String::from("EGP"),
=> String::from("IGP"),
String:: from("BBN-RCC-MON"),
=> String:: from("NVP-II"),
12 => String::from("PUP"),
13 => String::from("ARGUS"),
14 => String::from("EMCON"),
16 => String::from("XNET"),
16 => String::from("CHAOS"),
17 => String::from("UDP"),
18 => String::from("MUX"),
19 => String::from("DCN-MEAS"),

© 00N Ok WN - O
Il
v

=
= O
Il
A\

10

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

String:
String::
String::
String::
String::
String::
String::
String::
String:
String:
String::
String::
String::
String::
String::
String::
String::
String:
String:
String::
String::
String::
String::
String::
String::
String::
String:
String:
String:
String::
String:
String::
String:
String::
String:
String:
String:
String::
String::
String::
String::
String::
String::
String::
String:

:from("HMP") ,

from("PRM"),
from("XNS-IDP"),
from("TRUNK-1"),
from("TRUNK-2"),
from("LEAF-1"),
from("LEAF-2"),
from("RDP"),

:from("IRTP"),
:from("ISO-TP4"),

from("NETBLT") ,
from("MFE-NSP"),
from("MERIT-INP"),
from("DCCP"),
from("3PC"),
from("IDPR"),
from("XTP"),

:from("DDP"),
:from("IDPR-CMTP"),

from("TP++"),
from("IL"),
from("IPv6"),
from("SDRP"),
from("IPv6-Route"),
from("IPv6-Frag"),
from("IDRP"),

:from("RSVP"),
:from("GRE"),
:from("DSR"),

from("BNA"),

:from("ESP"),

from("AH"),

:from("I-NLSP"),

from("SWIPE (deprecated)"),

s from("NARP"),
: from("MOBILE"),
:from("TLSP"),

from("SKIP"),

from("IPv6-ICMP"),
from("IPv6-NoNxt"),
from("IPv6-Opts"),

from("any host internal protocol"),
from("CFTP"),

from("any local network"),

:from("SAT-EXPAK"),

11

65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
100
101
102
103
104
105
106
107
108
109
110

String:

String::
String::
String::
String::
String::
String::
String::
: from("CPHB"),
sfrom("WSN"),

String:
String:

String::
String::
String::
String::
String::
String::
String::
: from("SECURE-VMTP"),
:from("VINES"),

String:
String:

String::
String::
String::
String::
String::
String::
String::
s from("LARP"),
s from("MTP"),

String:
String:

String::
String::
String::
String::
: from("ETHERIP"),

String:

String::
String:
String::
String::
String::
String:
String::
String::
String::
String::
String::
String::

: from("KRYPTOLAN"),

from("RVD"),

from("IPPC"),

from("any distributed file system"),
from("SAT-MON"),

from("VISA"),

from("IPCV"),

from("CPNX"),

from("PVP"),
from("BR-SAT-MON"),
from("SUN-ND"),
from("WB-MON") ,
from("WB-EXPAK"),
from("ISO-IP"),
from("VMTP"),

from("IPTM"),
from("NSFNET-IGP"),
from("DGP"),
from("TCF"),
from("EIGRP"),
from("OSPFIGP"),
from("Sprite-RPC"),

from("AX.25"),
from("IPIP"),

from("MICP (deprecated)"),
from("SCC-SP"),

from("ENCAP"),
:from("GMTP"),
from("IFMP"),
from("PNNI"),
from("PIM"),
:from("ARIS"),
from("SCPS"),
from("QNX"),
from("A/N"),
from("IPComp"),
from("SNP"),
from("Compaq-Peer"),

12

111 => String::from("IPX-in-IP"),

112 => String:: from("VRRP"),

113 => String:: from("PGM"),

114 => String::from("any O-hop protocol"),
115 => String::from("L2TP"),

116 => String::from("DDX"),

117 => String:: from("IATP"),

118 => String:: from("STP"),

119 => String::from("SRP"),

120 => String::from("UTI"),

121 => String:: from("SMP"),

122 => String::from("SM (deprecated)"),
123 => String:: from("PTP"),

124 => String::from("ISIS over IPv4"),
125 => String::from("FIRE"),

126 => String::from("CRTP"),

127 => String::from("CRUDP"),

128 => String:: from("SSCOPMCE"),

129 => String::from("IPLT"),

130 => String::from("SPS"),

131 => String::from("PIPE"),

132 => String::from("SCTP"),

133 => String:: from("FC"),

134 => String::from("RSVP-E2E-IGNORE"),
135 => String::from("Mobility Header"),
136 => String::from("UDPLite"),

137 => String::from("MPLS-in-IP"),

138 => String::from("manet"),

139 => String:: from("HIP"),

140 => String::from("Shim6"),

141 => String::from("WESP"),

142 => String::from("ROHC"),

143 => String::from("Ethernet"),

144 => String:: from("AGGFRAG"),

145 => String:: from("NSH"),

146..=252 => String::from("Unassigned"),
253 => String::from("Use for experimentation and testing"),
254 => String::from("Use for experimentation and testing"),
255 => String::from("Reserved"),

_ => format! ("{}", self.protocol_num),

}

fn src_address(&self) -> String {
Ipv4Addr: : from(self.src) .to_string()

13

fn dst_address(&self) -> String {
Ipv4Addr: : from(self.dst) .to_string()

fn offset(&self) -> String {
self.offset.to_string()

fn ttl(&self) -> String {
self.ttl.to_string()

fn ver(&self) -> String {
self .ver_ihl.to_string()

fn len(&self) -> String {
self.len.to_string()

}

fn main() -> Result<()> {
// Define the host to listen on
let host: SocketAddr = "0.0.0.0:12345".parse() .unwrap() ;

let socket_protocol = if cfg/ (target_os = "windows") {
0

} else {
1

};

// Create a raw socket
let sniffer = Socket::new(

Domain: : IPV4,

Type: :RAW,

Some (Protocol: : from(socket_protocol)),
)7?;
// bind to the public interface
sniffer.bind(&host.into())7?;

// Read one packet

let mut buffer: [MaybeUninit<u8>; 65535] = unsafe { MaybeUninit::uninit().assume_init()
let _ = sniffer.recv_from(&mut buffer)?;

14

let raw_buffer: &[u8] =
unsafe { std::slice::from_raw_parts(buffer.as_ptr() as #*const u8, buffer.len()) I};

if raw_buffer.len() < 20 {
eprintln! ("Invalid packet: too short");
return 0k(());

}

// Create an IP header from the first 20 bytes

let ip_header = match IP::new(&raw_buffer[..20]) {
Some (header) => header,
None => return 0k(())

Ig

println! (
"Protocol: {} {} -> {}",
"ICMP",
ip_header.src_address(),
ip_header.dst_address()

)

println! ("Version: {}", ip_header.ver());

printin! (
"Header Length: {} TTL: {}",
ip_header.len(),
ip_header.ttl()

)3

0k(O)
}

Let’s put our previously developed code to the test to gain insights into the
information extracted from the raw packets traversing the network. We highly
recommend conducting this test from a Windows machine to leverage the diverse
protocols such as UDP, and TCP, enabling fascinating testing scenarios like
opening a web browser. For those confined to Linux, an alternative is to execute
the previous ping test to witness the code in action.

// The following command will exzecute the sniffer.
// Set your sudo password below by replacing 'your-passowrd' accordingly

let command = "cd decoding-the-ip-header && cargo build && echo 'your-passowrd' | sudo -S s

if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

15

}

// In another terminal or shell window, choose a host to ping, for example: ping google.com

Compiling decoding-the-ip-header v0.1.0 (/home/mahmoud/Desktop/Rust Book Dark/dark-web-r
Finished dev [unoptimized + debuginfo] target(s) in 0.25s

Protocol: ICMP 142.251.37.238 -> 192.168.1.8
Version: 69

Header Length: 84 TTL: 113

Protocol: ICMP 142.251.37.238 -> 192.168.1.8
Version: 69

Header Length: 84 TTL: 113

Protocol: ICMP 142.251.37.238 -> 192.168.1.8
Version: 69

Header Length: 84 TTL: 113

Protocol: ICMP 142.251.37.238 -> 192.168.1.8
Version: 69

Header Length: 84 TTL: 113

Protocol: ICMP 142.251.37.238 -> 192.168.1.8

Version: 69
Header Length: 84 TTL: 113

It’s evident that we encounter a limitation here, observing only a response for
the ICMP protocol. Yet, for our intended purpose of crafting a host discovery
scanner, this limitation is entirely acceptable. Our next course of action involves
applying the same decoding techniques previously employed for the IP header to
decode the ICMP messages, thereby expanding the capabilities of our network
exploration tool.

1.5 ICMP Structure Decoding

In the world of network security and penetration testing, understanding
the complexities of packet decoding is crucial. Having previously explored
the decoding of the IP layer in our packet-sniffing efforts, our next attempt
involves deciphering ICMP packets produced by our scanner’s transmission of
UDP datagrams to closed ports. ICMP, or Internet Control Message Protocol,
messages possess varying contents, yet maintain three consistent elements: the
type, code, and checksum fields. These fields play a pivotal role in conveying the
nature of the ICMP message to the receiving host, thereby guiding its proper
decoding.

ICMP Structure Within the universe of ICMP messages, our focus narrows
down to those with a type value of 3 and a corresponding code value of 3.
This specific combination signifies the Destination Unreachable class of ICMP

16

https://en.wikipedia.org/wiki/Penetration_test
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

messages, specifically pinpointing the occurrence of a Port Unreachable error. The
structural blueprint of a Destination Unreachable ICMP message is illustrated in
the following excerpt that is shamelessly taken from RFC 792 Page 4, outlining
the composition of its type, code, header, checksum, and additional components:

Destination Unreachable Message

0123012345678901234567890123456789
e s e S L
+-+-+-+-+-+-+-+ | Type | Code | Checksum | +-—+-—4-4-4-+-+-
e Y
L T e e e S e
+-+-4-+-+-+-+-+-+-+ | Internet Header + 64 bits of Original Data
Datagram |+ttt -
e S e S NS

IP Fields:
Destination Address
The source network and address from the original datagram's data.
ICMP Fields:
Type
3
Code

0 = net unreachable;

—
]

host unreachable;

2 = protocol unreachable;

3 = port unreachable;
4 = fragmentation needed and DF set;
5 = source route failed.

Checksum

The checksum is the 16-bit ones's complement of the one's
complement sum of the ICMP message starting with the ICMP Type.
For computing the checksum , the checksum field should be zero.
This checksum may be replaced in the future.

Internet Header + 64 bits of Data Datagram

The internet header plus the first 64 bits of the original

17

https://datatracker.ietf.org/doc/html/rfc792

[Page 4]

Examining this structure, we discern that the first 8 bits represent the type, fol-
lowed by the subsequent 8 bits housing the ICMP code. Notably, the originating
IP header of the message that triggered the response is encapsulated within the
ICMP message, presenting an opportunity for validation.

Integration of ICMP Decoding Now, let’s seamlessly integrate the decoding
of ICMP packets into our existing packet-sniffing framework. The augmentation
of our sniffer encompasses the implementation of an ICMP structure beneath the
established IP structure. The following code snippet imports necessary modules
and initializes the ICMP structure to facilitate the decoding process when ICMP

packets are detected.

use std::env;

use std::mem::MaybeUninit;

use std::net::SocketAddr;

use std::net::{IpAddr, Ipv4Addr};

const ICMP_TYPE_CODE_MAP: &[((u8, u8), &str)] = &[
// taken from ---> https://www.iana.org/asstignments/icmp-parameters/icmp-parameters.zht

((0, 0), "Echo Reply"),

((3, 0), "Destination Unreachable
((3, 1), "Destination Unreachable
((3, 2), "Destination Unreachable
((3, 3), "Destination Unreachable
((3, 4), "Destination Unreachable
((3, 5), "Destination Unreachable
((3, 6), "Destination Unreachable
((3, 7), "Destination Unreachable
((3, 8), "Destination Unreachable
((3, 9), "Destination Unreachable
((3, 10), "Destination Unreachable
((3, 11), "Destination Unreachable
((3, 12), "Destination Unreachable
((3, 13), "Destination Unreachable
((3, 14), "Destination Unreachable
((3, 15), "Destination Unreachable
((4, 0), "Source Quench"),

((5, 0), "Redirect"),

((8, 0), "Echo"),

((9, 0), "Router Advertisement"),
((10, 0), "Router Selection"),
((11, 0), "Time Exceeded"),

((12, 0), "Parameter Problem"),

18

Net is unreachable"),

Host is unreachable"),

Protocol is unreachable"),

Port is unreachable"),

Fragmentation is needed and Don't Fragment was set"]

Source route failed"),

Destination network is unknown"),

Destination host is unknown"),

Source host is isolated"),

Communication with destination network is administr:
Communication with destination host is administrat:
Destination network is unreachable for type of ser
Destination host is unreachable for type of servic
Communication is administratively prohibited"),
Host precedence violation"),

Precedence cutoff is in effect"),

((13, 0), "Timestamp"),

((14, 0), "Timestamp Reply"),

((15, 0), "Information Request"),

((16, 0), "Information Reply"),

((17, 0), "Address Mask Request"),

((18, 0), "Address Mask Reply"),

((30, 0), "Traceroute"),

((40, 0), "Photuris"),

((41, 0), "ICMP for IPv6"),

((42, 0), "No Next Header for IPv6"),

((43, 0), "Destination Unreachable for IPv6"),
((44, 0), "Packet Too Big for IPv6"),

((45, 0), "Time Exceeded for IPv6"),

((46, 0), "Parameter Problem for IPv6"),

((47, 0), "Echo Request for IPv6"),

((48, 0), "Echo Reply for IPv6"),

((49, 0), "Multicast Listener Query for IPv6"),
((50, 0), "Multicast Listener Report for IPv6"),
((51, 0), "Multicast Listener Done for IPv6"),
((58, 0), "Router Solicitation for IPv6"),
((59, 0), "Router Advertisement for IPv6"),
((60, 0), "Neighbor Solicitation for IPv6"),
((61, 0), "Neighbor Advertisement for IPv6"),
((62, 0), "Redirect Message for IPv6"),

1;

struct ICMP {
type_: u8,
code: u8,
sum: ulé6,
id: ulé,
seq: ul6,

}

impl ICMP {

fn new(buff: &[u8]) -> Self {

let header = (
buff [0],
buff[1],
ulé:: from_be_bytes([buff[2], buff([3]]),
ul6:: from_be_bytes([buff[4], buff[5]]),
ul6:: from_be_bytes([buff[6], buff([7]]),

)¢

ICMP {
type_: header.O,

19

code: header.1,
sum: header.2,
id: header.3,

seq: header.4,

}

3
X
struct IP {

// The previous IP implementation details goes here
}
impl IP {

// Constructor and methods already implemented for IP decoding
}

fn icmp_type_name(type_: u8, code: u8) -> String {
for &((t, c), name) in ICMP_TYPE_CODE_MAP {
if t == type_ && (c == code || ¢ == 255) {
return name.to_string();

}
}
format! ("Type: {}, Code: {}", type_, code)
}
fn sniff (host: IpAddr) {
Y oo
loop {
7Y o«
// If i1t's ICMP, we want %t
if ip_header.protocol() == "ICMP" {
printin! (
"Protocol: {} {} —> {}",
"ICMP",

ip_header.src_address(),
ip_header.dst_address()

D¢
printin! ("Version: {}", ip_header.ver());
printin! (
"Header Length: {} TTL: {}",
ip_header.len(),
ip_header.tt1()
D¢

20

// Calculate where our ICMP packet starts

let offset = ip_header.offset().parse() .unwrap_or_else(|_| {
eprintln! ("Failed to parse offset");
0

b;

if offset + 8 <= raw_buffer.len() {
let buf = &raw_buffer[offset..offset + 8];
// Create our ICMP structure
let icmp_header = ICMP::new(buf);

printin! (
"ICMP -> {}",
icmp_type_name(icmp_header.type_, icmp_header.code)
)3
printin! (
"ICMP -> {:7}",
icmp_header.clone()
)s
} else {

eprintln! ("Invalid ICMP packet: too short");
}

}

The ICMP decoding mechanism implemented in the above Rust code is a
sophisticated and detailed process aimed at examining and comprehending the
headers of ICMP packets within the context of a network sniffer. Each component
of the logic contributes to a comprehensive understanding of the ICMP packet
structure and its contents, making it an integral part of network protocol analysis.
This Rust implementation adheres to Rust’s syntax and semantics.

The ICMP_TYPE_CODE_MAP constant serves as a meticulously crafted reference,
encapsulating a comprehensive mapping between ICMP types and their corre-
sponding codes. This constant is designed to enhance the interpretability of
ICMP messages by associating each type and code combination with a human-
readable description. Each entry in the constant is a tuple consisting of a pair of
8-bit unsigned integers representing the ICMP type and code, respectively, and
a descriptive string explaining the nature of the ICMP message. This mapping
not only aids us in understanding the meaning of various ICMP messages but
also serves as a critical resource for implementing robust network applications
and security tools.

The constant begins by encompassing the essential ICMP types and codes
commonly encountered in networking scenarios. Echo Reply, Echo Request,
Destination Unreachable, Redirect, and Time Exceeded are just a few examples
meticulously documented within the constant. It meticulously includes details

21

about various Destination Unreachable codes, such as Net is unreachable, Host
is unreachable, Protocol is unreachable, and Port is unreachable, explaining the
reasons for such unreachable scenarios. Additionally, it extends its coverage
to incorporate ICMP messages specifically tailored for IPv6, addressing the
evolving landscape of internet protocols. The constant is structured to be easily
extensible, allowing us to add more ICMP types and codes as needed, ensuring
adaptability to evolving networking standards.

The introduction of the ICMP struct further refines the decoding process. This
struct encapsulates essential fields extracted from the ICMP packet header,
including the type, code, checksum, identifier, and sequence number. The new
method of the ICMP struct acts as a constructor, facilitating the creation of
instances of this struct from a byte buffer, thereby enabling the extraction and
organization of relevant information from ICMP packet headers.

The utility function icmp_type_name plays a crucial role in translating numeric
representations of ICMP types and codes into human-readable and descriptive
strings. By using the ICMP_TYPE_CODE_MAP constant, this function iterates
through the mappings, searching for a match based on the provided type and
code parameters. If a match is found, it returns the corresponding descriptive
name; otherwise, it constructs a default string incorporating the type and code
values.

The core of the ICMP decoding mechanism lies in the sniff function. Operating
within a loop, this function continuously captures and processes packets. Upon
identifying an ICMP packet, it extracts and prints relevant information, including
the protocol type, source and destination addresses, version, header length, and
Time to Live (TTL). The function meticulously calculates the offset to pinpoint
the beginning of the ICMP packet within the raw buffer, ensuring its validity
by checking its length. If the packet is valid, it constructs an instance of the
ICMP struct and prints detailed information about the ICMP type using the
icmp_type_name function.

The ICMP decoding mechanism in this Rust code exemplifies a well-architected
and modular approach to network protocol analysis. It leverages constants,
structs, and utility functions to decode ICMP packets comprehensively, pro-
viding informative and human-readable insights into the nature of network
communication. The attention to detail in handling various ICMP types and
codes, coupled with a modular design, makes this implementation robust and
adaptable to different network analysis scenarios.

Let’s put our developed code to the test to gain insights into the information
extracted from the raw ICMP packets traversing the network.

// The following command will execute the sniffer.
// Set your sudo password below by replacing 'your-passowrd' accordingly

let command = "cd decoding-icmp-packets && cargo build && echo 'your-passowrd' | sudo -S suc

22

if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

}

// In another terminal or shell window, choose a host to ping, for example: ping google.com

Finished dev [unoptimized + debuginfo] target(s) in 0.01s

Protocol: ICMP 127.0.0.1 -> 127.0.0.1
Version: 69

Header Length: 84 TTL: 64

ICMP -> Echo Reply

Protocol: ICMP 127.0.0.1 -> 127.0.0.1
Version: 69

Header Length: 84 TTL: 64

ICMP -> Type: 69, Code: 0O

Protocol: ICMP 127.0.0.1 -> 127.0.0.1
Version: 69

Header Length: 84 TTL: 64

ICMP -> Echo Reply

Protocol: ICMP 127.0.0.1 -> 127.0.0.1
Version: 69

Header Length: 84 TTL: 64

ICMP -> Type: 69, Code: 0O

Protocol: ICMP 127.0.0.1 -> 127.0.0.1
Version: 69

Header Length: 84 TTL: 64

ICMP -> Echo Reply

Protocol: ICMP 127.0.0.1 -> 127.0.0.1
Version: 69

Header Length: 84 TTL: 64

ICMP -> Type: 69, Code: 0

Protocol: ICMP 127.0.0.1 -> 127.0.0.53
Version: 69

Header Length: 101 TTL: 64

ICMP -> Type: 69, Code: 192

The provided output captures the complexities of ICMP packet traffic on the local
loopback address (127.0.0.1), shedding light on the communication dynamics
within the confines of the machine itself. The repeated occurrences of ICMP Echo
Reply messages suggest a pattern of responsiveness, indicating that the local
machine is actively responding to ping requests. This behavior aligns with the
fundamental purpose of ICMP Echo Reply packets, commonly associated with
the well-known ping utility, which verifies network connectivity and round-trip

23

time.

A closer examination of the output reveals some intriguing details that warrant
further consideration. The presence of an unusually high version number and
type (69), and header length (84) in the IP header hints at potential deviations
from standard IPv4 conventions. While the typical IPv4 header has a version
field set to 4 and a header length specified in 32-bit words, the values observed
in this output indicate a departure from the norm. This departure may signify
custom or non-standardized packet structures, emphasizing the importance of
context and a nuanced understanding of the specific network environment or
tool generating the captured output.

The consistency of the Time to Live (TTL) value at 64 is noteworthy, as it is a
common TTL setting for packets within a local network. The TTL represents
the maximum number of hops a packet can traverse before being discarded, and
a value of 64 is often employed for traffic confined within a local network segment.
In the context of loopback communication, the repeated presence of this TTL
value further supports the interpretation that the ICMP Echo Reply packets are
circulating within the local machine, reinforcing the notion of a self-contained
network communication process.

Having successfully decoded ICMP packets, the logical progression in our network
analysis journey involves extending our capabilities to decipher more complex
protocols such as TCP (Transmission Control Protocol) and UDP (User Data-
gram Protocol). ICMP, while essential for basic network diagnostics, represents
just one facet of the diverse communication protocols governing the internet.
TCP and UDP, being core components of the transport layer, play pivotal
roles in facilitating reliable and connection-oriented, as well as lightweight and
connectionless, communication, respectively.

Decoding TCP packets introduces a new layer of complexity, given TCP’s em-
phasis on establishing and maintaining reliable connections. Unlike ICMP, TCP
incorporates features like sequencing, acknowledgment, and flow control. Un-
derstanding the structure of TCP headers becomes important, as it involves
dissecting fields such as source and destination ports, sequence and acknowledg-
ment numbers, and flags indicating the nature of the packet. Unraveling the
complexities of TCP communication provides insights into applications such as
web browsing, file transfers, and email, where reliable and ordered data delivery
is crucial.

Similarly, delving into UDP packet decoding reveals the world of lightweight
and fast communication. UDP, in contrast to TCP, prioritizes simplicity and
speed over reliability. It lacks the connection establishment and acknowledgment
mechanisms present in TCP, making it suitable for scenarios where rapid data
transmission takes precedence. Deciphering UDP headers involves understanding
fields like source and destination ports and length, offering a glimpse into real-
time applications such as online gaming, streaming, and VoIP, where timely data
delivery often outweighs the need for reliability.

24

In conclusion, broadening our decoding capabilities beyond ICMP to encompass
TCP and UDP marks a pivotal step in comprehending the diverse landscape of
network protocols. Each protocol brings its own set of challenges and nuances,
and by expanding our analysis toolkit, we empower ourselves to gain a holistic
understanding of the complex communication patterns shaping the digital world.

1.6 Decoding TCP packets

Decoding TCP packets involves understanding the complexities of the Trans-
mission Control Protocol (TCP), a fundamental protocol in the transport
layer of the Internet Protocol Suite. Unlike ICMP, which is connectionless,
TCP provides a reliable, connection-oriented communication channel. Under-
standing the structure of TCP packets entails parsing the various fields within
the TCP header, each conveying essential information about the communication
session.

The TCP header includes crucial components such as the source and destination
port numbers, which identify the endpoints of the communication. The sequence
and acknowledgment numbers play a pivotal role in ensuring the ordered and
reliable delivery of data. Flags within the TCP header signify the nature of the
packet, indicating whether it is a data segment, a connection request (SYN),
an acknowledgment (ACK), or other control messages. By decoding these
flags, we gain insights into the state of the TCP connection and the ongoing
communication process.

3.1. Header Format

TCP segments are sent as internet datagrams. The Internet Protocol
header carries several information fields, including the source and
destination host addresses [2]. A TCP header follows the internet
header, supplying information specific to the TCP protocol. This
division allows for the existence of host level protocols other than
TCP.

TCP Header Format

0 1 2 3
01234567890123456789012345678901
tot—+—+
| Source Port | Destination Port |
ottt bttt bttt bttt bbbttt =t — b=t —b bbb =t —+—+
| Sequence Number |
s S B S s e S
| Acknowledgment Number |
tot—+

Data	[UIAIPIRISIFI		
Offset	Reserved	RICISISIYII	Window
	IGIKIH	ITININ	

25

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

e R T ety B e Bt St S N S s
| Checksum I Urgent Pointer |
e T s T T St o
| Options | Padding |
s s St T o e L S S B s
| data |
R B R T iy B S S e B att =Y

TCP Header Format
Note that one tick mark represents one bit position.

Figure 3.
Source Port: 16 bits
The source port number.
Destination Port: 16 bits
The destination port number.
[Page 15]
Excerpt from rfc793 Page 15

Furthermore, the decoding process extends to examining optional fields within
the TCP header, such as the Window Size and Urgent Pointer. The Window
Size reflects the amount of data a sender can transmit before expecting an
acknowledgment, contributing to flow control. The Urgent Pointer, when utilized,
points to urgent data within the packet, enabling timely processing by the receiver.
Understanding these optional fields enhances the comprehension of the nuanced
behaviors and optimizations implemented within the TCP protocol.

Deciphering TCP packets provides valuable insights into various applications
that heavily rely on TCP, including web browsing, file transfers (via protocols
like FTP), and email (via protocols like SMTP). By analyzing the content of
TCP packets, one can uncover patterns in data transmission, detect anomalies,
and troubleshoot network-related issues. This in-depth analysis of TCP commu-
nication contributes to a holistic understanding of the diverse and interconnected
aspects of networking protocols.

Now, let’s decode TCP packets using the socket2 crate in Rust which involves
establishing a raw socket connection, capturing packets, and dissecting the TCP
headers. As we have previously learned, the socket2 crate provides low-level
access to socket functionality, allowing for fine-grained control over network
communication. Below is a simplified example illustrating the basic steps for
decoding TCP packets using socket?2:

use std::mem::MaybeUninit;

use std::net::SocketAddr;

26

https://www.ietf.org/rfc/rfc793.txt

use std::net::{IpAddr, Ipv4Addr};

// Constants for TCP and IP headers size
const TCP_HEADER_SIZE: usize = 20;
const IPV4_HEADER_SIZE: usize = 20;

struct TCP {
source_port: ul6,
destination_port: ul6,
sequence_number: u32,
acknowledgment_number: u32,
data_offset: u8,
reserved: u8,
flags: ul6,
window_size: ul6,
checksum: ul6,
urgent_pointer: ul6,

}

impl TCP {

fn new(buffer: &[u8]) -> Self {
// Parse the TCP header fields from the buffer
let source_port = ul6::from_be_bytes([buffer[0], buffer[1]]);
let destination_port = ul6::from_be_bytes([buffer[2], buffer[3]]);
let sequence_number = u32::from_be_bytes([buffer[4], buffer[5], buffer[6], buffer[7
let acknowledgment_number =

u32:: from_be_bytes([buffer[8], buffer[9], buffer[10], buffer[11]]);

let data_offset = (buffer[12] >> 4) * 4; // The top 4 bits represent the data offse
let reserved = buffer[12] & 0b00001111;
let flags = ul6::from_be_bytes([buffer[13], buffer[14]1]);
let window_size = ul6::from_be_bytes([buffer[15], buffer[16]]);
let checksum = ul6::from_be_bytes([buffer[17], buffer[18]]);
let urgent_pointer = ul6::from_be_bytes([buffer[19], buffer[20]]);

TCP {
source_port,
destination_port,
sequence_number,
acknowledgment_number,
data_offset,
reserved,
flags,
window_size,
checksum,
urgent_pointer,

27

}

fn sniff(address: SocketAddr) {
let socket_protocol = if cfg/ (target_os = "windows") {

0
} else {
6 // TCP

};

let sniffer = socket2::Socket::new(

socket2: :Domain: : IPV4,

socket2: :Type: : RAW,

Some (socket2: :Protocol:: from(socket_protocol)),
)

.unwrap() ;
sniffer.bind(&address.into()) .unwrap();

let mut buffer: [MaybeUninit<u8>; 65535] = unsafe { MaybeUninit::uninit().assume_init()
loop {
// Receive a TCP packet
let _length = sniffer.recv_from(&mut buffer) .unwrap();
let raw_buffer: &[u8] =
unsafe { std::slice::from_raw_parts(buffer.as_ptr() as #*const u8, buffer.len())

// Process the TCP packet
if size >= IPV4_HEADER_SIZE + TCP_HEADER_SIZE {
let tcp_header =
TCP: : new(&raw_buffer [IPV4_HEADER_SIZE..IPV4_HEADER_SIZE + TCP_HEADER_SIZE +
// Print or process TCP header tinformation
println! ("Source Port: {}", tcp_header.source_port);
println! ("Destination Port: {}", tcp_header.destination_port);
printin! ("Sequence Number: {}", tcp_header.sequence_number) ;
printin! (
"Acknowledgment Number: {}",
tcp_header.acknowledgment_number
);
println! ("Data Offset: {}", tcp_header.data_offset);
println! ("Reserved: {}", tcp_header.reserved);
printlin! ("Flags: {}", tcp_header.flags);
println! ("Window Size: {}", tcp_header.window_size);
println! ("Checksum: {}", tcp_header.checksum);
println! ("Urgent Pointer: {}", tcp_header.urgent_pointer);

28

}

fn main() {

let socket = SocketAddr::new(IpAddr::V4(IpvjAddr::new(127, 0, 0, 1)), 12345);

sniff (socket) ;
}

This example sets up a raw socket, binds it to a local address (in this case,
the loopback address), and enters a loop to continuously capture and process
TCP packets. The TCP struct encapsulates the relevant fields from the TCP
header, and the sniff_tcp_packets function initializes the socket and processes
incoming TCP packets. Keep in mind that decoding TCP packets often involves
additional considerations, such as handling variable-length options within the
TCP header.

// The following command will exzecute the sniffer.
// Set your sudo password below by replacing 'your-passowrd' accordingly

let command = "cd decoding-tcp-packets && cargo build && echo 'your-passowrd'
if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

}

// Just open your web browser and surf the internet

sudo -S sudc

Compiling decoding-tcp-packets v0.1.0 (/home/mahmoud/Desktop/Rust Book Dark/dark-web-rus

Finished dev [unoptimized + debuginfo] target(s) in 0.26s

Protocol: TCP 52.200.215.80 -> 192.168.1.8
Version: 69

Header Length: 52 TTL: 60

Source Port: 443

Destination Port: 42436

Sequence Number: 3205079071
Acknowledgment Number: 1443482503
Data Offset: 32

Reserved: 0O

Flags: 4097

Window Size: 63162

Checksum: 24832

29

Urgent Pointer: 1

O

The decoded information from the captured TCP packet reveals a communication
exchange involving the IP address 52.200.215.80, which is attributed to Amazon
Web Services (AWS) Elastic Compute Cloud (EC2). AWS EC2 is a scalable
cloud computing service that provides virtual servers in the cloud, allowing users
to run applications and host various types of workloads. The presence of a TCP
packet suggests a data transfer or communication event between the AWS EC2
instance, acting as the source (52.200.215.80), and our local machine with the
destination IP address 192.168.1.8.

The identification of the TCP protocol in the “Protocol: TCP” field signifies
that the communication adheres to the principles of Transmission Control
Protocol, a foundational aspect of reliable data transmission over networks. The
source port 443 and destination port 42436 provide insight into the specific
application layer protocols in use. Port 443 is commonly associated with HTTPS,
the secure variant of the HTTP protocol used for secure communication over the
internet. The arbitrary destination port 42436 suggests that the communication
may involve a dynamically assigned port for the client-side of the connection,
our local machine.

Examining the TCP flags, the value 4097 (binary 1000000000001) indicates
that this is an ACK (Acknowledgment) packet. ACK packets are crucial
for ensuring reliable data transfer and confirming the receipt of previously
sent packets. The sequence and acknowledgment numbers, 3205079071 and
1443482503, respectively, reveal the progression of the data exchange. The data
offset of 32, when multiplied by 4, yields a header length of 128 bytes, providing
an extensive structure for encapsulating the TCP information. The window
size of 63162 signifies the amount of data (in bytes) that can be sent before an

acknowledgment is expected, contributing to the flow control mechanisms in
TCP.

Now that we have successfully decoded both ICMP and TCP packets, the
subsequent phase in our network analysis efforts involves the complex process of
decoding UDP (User Datagram Protocol) packets. UDP, unlike TCP, operates
as a connectionless and stateless protocol, prioritizing speed and simplicity over
the robust reliability mechanisms inherent in TCP. As we delve into UDP packet
decoding, we encounter a different set of challenges and nuances. UDP packets
lack the elaborate handshaking and acknowledgment mechanisms found in TCP,
making their decoding a more direct and, in some ways, more challenging task.

The UDP decoding process necessitates a sharp understanding of the UDP

30

https://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud
https://en.wikipedia.org/wiki/User_Datagram_Protocol

header structure, including crucial fields such as source and destination ports,
length, and checksum. The source and destination ports denote the application
processes communicating over UDP, providing insight into the specific services
involved in the data exchange. The length field specifies the total length of the
UDP packet, aiding in proper segmentation and reassembly. The checksum field
serves as a verification mechanism to ensure the integrity of the UDP packet
during transmission.

In our decoding journey, we must meticulously extract and interpret these UDP
header fields, considering the contextual relevance of each piece of information
within the broader network communication. The absence of a formal connection
setup and teardown process in UDP introduces unique challenges, as deciphering
the intent and context of UDP packets relies heavily on the payload data and
its interpretation within the specific application layer protocol.

As we extend our decoding capabilities to encompass UDP packets, we aim to
uncover the underlying dynamics of real-time and efficient data communication.
UDP is frequently employed in scenarios where low latency and rapid data
transmission are paramount, such as in multimedia streaming, online gaming,
and other time-sensitive applications. Therefore, our UDP decoding endeavors
not only contribute to a comprehensive understanding of network traffic but also
enable us to distinguish the diverse applications and services thriving within the
network ecosystem. In navigating the complexities of UDP packet decoding, we
embark on a journey to unravel the rich tapestry of communication protocols
that form the backbone of modern networking, further enhancing our ability
to comprehend and analyze the multifaceted landscape of data transmission in
diverse network environments.

1.7 Decoding UDP packets

Decoding User Datagram Protocol (UDP) packets involves understanding the
characteristics of the User Datagram Protocol (UDP), which is another
transport layer protocol in the Internet Protocol Suite. Unlike TCP, UDP is
connectionless and does not guarantee reliable communication. UDP is often
favored for applications where low latency and simplicity are more critical than
ensuring every packet arrives intact.

Similar to decoding TCP packets, understanding UDP packets requires parsing
the UDP header, which contains essential information about the communication
session. The UDP header is relatively simple compared to TCP, consisting of
source and destination port numbers, a length field, and a checksum. Deciphering
these fields provides insights into the source and destination of the communication,
the length of the UDP packet, and a basic form of error checking through the
checksum.

User Datagram Protocol

31

https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/Internet_protocol_suite

Introduction

This User Datagram Protocol (UDP) is defined to make available a
datagram mode of packet-switched computer communication in the
environment of an interconnected set of computer networks. This
protocol assumes that the Internet Protocol (IP) [1] is used as the
underlying protocol.

This protocol provides a procedure for application programs to send
messages to other programs with a minimum of protocol mechanism.
The protocol is transaction oriented, and delivery and duplicate
protection are not guaranteed. Applications requiring ordered reliable
delivery of streams of data should use the Transmission Control
Protocol (TCP) [2].

Format
0 7 8 15 16 23 24 31
R —— N DR — fmmm e U +
| Source | Destination |
| Port | Port |
Fm———— Fm———— fm——— Fm———— +
| | |
| Length | Checksum |
T —— ST —— T O +
|
| data octets
+ ________________
User Datagram Header Format
Fields

Source Port is an optional field, when meaningful, it indicates the
port of the sending process, and may be assumed to be the port
to which a reply should be addressed in the absence of any other
information. If not used, a value of zero is inserted.

Postel [page 1]
Excerpt from rfc768 Page 1

Decoding UDP packets involves extracting and interpreting these fields, similar
to the TCP decoding process. The source and destination port numbers identify
the applications or services involved in the communication, while the length field
informs about the size of the UDP packet. The checksum is used for basic error
detection, although UDP itself does not provide mechanisms for retransmission
or acknowledgment.

32

https://www.ietf.org/rfc/rfc768.txt

Now, let’s explore an example of decoding UDP packets using the same socket?2
crate in Rust:

use std::mem::MaybeUninit;

use std::net::SocketAddr;

use std::net::{IpAddr, Ipv4Addr};

// Constants for UDP header size
const UDP_HEADER_SIZE: usize = 8;

struct UDP {
source_port: ul6,
destination_port: ul6,
length: ul6,
checksum: ul6,

}
impl UDP {
fn new(buffer: &[u8]) -> Self {
// Parse the UDP header fields from the buffer
let source_port = ul6::from_be_bytes([buffer[0], buffer[1]]);
let destination_port = ul6::from_be_bytes([buffer[2], buffer[3]]);
let length = ul6::from_be_bytes([buffer[4], buffer[5]]);
let checksum = ul6::from_be_bytes([buffer[6], buffer[7]]);
UDP {
source_port,
destination_port,
length,
checksum,
}
}
}
fn sniff (address: SocketAddr) {
let socket_protocol = if cfg/ (target_os = "windows") {
0
} else {
17 // UDP
Ig

let sniffer = socket2::Socket::new(
socket2: :Domain: : IPV4,
socket2: :Type: : RAW,
Some (socket2: :Protocol:: from(socket_protocol)),

33

.unwrap() ;
sniffer.bind(%address.into()) .unwrap();

let mut buffer: [MaybeUninit<u8>; 65535] = unsafe { MaybelUninit::uninit().assume_init()
loop {
// Receive a UDP packet
let _length = sniffer.recv_from(&mut buffer).unwrap();
let raw_buffer: &[u8] =
unsafe { std::slice::from_raw_parts(buffer.as_ptr() as *const u8, buffer.len())

// Process the UDP packet
if size >= UDP_HEADER_SIZE {
let udp_header = UDP::new(&raw_buffer[..UDP_HEADER_SIZE]);
// Print or process UDP header information
printin! ("Source Port: {}", udp_header.source_port);
println! ("Destination Port: {}", udp_header.destination_port);
printin! ("Length: {}", udp_header.length);
println! ("Checksum: {}", udp_header.checksum);

}

fn main() {
let socket = SocketAddr::new(IpAddr::VA(Ipv4Addr::new(127, 0, 0, 1)), 12345);

sniff (socket) ;
}

This example sets up a raw socket, binds it to a local address (loopback address),
and enters a loop to continuously capture and process UDP packets. The UDP
struct encapsulates the relevant fields from the UDP header, and the sniff
function initializes the socket and processes incoming UDP packets. Keep in
mind that decoding UDP packets often involves simpler parsing compared to
TCP, as UDP lacks the complexity of connection-oriented communication.

// The following command will exzecute the sniffer.
// Set your sudo password below by replacing 'your-passowrd' accordingly

let command = "cd decoding-udp-packets && cargo build && echo 'your-passowrd' | sudo -S sud
if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

}

// Just open your web browser and watch a video on YouTube, for exzample.

34

[sudo] password for mahmoud: Finished dev [unoptimized + debuginfo] target(s) in 0.01s

Protocol: UDP 192.168.1.3 -> 224.0.0.251
Version: 69

Header Length: 89 TTL: 255

Source Port: 5353

Destination Port: 5353

Length: 69

Checksum: 12990

O

The above output represents a UDP packet captured from a network commu-
nication. The protocol field indicates that the packet operates under the User
Datagram Protocol (UDP). In this specific instance, the communication origi-
nates from the IP address 192.168.1.3 and is destined for the multicast address
224.0.0.251. Multicast addresses like 224.0.0.251 are often used for service dis-
covery in local networks, and UDP is a suitable choice for such scenarios due to
its lightweight and connectionless nature.

Examining the details of the UDP packet, the version field appears anomalous as
it is labeled as 69. Typically, the version field in UDP packets is set to 0, and the
presence of 69 could indicate a non-standard or proprietary use of the protocol.
The header length is reported as 89, and the Time-to-Live (TTL) is set to the
maximum value of 255. These values suggest a relatively large and possibly
complex UDP packet with an extended header. The Source and Destination
Ports are both identified as 5353, indicating a consistent port for both the
sender and receiver. The Length field specifies the size of the UDP packet as 69
bytes, and the Checksum is reported as 12990, which is a value computed for
error-checking purposes. In-depth analysis of these fields aids in understanding
the characteristics and potential purposes of this UDP communication.

The context of this UDP packet, being associated with multicast communication,
suggests a scenario where devices on the network are exchanging service-related
information. The choice of UDP aligns with service discovery mechanisms,
which often prioritize efficiency and real-time updates over the reliability ensured
by TCP. The unusual version field and the seemingly extended header length
warrant further investigation, as they may indicate a specialized application or
protocol extension. In conclusion, decoding and comprehending the complexities
of this UDP packet provide valuable insights into the dynamics of local network
communication and the specific protocols employed for service discovery or

35

similar purposes.

1.8 Port Scanning in the Presence of SYN-flood Protections

Building a Port Scanning tool in the presence of SYN-flood Protections involves
understanding how to find open ports, especially when facing challenges like SYN-
flood protections. In the following sections, we are going to create a program
to scan for open ports on a remote host. However, sometimes it can be wrong.
This happens when a system uses SYN-flood protections, a kind of security that
can confuse our program by making all ports look the same. Even if they are
open, closed, or filtered, they all seem open due to a special security measure
called SYN cookies. These cookies help prevent certain types of cyber attacks,
but they can also make our program think a port is open when it’s not.

In scenarios where SYN cookies are deployed, distinguishing between a genuinely
active service and a falsely indicated open port becomes a meticulous task. Both
cases involve the completion of the TCP three-way handshake, a sequence
crucial for determining port status in traditional port scanning tools like Nmap.
However, SYN-flood protections introduce complexity, limiting the reliability of
these conventional tools. To address this challenge, an alternative approach is
proposed, focusing on post-connection activities. SYN-flood protections typically
refrain from packet exchanges beyond the initial handshake unless a service
is actively listening. Consequently, the detection of additional packets post-
handshake could signify the existence of a service.

A crucial aspect of adapting port-scanning capabilities to account for SYN
cookies lies in examining TCP flags. The TCP specification designates a single
byte at position 14 in the packet’s header to store flags, with each bit representing
a specific flag value. To create an effective filter, the relevant flag positions
are identified, including ACK and FIN, ACK, and ACK and PSH. Leveraging
the socket2 library, we can connect to a remote service, capture and filter
packets, and selectively display services indicating legitimate communications
with specific TCP headers. This approach assumes that services not conforming
to these criteria are falsely labeled as “open” due to SYN cookies.

The implementation of a Berkeley Packet Filter (BPF) filter is essential for
inspecting specific flag values indicative of packet transfers. The filter, focusing
on the 14th byte (offset 13 for a 0-based index) of the TCP header, targets
packets with flags set to ack and fin, or ack, or ack && psh. The resulting BPF
filter serves as a critical tool for determining legitimate service responses in the
presence of SYN-flood protections.

Subsequently, we will introduce a port-scanning program that utilizes the BPF
filter to establish full TCP connections and analyze packets beyond the three-way
handshake. The program, while not optimized for efficiency, provides a functional
demonstration. Key variables, such as the filter, device availability, and a results
map tracking port confidence levels, are defined. The sniff function, executed
in a separate thread, captures and processes packets concurrently. The main

36

https://en.wikipedia.org/wiki/SYN_flood
https://en.wikipedia.org/wiki/SYN_cookies
https://en.wikipedia.org/wiki/Handshake_(computing)
https://en.wikipedia.org/wiki/Nmap
https://en.wikipedia.org/wiki/Berkeley_Packet_Filter

function parses target ports, initiates TCP connection attempts, and processes
results based on confidence levels.

fn sniff(
socket: SocketAddr,
_iface: &str,
target: &str,
results: Arc<Mutex<HashMap<String, usize>>>,
) => 4o0::Result<()> {
let socket_protocol = if cfg/ (target_os = "windows") {

0
} else {
6 // TCP

Irg
let sniffer = Socket::new(
Domain: : IPV4,
Type: : RAW,
Some (Protocol: : from(socket_protocol)),
)7;
sniffer.bind(&socket.into())?;

// TODO: set interface

// Available only on MacOS: https://docs.rs/socket2/latest/socket2/struct.Socket.html#m
// let iface_index = sniffer.device_index_v4 (9iface)?;

// socket.bind_device_by_tindex_v4(Some(&iface_index))?;

let mut buffer: [MaybeUninit<u8>; 65535] = unsafe { MaybeUninit::uninit().assume_init()

println! ("Capturing packets");
loop {
// Receive a TCP packet
let _length = sniffer.recv_from(&mut buffer).unwrap();
let raw_buffer: &[u8] =
unsafe { std::slice::from_raw_parts(buffer.as_ptr() as #*const u8, buffer.len())

// Create an IP header from the first 20 bytes

let ip_header = match IP::new(&raw_buffer[..20]) {
Some (header) => header,
None => return 0k(()),

g

if ip_header.dst_address() != target {
continue;

}

if raw_buffer.len() < IPV4 HEADER_SIZE + TCP_HEADER_SIZE {

37

eprintln! ("Invalid packet: too short");
continue;

let tcp_header =
TCP: : new(&raw_buffer [IPV4_HEADER_SIZE..IPV4_HEADER_SIZE + TCP_HEADER_SIZE + 1])

// Check if the flags match the specified combinations for Berkeley Packet Filter
let ack = (tcp_header.flags & ACK) != 0;
let fin = (tcp_header.flags & FIN) != 0;
let psh = (tcp_header.flags & PSH) != O;

if !(ack && fin || ack || ack && psh) {
continue;

}

// Add the source port

let mut results = results.lock().unwrap();

results
.entry(tcp_header.destination_port.to_string())
.and_modify(le| *e += 1)
.or_insert(1);

}

fn main() -> Zo::Result<()> {
let args: Vec<String> = std::env::args().collect();
if args.len() !'= 3 {
eprintln! ("Usage: {} <target_ip> <ports>", args[0]);
std::process::exit(1);

let target = match args.get(1) {
Some (target) => target,
None => "ethO",

let ports: Vec<&str> = match args.get(2) {
Some (ports) => ports.split(',').collect(),
None => wec! ["eth0"],

let iface = match args.get(3) {
Some (iface) => iface,
None => "ethO",

38

Irg
let results = Arc::new(Mutez::new(HashMap: :new()));
let socket = SocketAddr::new(IpAddr::V4(IpvjAddr::new(0, 0, 0, 0)), 12345);

let sniff_thread = thread:: spawn({
let iface = iface.to_string();
let target = target.to_string();
let results = results.clone();
move || {
if let Err(err) = sniff(socket, &iface, &target, results) {
eprintln! ("Error capturing packets: {}", err);
}
}
1);

thread: : sleep(Duration: : from_secs(1));

for port in ports {
let target_addr = format! ("{}:{}", target, port);
println! ("Trying {}", target_addr);
// Opens a TCP connection to a remote host with a timeout.
if let Ok(stream) =
TepStream: : connect_timeout (&target_addr.parse:: <SocketAddr>() .unwrap(), TIMEOUI
{
println! ("Couldn't connect to the remote host...");
drop(stream) ;

}
thread: : sleep(Duration: : from_secs(2));

let results = results.lock() .unwrap();
for (port, confidence) in results.iter() {
if *confidence >= 1 {
println! ("Port {} open (confidence: {})", port, confidence);
}
}

if results.len() == 0 {

println! ("All scanned ports on {} are closed", target);
}
sniff_thread.join() .unwrap();

0k(0)

39

}

This code contains two primary functions, namely sniff and main, aimed at
facilitating port scanning with due consideration for SYN-flood protection mech-
anisms. A comprehensive understanding of the code’s complexities necessitates
a detailed exploration of each segment.

The sniff Function: Within the code, the sniff function plays a pivotal role
in capturing network packets and meticulously monitoring them to determine
the status of open ports. This function exhibits a nuanced design, reflecting an
intelligent approach to packet analysis. The function’s signature discloses its
parameters, notably the socket representing the local socket address for binding
during packet capture, the _iface parameter intended for specifying the network
interface (though currently unused), the target denoting the destination IP
address for port scanning, and finally, the results parameter encapsulating the
outcomes within an Arc<Mutex<HashMap<String, usize>>> structure, ensuring
thread-safe storage.

The internal workings of the sniff function reveal a strategic use of conditional
checks and packet analysis techniques. The function begins by determining
the protocol of the local socket, accounting for variations across operating
systems. Following this, a Socket instance is instantiated to engage in raw socket
operations. Despite a placeholder for setting the network interface (_iface),
the current implementation remains devoid of this functionality. The function
utilizes an iterative loop for continuous packet reception, forming the core of the
packet-sniffing process.

Incoming packets experience a multistage assessment, starting with the creation
of an IP header based on the initial 20 bytes. Subsequently, the destination
address of the IP header experiences a check, and if it aligns with the designated
target, the analysis proceeds. A safeguard against insufficient packet length is
implemented to handle potential anomalies, flagging invalid packets that fall
below a defined size threshold. The function then extracts the TCP header
from the packet, and crucially, evaluates the TCP flags against predefined
combinations indicative of particular states.

Flag combinations such as ACK and FIN, ACK, and ACK and PSH are analyzed,
with packets not conforming to these patterns being disregarded: the Berkeley
Packet Filter. Upon a successful match, the source port information is extracted,
and the results are updated within the thread-safe data structure. The utilization
of a mutex ensures the integrity of concurrent data modifications. This complex
technique of packet analysis within the sniff function forms the foundation of
the overall port-scanning effort.

The main Function: The main function orchestrates the overarching flow of
the program, serving as the entry point for execution. Its primary responsibilities
include parsing command-line arguments, initializing key variables, spawning

40

a thread for packet sniffing, conducting TCP connection attempts on specified
ports, and finally, presenting packed results.

Starting with argument parsing, the function dynamically adapts to user inputs,
accommodating variations in the provided parameters. The instantiation of an
Arc<Mutex<HashMap<String, usize>>> structure named results signifies the
shared container for collating and safeguarding the outcome of port scans.

The creation of a socket address (socket) and subsequent thread instantiation for
packet sniffing encapsulates the concurrent nature of the operation. A strategic
pause via thread: :sleep ensures synchronization, allowing the packet-sniffing
thread to initialize before the subsequent port connection attempts begin.

Iterating through the specified ports, the code initiates TCP connection attempts
on the target IP, assessing the state of each port. A subsequent delay provides
time for the packet-sniffing thread to capture relevant data. Post-delay, the
results are extracted and analyzed, with open ports and associated confidence
levels being displayed.

Noteworthy is the final assessment, where the absence of open ports prompts
a notification regarding the closure of all scanned ports on the target. The
tidy conclusion of the main function involves awaiting the termination of the
packet-sniffing thread, ensuring a graceful exit from the program.

In summary, the combination of the sniff and main functions orchestrates a
sophisticated yet rational approach to SYN-flood-protected port scanning. Each
function contributes distinctively to the overarching objective, emphasizing the
complexities involved in scanning network packets, interpreting TCP flags, and
consolidating results within a concurrent and thread-safe framework.

// The following command will exzecute the sniffer.
// Set your sudo password below by replacing 'your-passowrd' accordingly

let command = "cd syn-flood-port-scanning && cargo build && echo 'your-passowrd' | sudo -S

if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

}

Finished dev [unoptimized + debuginfo] target(s) in 0.01s
[sudo] password for mahmoud: Usage: target/debug/syn-flood-port-scanning <target_ip>
Error executing command: Operation not permitted (os error 1)

O

41

// The following command will execute the sniffer.
// Set your sudo password below by replacing 'your-passowrd' accordingly
// Set <target_ip> and <port_numbers> at the very end of the command, like: 127.0.0.1 80,44

let command = "cd syn-flood-port-scanning && cargo build && echo 'your-passowrd' | sudo -S

if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

}

Finished dev [unoptimized + debuginfo] target(s) in 0.01s

Capturing packets

Trying 127.0.0.1:80

Trying 127.0.0.1:443

Port 443 open (confidence: 1)
Port 35642 open (confidence: 1)
Port 35628 open (confidence: 3)
Port 34006 open (confidence: 1)
Port 80 open (confidence: 1)

The output reveal the outcomes of the connection attempts, portraying a detailed
account of the open ports and their associated confidence levels. Port 443
emerges as open with a confidence rating of 1, signifying that a packet with
the specified TCP flags indicative of an open port was successfully intercepted
during the packet-capturing phase. Similarly, ports 35642, 35628, and 34006
exhibit varying degrees of openness, each accompanied by a confidence level
reflecting the frequency of corresponding packet captures. The confidence metric
provides a nuanced perspective, offering insight into the reliability of the open
port determination. In essence, a higher confidence level indicates a more robust
affirmation of the port’s accessibility.

In conclusion, the exploration of SYN-flood protections in port scanning under-
scores the dynamic nature of cybersecurity challenges. This section emphasizes
adaptive strategies, leveraging post-connection packet analysis and BPF filters,
to enhance the accuracy of port-scanning results in the presence of SYN cookies.

42

	Chapter 1: Crafting a Rust-Based Network Sniffer
	1. Crafting a Rust-Based UDP Host Discovery Tool
	1.1 Network Exploration: Decoding the Essence of UDP
	1.2 Decoding the IP Layer and Uncover Packet Secrets
	1.3 The IP Header Struct
	1.4 Putting It All Together
	1.5 ICMP Structure Decoding
	1.6 Decoding TCP packets
	1.7 Decoding UDP packets

	Introduction
	Format
	Fields
	1.8 Port Scanning in the Presence of SYN-flood Protections

