
Chapter 2: Hidden Threads - Mastering the Art
of Steganography in Rust
Introduction
At the core of this fascinating chapter lies the perplexing art of steganography,
a term derived from the fusion of two ancient Greek words - “steganos”, meaning
“to cover or protect,” and “graphien”, signifying “to write.” In the vast domain
of cybersecurity, steganography serves as a captivating technique, like a digital
cover, hiding valuable data within the seemingly innocent façade of images.
This practice has become routine within the security community, a skill where
practitioners adeptly navigate the delicate balance between hiding and disclosure.
In essence, steganography empowers security professionals to embed payloads
secretly, patiently awaiting the opportune moment for extraction once the data
reaches its intended destination.

As we kick off this chapter through the complexities of steganography, our focus
sharpens on the security landscape, where the art of hiding and revealing data
takes center stage. The essence of this practice lies in the ingenious hiding of
information within the very fabric of images. Like a hidden message within a
painting, steganography allows security practitioners to obscure critical payloads
within the pixels of images, laying the groundwork for secret communication.
This chapter, which is like a roadmap through the hidden passages of digital
secrecy, reveals the techniques and procedures employed in this confidential art,
offering insights into the methods that security professionals employ to navigate
this delicate dance of data manipulation.

The chapter, like a guidebook for digital spies, delves into the practical aspects
of this obscuring art, particularly focusing on the embedding of data within
Portable Network Graphics (PNG) images. The PNG format, known for
its ubiquity and versatility, becomes the canvas upon which the steganographer
paints hidden messages. The journey through this chapter promises a deep
dive into the complexities of PNG files, exploring their byte structure, decoding
headers, and cracking the sequence of chunks that define the anatomy of these
digital canvases. In essence, the chapter stands as a beacon for those navigating
the maze of steganography, offering both theoretical insights and practical wisdom
for concealing and unveiling secrets within the digital realm.

1. Exploring the PNG Format
To kick off our journey of embedding data within the PNG format, we must
first understand the complex byte curtain that constitutes a binary PNG image
file. The PNG specification, accessible at libpng.org, becomes our compass in
navigating this digital landscape. Within this knowledge, byte chunks incorporate
the fabric of PNG images, creating a canvas where our steganographic secrets will
find their hiding places. These chunks, repetitive in nature, lay the groundwork
for our exploration into the hidden domains of data manipulation.
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The Enigmatic Header:

Figure 1: ScreenShot taken from the Bless hex editor

In the realm of PNG files, our journey begins with the opening eight bytes,
forming the magical sequence “89 50 4E 47 0D 0A 1A 0A”. This sequence
acts as a secret code, the key that unlocks the PNG world. Picture it like the
first musical notes of our steganographic symphony. Now, onto the scene comes
the Header struct, a kind of container designed to catch these magical bytes.
// Header holds the first UINT64 (Magic Bytes)
struct Header {

header: u64,
}

The Header structure is like an artist’s canvas waiting for a masterpiece. It
holds an unsigned 64-bit integer, a perfect fit for the magical bytes. When we
perform a magical act called transmutation, the hidden message “PNG” is
revealed, almost like a secret handshake granting us access to the PNG world.
This Header is our guardian, making sure our PNG image is the real deal and
giving us the green light to start our work of steganography. It’s like the keeper
of secrets, ensuring the symphony begins without any interference.

Decoding the Chunk Sequence:

As we venture beyond the surface of the PNG image, we encounter something
known as the chunk sequence. This sequence follows structured data of SIZE (4
bytes), TYPE (4 bytes), DATA (variable bytes), and CRC (4 bytes). Each
chunk is like a puzzle piece in the steganographic mosaic and contributes its
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unique narrative to the overall story painted within the PNG image. The SIZE
chunk sets the stage, dictating the length of the upcoming DATA, while the
TYPE chunk acts as a sign, revealing the purpose of the data that follows.
Our mission is to decode this sequence, uncovering the hidden messages that lie
beneath.
// Chunk represents a data byte chunk segment
struct Chunk {

size: u32,
r#type: u32,
data: Vec<u8>,
crc: u32,

}

As we embark on the complexities of steganography within the PNG image, the
MetaChunk structure emerges as our reliable companion, illuminating the path
through the concealed landscape of digital storytelling. Picture the MetaChunk
as our guide, equipped with the tools to decode the complexities hidden within
each segment of our steganographic work.
// MetaChunk structure orchestrating the steganographic journey
struct MetaChunk {

header: Header,
chk: Chunk,
offset: u64,

}

The MetaChunk will navigate us through the hidden landscapes of binary com-
plexities. Its fields, such as the header and chk (representing the Header and
Chunk structures, respectively), are our compass and map, ensuring we stay on
course through this steganographic work. The offset, is like a GPS coordinate,
pinpoints our location within the byte landscape, marking the starting point of
each chunk segment.

2. Reading a PNG File
Preprocessing the Image: The pre_process_image function, our initiation
into the PNG world, transforms the PNG image into a readable script. It’s the
first step in turning a PNG image, which seems like a puzzle, into something
we can read and work with. This function does some important things to make
that happen.
// Implementation of MetaChunk, defining a function `pre_process_image` that processes a PNG image file
impl MetaChunk {

fn pre_process_image(file: &mut File) -> Result<MetaChunk, std::io:: Error> {
// Creating a Header struct to hold the first 8 bytes of the PNG image
let mut header = Header { header: 0 };
// Reading exactly 8 bytes from the file into the header using unsafe operations
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file.read_exact(unsafe { mem::transmute:: <_, &mut [u8; 8]>(&mut header.header) })?;

// Converting the header bytes from u64 to u8 array
let b_arr = u64_to_u8_array(header.header);

// Checking if the PNG magic bytes are present in the file
if &b_arr[1..4] != b"PNG" {

// If not, panicking and terminating the program with an error message
panic! ("Provided file is not a valid PNG format");

} else {
// If yes, printing a confirmation message
println! ("It is a valid PNG file. Let's process it!");

}

// Getting the current position (offset) in the file and storing it
let offset = file.seek(SeekFrom:: Current(0))?;

// Returning a `MetaChunk` struct instance with the obtained header, an initial Chunk, and the offset
Ok(MetaChunk {

header,
chk: Chunk {

size: 0,
r#type: 0,
data: Vec:: new(),
crc: 0,

},
offset,

})
}

}

Once initiated, validation becomes crucial. This method inspect the first eight
bytes, ensuring their adherence to the PNG format. The magic bytes unfold, and
if the decoded message aligns with “PNG”, the gateway to our steganographic
exploration swings open.

Reading through Chunk Sequences:

Our journey into the PNG landscape is marked by the process_image function,
a blend of code orchestrating the navigation through chunks. A loop, a recur-
ring motif, guides the traversal through each chunk. The count becomes our
companion, marking each chunk’s unveiling in this steganographic manuscript.
fn process_image(&mut self, file: &mut File) {

let mut count = 1;
let mut chunk_type = String:: new();
let end_chunk_type = "IEND";
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Figure 2: ScreenShot taken from the Bless hex editor

while chunk_type != end_chunk_type {
println! ("---- Chunk # {} ----", count);
let offset = self.get_offset(file);
println! ("Chunk Offset: {:x}", offset);
self.read_chunk(file);
chunk_type = self.chunk_type_to_string();
count += 1;

}
}

Charting Coordinates with Offset:

In this exploration, awareness of our position within the PNG image becomes
imperative. The get_offset method, a virtual compass, captures the coordi-
nates of each chunk. The seek function, a navigator’s tool, unfolds the map of
offsets, guiding our steganographic ship through the PNG terrain. It moves to
an offset, in bytes, in the file stream.
fn get_offset(&mut self, data: &mut File) -> u64 {

let offset = data.seek(SeekFrom:: Current(0)).unwrap();
self.offset = offset;
offset

}

Deciphering Chunk by Chunk:
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The heart of our steganographic novel lies in the read_chunk method—a meticu-
lous deciphering of each chunk’s data. The synchronization of read_chunk_size,
read_chunk_type, read_chunk_bytes, and read_chunk_crc becomes a chore-
ography of bytes, each revealing a distinct aspect of the hidden bytes.
fn read_chunk(&mut self, data: &mut File) {

self.read_chunk_size(data);
self.read_chunk_type(data);
self.read_chunk_bytes(data, self.chk.size);
self.read_chunk_crc(data);

}

Transcribing the Size Chunk:

The read_chunk_size method reads the size of each chunk. The size_bytes
variable holds the essence of the chunk size on the paper of our steganographic
manuscript.
fn read_chunk_size(&mut self, data: &mut File) {

let mut size_bytes = [0; 4];

match data.read_exact(&mut size_bytes) {
Ok(_) => {

self.chk.size = u32:: from_be_bytes(size_bytes);
}
Err(err) if err.kind() == ErrorKind:: UnexpectedEof => {

eprintln! ("Warning: Reached end of file prematurely while reading chunk size");
}
Err(err) => {

eprintln! ("Error reading chunk size bytes: {}", err);
}

}
}

Decoding the Chunk Type: The read_chunk_type method deciphers the
type of each chunk.
fn read_chunk_type(&mut self, data: &mut File) {

let mut type_bytes = [0; 4];

match data.read_exact(&mut type_bytes) {
Ok(_) => {

self.chk.r#type = u32:: from_be_bytes(type_bytes);
}
Err(err) if err.kind() == ErrorKind:: UnexpectedEof => {

eprintln! ("Warning: Reached end of file prematurely while reading chunk type");
}
Err(err) => {
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eprintln! ("Error reading chunk type bytes: {}", err);
}

}
}

Reading the Chunk’s Bytes: The read_chunk_bytes method reads each
chunk of the image file given a number of bytes.
fn read_chunk_bytes(&mut self, data: &mut File, len: u32) {

self.chk.data = vec! [0; len as usize];

match data.read_exact(&mut self.chk.data) {
Ok(_) => {

// Successfully read the expected number of bytes
}
Err(err) if err.kind() == ErrorKind:: UnexpectedEof => {

eprintln! ("Error reading chunk bytes: Reached end of file prematurely");
self.chk

.data

.truncate(data.seek(SeekFrom:: Current(0)).unwrap() as usize);
}
Err(err) => {

eprintln! ("Error reading chunk bytes: {}", err);
}

}
}

Decoding the Chunk’s CRC: The read_chunk_crc method takes on the role
of the guardian, deciphering the script’s integrity. The CRC bytes ensure that
the essence of the chunk remains unaltered.
fn read_chunk_crc(&mut self, data: &mut File) {

let mut crc_bytes = [0; 4];

match data.read_exact(&mut crc_bytes) {
Ok(_) => {

self.chk.crc = u32:: from_be_bytes(crc_bytes);
}
Err(err) if err.kind() == ErrorKind:: UnexpectedEof => {

eprintln! ("Warning: Reached end of file prematurely while reading chunk CRC");
}
Err(err) => {

eprintln! ("Error reading chunk CRC bytes: {}", err);
}

}
}
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As the stenographic odyssey unfolds, each line of code becomes a step in decipher-
ing the hidden canvas of PNG images. The orchestration of structs, functions,
and bytes creates a symphony that resonates with the heartbeat of steganography.
With every offset, chunk, and byte, the cover over PNG’s secrets slowly lifts,
revealing a digital narrative waiting to be explored.

Now, let’s put it all together.
use std::fs:: File;
use std::io:: ErrorKind;
use std::io:: {Read, Seek, SeekFrom};
use std:: mem;
use std:: str;

#[derive(Debug)]
struct Header {

header: u64,
}

#[derive(Debug)]
struct Chunk {

size: u32,
r#type: u32,
data: Vec<u8>,
crc: u32,

}

struct MetaChunk {
header: Header,
chk: Chunk,
offset: u64,

}

fn u64_to_u8_array(value: u64) -> [u8; 8] {
let bytes = value.to_ne_bytes();
let mut result = [0; 8];

unsafe {
result = mem:: transmute_copy(&bytes);

}

result
}

impl MetaChunk {
fn pre_process_image(file: &mut File) -> Result<MetaChunk, std::io:: Error> {

let mut header = Header { header: 0 };
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file.read_exact(unsafe { mem::transmute:: <_, &mut [u8; 8]>(&mut header.header) })?;

let b_arr = u64_to_u8_array(header.header);
if &b_arr[1..4] != b"PNG" {

panic! ("Not a valid PNG format");
} else {

println! ("It is a valid PNG file. Let's process it!");
}

let offset = file.seek(SeekFrom:: Current(0))?;
Ok(MetaChunk {

header,
chk: Chunk {

size: 0,
r#type: 0,
data: Vec:: new(),
crc: 0,

},
offset,

})
}

fn process_image(&mut self, file: &mut File) {
let mut count = 1;
let mut chunk_type = String:: new();
let end_chunk_type = "IEND";

while chunk_type != end_chunk_type {
println! ("---- Chunk # {} ----", count);
let offset = self.get_offset(file);
println! ("Chunk Offset: {:x}", offset);
self.read_chunk(file);
chunk_type = self.chunk_type_to_string();
count += 1;

}
}

fn get_offset(&mut self, file: &mut File) -> u64 {
let offset = file.seek(SeekFrom:: Current(0)).unwrap();
self.offset = offset;
offset

}

fn read_chunk(&mut self, file: &mut File) {
self.read_chunk_size(file);
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self.read_chunk_type(file);
self.read_chunk_bytes(file, self.chk.size);
self.read_chunk_crc(file);

}

fn read_chunk_size(&mut self, file: &mut File) {
let mut size_bytes = [0; 4];

match file.read_exact(&mut size_bytes) {
Ok(_) => {

// Successfully read the expected number of bytes
self.chk.size = u32:: from_be_bytes(size_bytes);

}
Err(err) if err.kind() == ErrorKind:: UnexpectedEof => {

// Handle the situation where the file ends before reading the expected bytes
eprintln! ("Warning: Reached end of file prematurely while reading chunk size");

}
Err(err) => {

eprintln! ("Error reading chunk size bytes: {}", err);
}

}
}

fn read_chunk_type(&mut self, file: &mut File) {
let mut type_bytes = [0; 4];

match file.read_exact(&mut type_bytes) {
Ok(_) => {

// Successfully read the expected number of bytes
self.chk.r#type = u32:: from_be_bytes(type_bytes);

}
Err(err) if err.kind() == ErrorKind:: UnexpectedEof => {

// Handle the situation where the file ends before reading the expected bytes
eprintln! ("Warning: Reached end of file prematurely while reading chunk type");

}
Err(err) => {

eprintln! ("Error reading chunk type bytes: {}", err);
}

}
}

fn read_chunk_bytes(&mut self, file: &mut File, len: u32) {
self.chk.data = vec! [0; len as usize];

match file.read_exact(&mut self.chk.data) {
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Ok(_) => {
// Successfully read the expected number of bytes

}
Err(err) if err.kind() == ErrorKind:: UnexpectedEof => {

eprintln! ("Error reading chunk bytes: Reached end of file prematurely");
// Update the length of the Chunk based on the actual number of bytes read
self.chk

.data

.truncate(file.seek(SeekFrom:: Current(0)).unwrap() as usize);
}
Err(err) => {

eprintln! ("Error reading chunk bytes: {}", err);
}

}
}

fn read_chunk_crc(&mut self, file: &mut File) {
let mut crc_bytes = [0; 4];

match file.read_exact(&mut crc_bytes) {
Ok(_) => {

// Successfully read the expected number of bytes
self.chk.crc = u32:: from_be_bytes(crc_bytes);

}
Err(err) if err.kind() == ErrorKind:: UnexpectedEof => {

// Handle the situation where the file ends before reading the expected bytes
eprintln! ("Warning: Reached end of file prematurely while reading CRC");

}
Err(err) => {

eprintln! ("Error reading CRC bytes: {}", err);
}

}
}

fn chunk_type_to_string(&self) -> String {
String:: from_utf8_lossy(&self.chk.r#type.to_be_bytes()).to_string()

}
}

let mut file = File:: open("stegano/prj.png").expect("Error opening file");

let mut meta_chunk = MetaChunk:: pre_process_image(&mut file).expect("Error processing image");

meta_chunk.process_image(&mut file);
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It is a valid PNG file. Let's process it!
---- Chunk # 1 ----
Chunk Offset: 8
---- Chunk # 2 ----
Chunk Offset: 21
---- Chunk # 3 ----
Chunk Offset: 2e
---- Chunk # 4 ----
Chunk Offset: 203a
---- Chunk # 5 ----
Chunk Offset: 4046
---- Chunk # 6 ----
Chunk Offset: 6052
---- Chunk # 7 ----
Chunk Offset: 805e
---- Chunk # 8 ----
Chunk Offset: a06a
---- Chunk # 9 ----
Chunk Offset: c076
---- Chunk # 10 ----
Chunk Offset: e082
---- Chunk # 11 ----
Chunk Offset: 1008e
---- Chunk # 12 ----
Chunk Offset: 1209a
---- Chunk # 13 ----
Chunk Offset: 140a6
---- Chunk # 14 ----
Chunk Offset: 160b2
---- Chunk # 15 ----
Chunk Offset: 180be
---- Chunk # 16 ----
Chunk Offset: 1a0ca
---- Chunk # 17 ----
Chunk Offset: 1c0d6
---- Chunk # 18 ----
Chunk Offset: 1e0e2
---- Chunk # 19 ----
Chunk Offset: 200ee
---- Chunk # 20 ----
Chunk Offset: 220fa
---- Chunk # 21 ----
Chunk Offset: 24106
---- Chunk # 22 ----
Chunk Offset: 26112
---- Chunk # 23 ----
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Chunk Offset: 26d33

Figure 3: ScreenShot taken from the Bless hex editor

The output signifies the successful validation of the PNG file as indicated by the
confirmation message, “It is a valid PNG file. Let’s process it!” This message is
printed after checking if the magic bytes “PNG” are present in the file.

Following this confirmation, the program proceeds to process the PNG file in a
chunk-wise manner. Each line in the output corresponds to a different chunk
within the PNG file, and the offset value indicates the position of each chunk
in hexadecimal format. The term “Chunk Offset” is essentially revealing the
starting point of each chunk within the file.

For instance, the first chunk (Chunk #1) starts at an offset of 8, the second
chunk (Chunk #2) at an offset of 21, and so forth. These offsets provide a crucial
reference point for navigating and manipulating the image file. In the context of
steganography, understanding the position of each chunk becomes essential for
hiding and extracting hidden data without corrupting the file structure.

Having meticulously traversed the header of the PNG image and comprehensively
processed it in a chunk-wise fashion, we have gained invaluable insights into the
complex structure of the image file. The journey has developed as a meticulous
exploration of the PNG format, unraveling the magic bytes and delving into the
sequential chunks that compose the image.

Now armed with the knowledge of how to navigate through the chunks and
decipher their offsets, our next work is to embark on the hiding of a message
within these layers of data. This entails the artful insertion of our payload
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into the file, ensuring its secret existence within the seemingly innocent image
structure.

3. Hiding a secret in a PNG File
In the domain of steganography, where plenty of sophisticated techniques exist
for embedding payloads, our focus within this particular section will sharpen
on the meticulous method of manipulating byte offsets. The PNG file format,
our chosen format for this exploration, introduces a structured canvas outlined
by additional chunk segments, each carefully defined within its specification.
These critical chunks form the ground upon which the image decoder relies for
seamless image processing. On the other hand, the additional chunks, while
optional, contribute essential metadata that extends beyond the core encoding
or decoding processes, including timestamps and textual information.

Within this complex framework, the additional chunk type emerges as an oppor-
tune target for the strategic injection of payloads. Its non-essential role in the
image processing pipeline makes it an ideal candidate for manipulation. Whether
through overwriting an existing chunk or delicately introducing an entirely new
one, the potential for impactful alteration is vast. This sets the stage for a
detailed exploration into the technique of seamlessly inserting new byte slices
into the carefully delineated boundaries of an additional chunk segment.

To truly grasp the complexities of this method, we must delve deep into the
anatomy of the PNG file format, which was already discussed in the previous
sections. The critical chunks, acting as the digital scaffolding of the image, house
critical data for the image decoder’s effective functioning. Contrariwise, the
additional chunks, characterized by their optional nature, impart an additional
layer of functionality to the file by contributing supplementary metadata. This
metadata, while not necessary to the decoding process, adds intrinsic value by
encapsulating timestamps and textual details.

The deliberate selection of the additional chunk type as the focal point for payload
injection derives from its non-critical identification. By opting to overwrite an
existing ancillary chunk or introduce a completely new one, the image can
be manipulated without compromising its core decoding functionality. In the
subsequent sections, we will guide you through a meticulously detailed, step-by-
step process, shedding light on the sophisticated art of seamlessly integrating
new byte slices into the carefully chosen chunk segment. This journey aims
to unravel the complexities of steganographic payload embedding, offering a
comprehensive understanding of the interplay between manipulation and the
complex landscape of PNG file structures.

3.1 Locating an offset

To pinpoint an appropriate chunk offset, the initial step entails determining
an appropriate location within the image data. Revisiting the hex editor, we
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proceed to walk through the original PNG file while moving toward the end of
the image file.

Within any valid PNG image, an IEND chunk type serves as an indicator for the
terminal section of the file, signifying the end-of-file (EOF) chunk. Precision in
this process involves advancing to the 4 bytes immediately preceding the final
SIZE chunk, strategically situating yourself at the initiation offset of the IEND
chunk. This marks the beginning of the arbitrary chunks - whether they be
critical or not - encompassed within the overarching PNG file. It’s essential
to acknowledge that these chunks are optional, making it plausible that the
file under examination may not exhibit the same chunks or might lack them
altogether. In our illustrative scenario, the offset leading to the IEND chunk
originates at an integer offset 159020, as shown in the following image.

Figure 4: ScreenShot taken from the Bless hex editor

This image visually encapsulates the process of determining a chunk offset in
relation to the IEND position. The complex interplay of the file’s structure
unfolds as you navigate through the hex representation, unraveling the spatial
arrangement of critical chunks within the PNG file. This meticulous exploration
ensures a comprehensive understanding of the file’s composition, particularly
when dealing with optional chunks that contribute to the overall complexity of
the PNG format. In essence, this methodological approach establishes a foundation
for precise offset identification, allowing for an examination of PNG files and
facilitating informed analysis of their structural complexities.
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3.2 Writing the payload

Navigating the complexities of encoding ordered bytes into a byte stream often
involves utilizing a Rust struct as a standard approach. The following code
snippet orchestrates a sequence of functions that are progressively developed
throughout this section.
struct CmdArgs {

input: String,
output: String,
meta: bool,
suppress: bool,
offset: String,
inject: bool,
payload: String,
r#type: String,
encode: bool,
decode: bool,
key: String,

}

impl CmdArgs {
fn new(args: &[String]) -> Result<Self, &'static str> {

if args.len() < 5 {
return Err("Not enough arguments. Usage: program input output offset payload");

}

Ok(CmdArgs {
input: args[1].clone(),
output: args[2].clone(),
meta: false,
suppress: false,
offset: args[3].clone(),
inject: false,
payload: args[4].clone(),
r#type: String:: from("PNG"),
encode: args.contains(&String:: from("encode")),
decode: args.contains(&String:: from("decode")),
key: args[5].clone(),

})
}

}

The CmdArgs struct, as outlined in the above code snippet, encapsulates flag
values obtained from command line inputs. These flags play a pivotal role in
determining the payload to be utilized and the specific location within the image
data for insertion. The struct employs these flags to create a new MetaChunk
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struct instance meta_chunk, aligning with the structured format of bytes to be
written, mirroring those read from existing chunk segments.
fn main() {

let args: Vec<String> = env:: args().collect();

let cmd_line_opts = match CmdArgs:: new(&args) {
Ok(opts) => opts,
Err(err) => {

eprintln! ("Error: {}", err);
return;

}
};

let mut file = File:: open(&cmd_line_opts.input).expect("Error opening file");

let mut meta_chunk = MetaChunk:: pre_process_image(&mut file).expect("Error processing image");

if cmd_line_opts.encode {
let mut file_writer = File:: create(&cmd_line_opts.output).unwrap();

// Calculate CRC for the payload
let mut bytes_msb = Vec:: new();
bytes_msb.write_all(&meta_chunk.chk.r#type.to_be_bytes()).unwrap();
bytes_msb.write_all(&cmd_line_opts.payload.as_bytes()).unwrap();
let crc = crc32_little(meta_chunk.chk.crc, &bytes_msb);

// Update the MetaChunk with the encoded data and CRC
meta_chunk.chk.data = encoded_data;
meta_chunk.chk.crc = crc;

// Create a new mutable reference to file_reader
let mut file_reader = &file;

meta_chunk.write_data(&mut file_reader, &cmd_line_opts, &mut file_writer);

println! ("Image encoded and written successfully!");
} else if cmd_line_opts.decode {

// TODO: Find and decode the payload
meta_chunk.process_image(&mut file);

}
}

Upon initializing the MetaChunk struct, the next procedural step involves reading
the payload into a byte slice file_writer. However, this necessitates additional
functionality to convert the literal flag values into a practical byte array. The
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following sections meticulously unravel the complexities of functions such as
marshal_data, write_data contributing to the overall functionality.

The difficulties involved in computing the CRC32 of the chunk mandate the
innovative development of a new crate known as crc32-v2. This remarkable
creation stands as the evolutionary successor to the pre-existing crc32 crate,
showing a new era of enhanced functionality and performance in the domain of
cyclic redundancy checks. The birth of crc32-v2 signifies a quantum leap
in crate evolution, meticulously tailored to address the specific demands and
challenges posed by the slightly complex task of CRC32 computation for the
chunk. This crate, not only builds upon the foundation laid by its predecessor
but also introduces novel methodologies and optimizations (TODO), marking a
paradigm shift in the landscape of CRC32 computation in the domain of chunk
processing. The crafting of crc32-v2 is a testament to the relentless pursuit of
excellence, where every line of code reflects a synthesis of brilliance and precision,
elevating the standards of crate development to unprecedented heights.
impl MetaChunk {

fn marshal_data(&self) -> Vec<u8> {
let mut bytes_msb = Vec:: new();
bytes_msb.push(self.chk.data.len() as u8);
bytes_msb.write_all(&self.chk.r#type.to_be_bytes()).unwrap();
bytes_msb.write_all(&self.chk.data).unwrap();
bytes_msb.write_all(&self.chk.crc.to_be_bytes()).unwrap();
println! ("Encoded Payload: {:?}", bytes_msb);
bytes_msb

}

fn write_data<R: Read + Seek, W: Write>(&self, r: &mut R, c: &CmdArgs, mut w: W) {
// write header at position 0
let b_arr = u64_to_u8_array(self.header.header);
w.write_all(&b_arr).unwrap();
// write from 0 to offset
let offset = i64:: from_str(&c.offset).unwrap();
let mut buff = vec! [0; offset as usize];
r.read_exact(&mut buff).unwrap();
w.write_all(&buff).unwrap();
// write payload at offset
let data: Vec<u8> = self.marshal_data();
w.write_all(&data).unwrap();
// write from offset to end
// uncomment the following line to preserve the length of the image after manipulation
// r.seek(SeekFrom::Current(data.len().try_into().unwrap())).expect("Error seeking to offset");
copy(r, &mut w).unwrap();

}
}
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Starting with the marshal_data method, as shown in the above code snippet,
orchestrates the consolidation of all essential chunk information into a bytes
buffer, incorporating size, type, data, and checksum. This method plays a pivotal
role in preparing the raw bytes of the custom chunk for insertion into the new
image file.

The final piece of the puzzle lies in the write_data function, the struct method
as in the previous section. This function accepts a buffer reader r, CmdArgs
struct c, and a buffer writer w facilitates the creation of a new PNG image
by strategically writing the new chunk segment bytes into the specified offset
location. The function adeptly handles nuances such as preserving the PNG
header bytes, ensuring consistency between the original and modified images.

In essence, this complex sequence of methods and functions forms the backbone
of a steganography program, seamlessly integrating ordered bytes into a byte
stream and topping in the successful injection of a payload as a new chunk.
Through careful execution of the command line program, as exemplified in the
next section, a new PNG file, namely “output.png” is generated, preserving
identical leading and trailing chunks while secretly hiding the injected payload.

This meticulous exploration is a sense of accomplishment, marking the successful
creation of a steganography program that seamlessly integrates ordered bytes
into a PNG file, displaying a robust foundation for further exploration and
refinement in the realm of data hiding and security.

3.3 Encoding a payload using a simple XOR operation

In the realm of steganography, where various techniques are employed to obscure
data within binary files, an obfuscation method plays a pivotal role. Building
upon the groundwork laid in the previous sections, our focus now extends to
enhancing the program with the incorporation of obfuscation techniques, thereby
hiding the true value of the payload.

The utility of obfuscation becomes particularly pronounced in scenarios where
concealing the payload from vigilant network-monitoring devices and robust
endpoint security solutions is imperative. Consider a scenario where a raw
shellcode, designed for spawning a new Metasploit shell, is being embedded.
In such cases, evasion of detection becomes critical. To achieve this, the utilization
of Exclusive OR (XOR) bitwise operations for both encryption and decryption
of data emerges as a strategic choice.

XOR, a conditional operation between two binary values, yields a Boolean true
outcome only when the two values differ. Contrariwise, a Boolean false result is
produced if the values are identical. The XOR truth table, as outlined in the
following table, briefly captures this logic, where the output is true when either
x or y is true, but not when both are true.
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x y x XOR y
0 0 0
0 1 1
1 0 1
1 1 0

This XOR logic forms the crux of data obfuscation, wherein the bits in the
data are compared to the bits of a secret key. The subsequent manipulation
involves altering the payload bit to 0 when the two values match and to 1 when
they differ. To implement this concept, the code from the previous section is
expanded to accommodate an xor_encode_decode function.
fn xor_encode_decode(input: &[u8], key: &str) -> Vec<u8> {

let mut b_arr = Vec:: with_capacity(input.len());
for (i, &byte) in input.iter().enumerate() {

b_arr.push(byte.wrapping_add(key.as_bytes()[i % key.len()]));
}
b_arr

}

The xor_encode_decode function, at its core, takes a byte slice representing the
payload (input) and a secret key (key) as inputs. Within its scope, a new byte
vector (b_arr) is initialized with a length equivalent to that of the input payload.
Subsequently, a conditional loop iterates over each index position of the input
byte array. During each iteration, XOR operations are performed by taking the
current index’s binary value and XORing it with a binary value derived from
the modulo of the current index and the length of the secret key (key). This
cleverly enables the use of a key shorter than the payload, as the modulo ensures
that when the end of the key is reached, the next iteration reverts to the first
byte of the key. The resulting XOR operation outputs are then written to the
new b_arr bytes vector, which is ultimately returned.

Practical integration of these XOR functions into the existing program entails
modifying the main function logic. The modifications, illustrated in the following
code snippet, assume the use of command line arguments to dynamically pass
values for conditional encoding and decoding logic.
fn main() {

// ..
if cmd_line_opts.encode {

let mut file_writer = File:: create(&cmd_line_opts.output).unwrap();
// Assuming encoding is requested
let encoded_data = xor_encode_decode(cmd_line_opts.payload.as_bytes(), &cmd_line_opts.key);

// Calculate CRC for the encoded data
let mut bytes_msb = Vec:: new();
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bytes_msb.write_all(&meta_chunk.chk.r#type.to_be_bytes()).unwrap();
bytes_msb.write_all(&encoded_data).unwrap();
let crc = crc32_little(meta_chunk.chk.crc, &bytes_msb);

// Update the MetaChunk with the encoded data and CRC
meta_chunk.chk.data = encoded_data;
meta_chunk.chk.crc = crc;

// Create a new mutable reference to file_reader
let mut file_reader = &file;

meta_chunk.write_data(&mut file_reader, &cmd_line_opts, &mut file_writer);

println! ("Image encoded and written successfully!");
} else if cmd_line_opts.decode {

// ..
}

}

Now, let’s put it all together.

3.4 Encode and Inject a payload program

use std::process:: {Command, Output, Stdio};

// A helper function to execute a shell command from a Rust script
fn execute_command(command: &str) -> Result<(), std::io:: Error> {

let status = Command:: new("bash")
.arg("-c")
.arg(command)
.stderr(Stdio:: inherit())
.status()?;

if status.success() {
Ok(())

} else {
Err(std::io:: Error:: from_raw_os_error(status.code().unwrap_or(1)))

}
}

let command = "cd stegano && cargo run prj.png output.png 159028 'hello' 'pass' encode";

if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

}
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Finished dev [unoptimized + debuginfo] target(s) in 0.03s
Running `target/debug/stegano prj.png output.png 159028 hello pass encode`

It is a valid PNG file. Let's process it!
original bytes [104, 101, 108, 108, 111]
Encoded Payload: [5, 0, 0, 0, 0, 24, 4, 31, 31, 31, 109, 44, 172, 118]
Image encoded and written successfully!

()

Figure 5: ScreenShot taken from the Bless hex editor

In essence, the integration of XOR-based obfuscation techniques into the program
provides a robust layer of security, enabling the obscuring and protection of
sensitive payloads within binary files. This strategic utilization of XOR operations
serves as a powerful tool in the arsenal of data protection and steganographic
practices, contributing to the multifaceted landscape of information security.

In the next sections, we are going to explore how to reverse these steps and
extract the original payload.
let command = "cd stegano && cargo run output.png decoded.png 159020 'pass' decode";

if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

}
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4. Revealing a secret from a PNG File
Now that we were successfully able to encode and inject a secret inside a PNG
file by pinpointing an offset and embedding information at that specific location,
the subsequent phase involves the extraction of the secret information and the
revelation of the hidden secrets encoded within, which is achieved through the
decoding process utilizing the XOR operator. To do so, the user is required to
specify not only the key employed in the XOR operation but also the image
containing the concealed information and the precise offset where the secret was
injected.

fn write_data<R: Read + Seek, W: Write>(&mut self, r: &mut R, c: &CmdArgs, mut w: W) {
// Common encoding and decoding process
let b_arr = u64_to_u8_array(self.header.header);
w.write_all(&b_arr).unwrap();
let offset = i64:: from_str(&c.offset).unwrap();
let mut buff = vec! [0; (offset - 8) as usize];

if c.encode {
// Encoding specific operations
buff.resize((offset - 8) as usize, 0);
r.read_exact(&mut buff).unwrap();
w.write_all(&buff).unwrap();
let data: Vec<u8> = self.marshal_data();
w.write_all(&data).unwrap();
// Uncomment the following line to preserve the length of the image after manipulation
// r.seek(SeekFrom::Current(data.len().try_into().unwrap())).expect("Error seeking to offset");
copy(r, &mut w).unwrap();

} else if c.decode {
// Decoding specific operations
buff.resize((offset - 16) as usize, 0);
r.read_exact(&mut buff).unwrap();
w.write_all(&buff).unwrap();
let offset = self.get_offset(r);
self.read_chunk(r);
println! ("Encoded Payload: {:?}", self.chk);
let decoded_data = xor_encode_decode(&self.chk.data, &c.key);
let decoded_string = String:: from_utf8_lossy(&decoded_data);
println! ("Decoded Payload: {:?}", decoded_data);
println! ("Original Data: {:?}", decoded_string);
r.seek(SeekFrom:: Current(self.chk.data.len().try_into().unwrap()))

.expect("Error seeking to offset");
copy(r, &mut w).unwrap();

}
}

Now, let’s break down the method responsible for this cryptographic work - the
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write_data method. This method is used to handle the dual responsibilities of
injecting and encoding, as well as extracting and decoding the hidden information.
fn write_data<R: Read + Seek, W: Write>(&mut self, r: &mut R, c: &CmdArgs, mut w: W) {

// ... (omitted for brevity)

At the method’s entry point, we encounter generic parameters R and W, which
represent types that can be read from (Read) and written to (Write). These
generics make the method adaptable to various input and output sources.
if c.encode {

// Encoding process
let b_arr = u64_to_u8_array(self.header.header);
w.write_all(&b_arr).unwrap();

The conditional statement checks if encoding is the goal. If so, the method
initiates the encoding process by converting the header’s 64-bit value into a byte
array and writing it to the output stream (w).
let offset = i64:: from_str(&c.offset).unwrap();
let mut buff = vec! [0; (offset - 8) as usize];
r.read_exact(&mut buff).unwrap();
w.write_all(&buff).unwrap();

Here, the method reads data from the input stream (r) up to the specified offset,
preparing the canvas for the payload insertion. It’s like making space for the
hidden message within the image.
let data: Vec<u8> = self.marshal_data();
w.write_all(&data).unwrap();

The payload, encapsulated as a vector of unsigned 8-bit integers, is then written
to the output stream (w). Think of this step as the act of placing the secret
message at the designated location within the image.
// Uncomment the following line to preserve the length of the image after manipulation
// r.seek(SeekFrom::Current(data.len().try_into().unwrap())).expect("Error seeking to offset");

This commented line when uncommented, ensures that the length of the image
remains intact after manipulation. It’s like tidying up after the secret has been
securely placed.
copy(r, &mut w).unwrap();

Finally, the method completes the encoding process by copying the remaining
data from the input stream (r) to the output stream (w). This step ensures that
the image remains coherent even after the injection operation.
} else if c.decode {

// Decoding process
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let b_arr = u64_to_u8_array(self.header.header);
w.write_all(&b_arr).unwrap();

The method then delves into the decoding process if the user specifies the decode
flag. Like before, the header is written to the output stream (w), setting the
stage for the revelation of hidden information.
let offset = i64:: from_str(&c.offset).unwrap();
let mut buff = vec! [0; (offset - 16) as usize];
r.read_exact(&mut buff).unwrap();
w.write_all(&buff).unwrap();

Similarly to the encoding process, data up to the specified offset is read from
the input stream (r). The buffer (buff) ensures that the canvas is prepared for
decoding.
let offset = self.get_offset(r);
self.read_chunk(r);
println! ("Encoded Payload: {:?}", self.chk);

The method then fetches the actual offset of the hidden payload, reads the
payload chunk, and prints the encoded payload for the user to witness the
encoded information.
let decoded_data = xor_encode_decode(&self.chk.data, &c.key);
let decoded_string = String:: from_utf8_lossy(&decoded_data);
println! ("Decoded Payload: {:?}", decoded_data);
println! ("Original Data: {:?}", decoded_string);

Using the XOR operator and the provided key, the encoded payload is decoded.
The resulting decoded data is printed for the user, revealing the hidden secret
within the image.
r.seek(SeekFrom:: Current(self.chk.data.len().try_into().unwrap())).expect("Error seeking to offset");
copy(r, &mut w).unwrap();

To conclude the decoding process, the method seeks to the position following the
decoded payload’s length within the input stream (r). The remaining data is then
copied to the output stream (w), ensuring the image’s integrity is maintained.

4.1 Extract and Decode the secret program

let command = "cd stegano && cargo run output.png decoded.png 159028 decode 'pass'";

if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

}
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Finished dev [unoptimized + debuginfo] target(s) in 0.04s
Running `target/debug/stegano output.png decoded.png 159028 decode pass`

It is a valid PNG file. Let's process it!
Encoded Payload: Chunk { size: 5, type: 0, data: [24, 4, 31, 31, 31], crc: 1831644278 }
Decoded Payload: [104, 101, 108, 108, 111]
Original Data: "hello"

()

As you can see, we’ve effectively managed to extract and decode the hidden
message embedded within the picture. In simpler terms, we’ve revealed and
translated the secret content that was previously hidden.

5. Test Cases
5.1 Exact Key, Exact Offset

let command = "cd stegano && cargo run prj.png output.png 159028 'hello there 121321412 12312942' 'pass' encode";

if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

}

Finished dev [unoptimized + debuginfo] target(s) in 0.03s
Running `target/debug/stegano prj.png output.png 159028 'hello there 121321412 12312942' pass encode`

It is a valid PNG file. Let's process it!
original bytes [104, 101, 108, 108, 111, 32, 116, 104, 101, 114, 101, 32, 49, 50, 49, 51, 50, 49, 52, 49, 50, 32, 49, 50, 51, 49, 50, 57, 52, 50]
Encoded Payload: [30, 0, 0, 0, 0, 24, 4, 31, 31, 31, 65, 7, 27, 21, 19, 22, 83, 65, 83, 66, 64, 66, 80, 71, 66, 66, 65, 66, 65, 67, 80, 65, 74, 68, 83, 31, 145, 123, 52]
Image encoded and written successfully!

()
let command = "cd stegano && cargo run output.png decoded.png 159028 decode 'pass'";
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if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

}

Finished dev [unoptimized + debuginfo] target(s) in 0.05s
Running `target/debug/stegano output.png decoded.png 159028 decode pass`

It is a valid PNG file. Let's process it!
Encoded Payload: Chunk { size: 30, type: 0, data: [24, 4, 31, 31, 31, 65, 7, 27, 21, 19, 22, 83, 65, 83, 66, 64, 66, 80, 71, 66, 66, 65, 66, 65, 67, 80, 65, 74, 68, 83], crc: 529627956 }
Decoded Payload: [104, 101, 108, 108, 111, 32, 116, 104, 101, 114, 101, 32, 49, 50, 49, 51, 50, 49, 52, 49, 50, 32, 49, 50, 51, 49, 50, 57, 52, 50]
Original Data: "hello there 121321412 12312942"

()

5.2 Wrong Key, Exact Offset

let command = "cd stegano && cargo run output.png decoded.png 159028 decode 'invalid-password'";

if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

}

Finished dev [unoptimized + debuginfo] target(s) in 0.05s
Running `target/debug/stegano output.png decoded.png 159028 decode invalid-password`

It is a valid PNG file. Let's process it!
Encoded Payload: Chunk { size: 30, type: 0, data: [24, 4, 31, 31, 31, 65, 7, 27, 21, 19, 22, 83, 65, 83, 66, 64, 66, 80, 71, 66, 66, 65, 66, 65, 67, 80, 65, 74, 68, 83], crc: 529627956 }
Decoded Payload: [113, 106, 105, 126, 115, 40, 99, 54, 101, 114, 101, 32, 54, 60, 48, 36, 43, 62, 49, 35, 46, 40, 38, 108, 51, 49, 50, 57, 51, 60]
Original Data: "qji~s(c6ere 6<0$+>1#.(&l31293<"

()

5.3 Exact Key, Wrong Offset
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let command = "cd stegano && cargo run output.png decoded.png 159000 decode 'pass'";

if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

}

Finished dev [unoptimized + debuginfo] target(s) in 0.03s
Running `target/debug/stegano output.png decoded.png 159000 decode pass`

It is a valid PNG file. Let's process it!

Error reading chunk bytes: Reached end of file prematurely
Warning: Reached end of file prematurely while reading CRC

Encoded Payload: Chunk { size: 89, type: 221593541, data: [218, 90, 165, 243, 175, 218, 199, 174, 7, 167, 188, 81, 255, 63, 17, 225, 164, 44, 36, 53, 182, 112, 0, 30, 0, 0, 0, 0, 24, 4, 31, 31, 31, 65, 7, 27, 21, 19, 22, 83, 65, 83, 66, 64, 66, 80, 71, 66, 66, 65, 66, 65, 67, 80, 65, 74, 68, 83, 31, 145, 123, 52, 0, 0, 0, 73, 69, 78, 68, 174, 66, 96, 130, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], crc: 0 }
Decoded Payload: [170, 59, 214, 128, 223, 187, 180, 221, 119, 198, 207, 34, 143, 94, 98, 146, 212, 77, 87, 70, 198, 17, 115, 109, 112, 97, 115, 115, 104, 101, 108, 108, 111, 32, 116, 104, 101, 114, 101, 32, 49, 50, 49, 51, 50, 49, 52, 49, 50, 32, 49, 50, 51, 49, 50, 57, 52, 50, 108, 226, 11, 85, 115, 115, 112, 40, 54, 61, 52, 207, 49, 19, 242, 97, 115, 115, 112, 97, 115, 115, 112, 97, 115, 115, 112, 97, 115, 115, 112]
Original Data: "?;n\u{7fb}??w??\"?^b??MWF?\u{11}smpasshello there 121321412 12312942l?\u{b}Ussp(6=4?1\u{13}?asspasspasspassp"

()

5.4 Wrong Key, Wrong Offset

let command = "cd stegano && cargo run output.png decoded.png 159000 decode 'invalid'";

if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

}

Finished dev [unoptimized + debuginfo] target(s) in 0.05s
Running `target/debug/stegano output.png decoded.png 159000 decode invalid`

It is a valid PNG file. Let's process it!

Error reading chunk bytes: Reached end of file prematurely
Warning: Reached end of file prematurely while reading CRC
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Encoded Payload: Chunk { size: 89, type: 221593541, data: [218, 90, 165, 243, 175, 218, 199, 174, 7, 167, 188, 81, 255, 63, 17, 225, 164, 44, 36, 53, 182, 112, 0, 30, 0, 0, 0, 0, 24, 4, 31, 31, 31, 65, 7, 27, 21, 19, 22, 83, 65, 83, 66, 64, 66, 80, 71, 66, 66, 65, 66, 65, 67, 80, 65, 74, 68, 83, 31, 145, 123, 52, 0, 0, 0, 73, 69, 78, 68, 174, 66, 96, 130, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], crc: 0 }
Decoded Payload: [179, 52, 211, 146, 195, 179, 163, 199, 105, 209, 221, 61, 150, 91, 120, 143, 210, 77, 72, 92, 210, 25, 110, 104, 97, 108, 105, 100, 113, 106, 105, 126, 115, 40, 99, 114, 123, 101, 119, 63, 40, 55, 43, 46, 52, 49, 43, 43, 38, 40, 44, 55, 34, 60, 40, 46, 45, 61, 105, 240, 23, 93, 100, 105, 110, 63, 36, 34, 45, 202, 43, 14, 244, 97, 108, 105, 100, 105, 110, 118, 97, 108, 105, 100, 105, 110, 118, 97, 108]
Original Data: "?4Aó??i??=?[x??MH\\?\u{19}nhalidqji~s(cr{ew?(7+.41++&(,7\"<(.-=i?\u{17}]din?$\"-?+\u{e}?alidinvalidinval"

()
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