Chapter 3: Rust’s Cryptographic Strengths and
Vulnerabilities

Introduction

In this chapter, our exploration into Rust’s cryptographic landscape reveals a
canvas of libraries and tools designed to strengthen digital communications. At
the forefront stands the rustls library, a robust Rust implementation of TLS,
which serves as the cornerstone for securing SSL/TLS communications. Config-
uring a secure server involves creating an instance of ServerConfig and tailoring
it to specific needs, such as cipher suite preferences and key management. Rust’s
type safety and expressive syntax contribute to a more resilient implementation,
mitigating common pitfalls associated with memory safety.

Beyond the SSL/TLS domain, Rust empowers us to tackle the complexities
of mutual authentication using the openssl library. This involves crafting
a secure handshake process where both client and server authenticate each
other’s identity through X.509 certificates. Configuring an SSL acceptor involves
loading server certificates and private keys while establishing trust relationships
through CA certificates. Rust’s emphasis on ownership and lifetimes ensures
that cryptographic keys and sensitive data are managed securely throughout
the authentication process, reducing the risk of memory leaks and unauthorized
access.

As we navigate Rust’s cryptographic terrain, symmetric-key cryptography
emerges as a pivotal aspect, facilitated by libraries like crypto. Our exploration
takes us into the domain of the Advanced Encryption Standard (AES), where
data encryption and decryption become intricate dances with key sizes and
block modes. Rust’s focus on zero-cost abstractions and performance ensures
that cryptographic operations are executed efficiently, catering to the demands
of secure data transmission. Leveraging Rust’s concurrency model, we can
parallelize cryptographic tasks, enhancing throughput without compromising
security.

1. Cryptography in Rust

Before kicking off our exploration of cryptographic operations in Rust, it’s
essential to immerse ourselves in the fundamental concepts that make this
complex field. We’'ll traverse these concepts meticulously to ensure a robust
comprehension of the cryptographic landscape.

1.1 Encryption and Decryption

Encryption, a part of cryptography, surpasses mere confidentiality maintenance.
It represents a dual-purpose functionality, allowing data scrambling and subse-
quent unscrambling. At its core, encryption involves a cryptographic function,
that takes both data and a key as inputs, yielding either ciphertext or the original

https://github.com/rustls/rustls
https://docs.rs/rustls/latest/rustls/server/struct.ServerConfig.html
https://en.wikipedia.org/wiki/Mutual_authentication
https://en.wikipedia.org/wiki/OpenSSL
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/Certificate_authority
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/book/ch10-00-generics.html#generic-types-traits-and-lifetimes
https://en.wikipedia.org/wiki/Key_(cryptography)
https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://crates.io/crates/crypto
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Encryption
https://doc.rust-lang.org/beta/embedded-book/static-guarantees/zero-cost-abstractions.html
https://doc.rust-lang.org/book/ch16-00-concurrency.html
https://en.wikipedia.org/wiki/Encryption

cleartext. Symmetric algorithms work with a single key for both encryption and
decryption, while asymmetric counterparts work with different keys.

At the heart of our cryptographic exploration lies ChaCha20Poly1305 using the
chacha20poly1305 crate, a cipher notable for its simplicity and speed. The
underlying ChaCha20 stream cipher, employing a blend of add, rotate, and
XOR instructions (ARX), works seamlessly with the straightforward Poly1305
hash function. While not universally endorsed by standards bodies like NIST,
ChaCha20Poly1305 is widely adopted, being mandatory in the Transport Layer
Security (TLS) protocol.

use chachal0poly1305::{aead:: {Aead, KeyInit, OsRng}, ChaCha20Poly1305, Nonce, AeadCore};
use base6s::{Engine as _, engine::{self, general_purpose}, alphabet};
{

let key = ChaCha20Poly1305: : generate_key(&mut OsRng) ;

let cipher = ChaCha20Poly1305: : new(&key) ;

let nonce = ChaChal20Poly1305: : generate_nonce (&mut OsRng);

let plaintext = "Hello, Rust Cryptography!";

// Encryption

let ciphertext = cipher.encrypt(&nonce, plaintext.as_bytes())7;

let b64_ciphertext = general_purpose:: STANDARD.encode (&ciphertext) ;
println! ("Base64 Cipher Text: {}", b64_ciphertext);

// Decryption
let decrypted_text = cipher.decrypt(&nonce, &*ciphertext)?;
println! ("Decrypted Text: {}", String::from_utf8_lossy(&decrypted_text));

| Generate Non-|
I ce |

}

e +
| ChaCha20Poly1305 |
I |
| o —— + |
| | Generate | |
| | Key | |
| o + |
I I I
| \Y |
| o ——— + |
| | Create | |
| | Cipher | I
| Fom— + |
I I I
I v |
| Fom e + |
| |
| |

https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/ChaCha20-Poly1305
https://docs.rs/chacha20poly1305/latest/chacha20poly1305/index.html
https://en.wikipedia.org/wiki/Salsa20#ChaCha_variant
https://en.wikipedia.org/wiki/Poly1305
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security

| Encrypt Plaintext |
| using Key and Nonce |

o +
|
)
o +
| Encode |
| to Base64 |
o +
[
e +
[Print Base64 Ciphertext |
e +
|
V)
e +

I Decrypt Ciphertext |
| using Key and Nonce (same as |
I encryption phase) |

<

e +
[
\Y
e +
| Print Decrypted Plaintext I
T +
o +

Encryption works like a protector for information moving from one place to
another and a keeper of important data stored away. It waits to be unlocked for
later use or carefully watched for any signs of deceitful actions.

:dep chacha20poly1305 = {version="0.10.1"}
:dep base64 = {version="0.21.5"}

use chachal0poly1305::{aead:: {Aead, KeyInit, OsRng}, ChaCha20Poly1305, Nonce, AeadCore};
use base6s::{Engine as _, engine::{self, general_purpose}, alphabet};
{

let key = ChaCha20Polyl1305:: generate_key(&mut OsRng) ;

let cipher = ChaCha20Poly1305: : new(&key) ;

let nonce = ChaChal0Poly1305: : generate_nonce(&mut OsRng);

let plaintext = "Hello, Rust Cryptography!";

// Encryption

let ciphertext = cipher.encrypt(&nonce, plaintext.as_bytes())7?;

let b64_ciphertext = general_purpose:: STANDARD.encode (&ciphertext) ;
println! ("Base64 Cipher Text: {}", b64_ciphertext);

// Decryption

let decrypted_text = cipher.decrypt(&nonce, &*ciphertext)?;

println! ("Decrypted Text: {}", String::from_utf8_lossy(&decrypted_text));
}

Base64 Cipher Text: 10E/Ps31i63+RU81iZcoGYABZOpUqDHQMoVGpF4 jFk7w97FZPOXm7KadY=
Decrypted Text: Hello, Rust Cryptography!

O

Note that the coded message is printed as a string encoded in base64, and the
decoded message is displayed as a standard UTF-8 string.

1.2 Hashing

Hashing stands as a fundamental cryptographic process, operating as a unidi-
rectional function meticulously crafted to produce a fixed-length and inherently
unique output, all delegation upon a variable-length input. Its complex elegance
lies in the irreversible nature of the transformation, blocking any possibility of
figuring out the original input from the resultant hash value. This cryptographic
technique finds its power in various scenarios, particularly those where the
preservation of the original cleartext source becomes unnecessary for subsequent
processing or to guarantee the integrity of data. An exemplary manifestation of
secure practices within the domain of information protection is the storage of
hashed passwords, a practice ideally complemented by the introduction of salt -
an additional layer of randomized data. This cryptographic seasoning enhances
the unpredictability of the hash values, strengthening security and aligning with
best practices in safeguarding sensitive information.

In our exploration of hashing within the Rust programming language, we delve
into two illustrative examples. The first demonstrates the cracking of MD5
hashes through an offline dictionary attack using the md-5 crate, employing
Rust’s capabilities to generate and compare hash values systematically. The
second example showcases the implementation of berypt using the berypt crate,
an advanced algorithm enhancing the security of sensitive data such as passwords.
Rust’s versatility shines as it seamlessly integrates these cryptographic techniques,

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Salt_(cryptography)
https://en.wikipedia.org/wiki/Dictionary_attack
https://docs.rs/md-5
https://en.wikipedia.org/wiki/Bcrypt
https://github.com/Keats/rust-bcrypt

emphasizing its adaptability in addressing diverse security challenges.

1.2.1 Cracking MD5 Hashes Let’s examine the code for cracking MD5
hashes in Rust:

use mdb5::{Md5, Digest};
use hex_literal::hex;

let md5_hash hex! ("517e90f2a52e730701a5d7ec89ef0£40") ;

let wordlist = wec! ["p@ssword231", "12345656789", "password", "Password", "Mahmoud123"];

for password in wordlist {
let mut md5_hasher = Md5::new();
md5_hasher.update (password) ;
let md5_generated = md5_hasher.finalize();
let md5_hex_string: String = md5_generated.iter() .map(|bytel| format! ("{:02x}", byte)).c

println! ("[INFO] Trying hash {:7}", md5_hex_string);
if md5_generated[..] == md5_hash {
println! ("[INFO] Password found (MD5): {}", password) ;

}
}
P B +
MD5 Cracking
e +
| Provided |
| MD5 Hash |
TR — +
|
Vv
e +

| Create Vec |
of Passwords |

R — +

I

v
o +
| Iterate |
| through |
| Wordlist |
e +

|

Vv

| Compare with |
| Provided Hashl|

| |
| | MD5 Hash | |
| | Calculation | |
| o + |
| | |
| v |
| o + |
| | Convert to | |
| | Hex String | |
| o + |
| | |
| v |
| o —— + |
| | Print MD5 | |
| | Hash (Info) | |
| o + |
| | |
| v [
| o + |
| |
| |
| o + |
| | |
| v |
| o —— + |
	Print	
	Password if	
	Matched	
o +		
e +

In this Rust example, we start by defining variable md5_hash that hold the
target hash value. This hash were obtained post-exploitation, and the goal is to
discover the cleartext passwords that produced it. The code reads from a vector
of strings, generating MD5 hashes for each password and comparing them with
the target hash.

:dep md-5 = {version="0.10.6"}
:dep hex-literal = {version="0.4.1"}

use mdb5::{Md5, Digest};
use hez_Lliteral:: hex;

let md5_hash = hez! ("517e90f2a52e730701a5d7ec89ef0f40") ;

let wordlist = wec! ["p@ssword231", "12345656789", "password", "Password", "Mahmoud123"];

for password in wordlist {
let mut md5_hasher = Md5::new();
md5_hasher.update (password) ;
let md5_generated = md5_hasher.finalize();
let md5_hex_string: String = md5_generated.iter() .map(|bytel| format! ("{:02x}", byte)).c

println! ("[INFO] Trying hash {:7}", md5_hex_string);
if md5_generated[..] == md5_hash {
println! ("[INFO] Password found (MD5): {}", password);
}
}

[INFO] Trying hash "ab2d83f72c018c04bdab4551£7963e30"
[INFO] Trying hash "576333879d388b3537287481aa07f7c6"
[INFO] Trying hash "5f4dcc3b5aa765d61d8327deb882c£99"
[INFO] Trying hash "dc647eb65e6711e155375218212b3964"
[INFO] Trying hash "517e90f2a52e730701abd7ec89ef0£40"
[INFO] Password found (MD5): Mahmoud123

O

1.2.2 Implementing becrypt Now, let’s explore how to use berypt to encrypt
and authenticate passwords in Rust:

use berypt:: {DEFAULT_COST, hash, verify};
let stored_hash = "$2b$12$gPxgyRNV5G/DTaADM4rnuu3LcEbQeVdghdNaKobgmdiNeyNRmV2me" ;
let password = "p@sswordl123";

// Hash the password using bcrypt
let hashed = hash(password, DEFAULT_COST)?;

println! ("Generated Hash: {}", hashed);

// Verify the hashed password against the stored hash
if verify(password, &stored_hash)? {

println! ("[INFO] Authentication successful");
} else {

println! (" [INFO] Authentication failed");

O +
| Cost Generationml|
e ——————————_____ +
|
\'
oo scceeeseoes +

| Hash Function |
| (bcrypt algorithm) |

| |
| |
| |
I ey +	I
Y	

| Fomm oo + | |
| | Salt + Cost | | |
I Hommm e + I
| | | |
| v |

| Fomm e + | |
| | Generate Hash | | |
I S e + | I
| | | |
| v |

) dem—=mesessseesesessesesess +| |
|] Print Generated [

| | Hash Value [

| 4= +| I
| | | |
| v | |
) e +| |
| | Verify Hashed Password || |
| 4= +| I
| | | |
| v | |
) dem——memeseeeeseseesesesees +| |
| | Print Authentication Infol | |
) fe==m—mm—mssesssssssssssss +| I
e m o ____ +

In this Rust example, we utilize the bcrypt crate to implement berypt hashing

https://docs.rs/bcrypt

and authentication. The hash function generates a berypt hash from a cleartext
password, and verify is used to compare the generated hash with a stored
hash to authenticate the password. The cost factor ensures the algorithm’s
resource-intensive nature, enhancing security against brute-force attacks.

:dep bcrypt = {version="0.15.0"}

use bcerypt:: {DEFAULT_COST, hash, verify};
let stored_hash = "$2b$12$gPxgyRNV5G/DTaADM4rnuu3LcEbQeVdghdNaKobgmdiNeyNRmV2me" ;
let password = "p@sswordl123";

// Hash the password using becrypt
let hashed = hash(password, DEFAULT_COST)?;

println! ("Generated Hash: {}", hashed);

// Verify the hashed password against the stored hash
if verify(password, &stored_hash)? {
println! (" [INFO] Authentication successful");
} else {
println! ("[INFO] Authentication failed");
}

Generated Hash: $2b$12$TZj8KWVRZ2YarPsY8LdhA.hX3ezZIVjrgWA8y91EDypHVmTq/x.ES
[INFO] Authentication successful

O

These Rust examples provide insights into the practical application of hashing and
berypt in real-world scenarios. As we delve into Rust’s cryptographic features, a
deeper understanding of these concepts will empower your cryptographic journey.

1.3 Message Authentication

When we exchange messages, we want to be certain that the data hasn’t been
altered during transmission by someone unauthorized. Additionally, we need
to confirm that the message is genuinely from an authorized sender and not
a forgery by another entity. To tackle these concerns, we can utilize the ring
crate, which provides robust cryptographic functionalities. Specifically, we will
employ the HMAC (Hash-based Message Authentication Code) algorithm, a
widely accepted standard for ensuring message integrity and source authenticity.

https://docs.rs/bcrypt/latest/bcrypt/fn.hash.html
https://docs.rs/bcrypt/latest/bcrypt/fn.verify.html

The HMAC algorithm involves a hashing function and a shared secret key known
only to authorized parties. Attempting to forge a valid HMAC without possessing
this shared secret becomes highly improbable.

Implementing HMAC in Rust is straightforward with the ring crate. Let’s
explore an example that demonstrates how to achieve message authentication
securely.

use 7ing::hmac;

use 7ring::rand:: {SecureRandom, SystemRandom};

use rwng::error::Unspecified;

use ring::constant_time;

use hex;

const KEY_SIZE: usize = ring::digest::SHA256_OUTPUT_LEN;
const MESSAGE: &str = "Attach at 12:30";

fn generate_key(rng: &SystemRandom) -> Result<hmac::Key, Unspecified> {
let mut key_value = [0u8; KEY_SIZE];
rng.fill (&mut key_value)?;
Ok (hmac: :Key: : new(hmac: : HMAC_SHA256, &key_value))

}

fn generate_hmac(key: &hmac::Key, message: &[u8]) -> hmac::Tag {
hmac::sign(key, message)

}

fn verify_hmac(key: &hmac::Key, message: &[u8], received_tag: &[u8]) -> Result<(), Unspecif
let calculated_tag = generate_hmac(key, message);
constant_time::verify_slices_are_equal(calculated_tag.as_ref(), received_tag)

}

let rng = SystemRandom::new();

// Sender side
let key = generate_key(&rng) .expect("Failed to generate key");
let tag = generate_hmac(&key, MESSAGE.as_bytes());

// Simulate transmission (In a real implementation, this would be sent over the network)
// Receiver stde

let received_tag_hex = "69d2c7b6fbbfcaeb72a3172£4662601d1f16acfb46339639ac8c10c8da646314";
let received_tag = hex::decode(received_tag_hex) .expect("Failed to decode received tag");
match verify_hmac(&key, MESSAGE.as_bytes(), &received_tag) {

0k(()) => printin! ("[INFO] Message is authentic"),
Err(_) => printin! ("[INFO] Message may be tampered"),

10

Generate Key
using SystemRandom

Generate HMAC
using Key and
Message

Transmit Message
and HMAC (simulate
network transfer)

Decode Received
HMAC from Hex

Verify HMAC
using Key and
Received HMAC

11

| Print Result I
| (Authentic/Tampered) |

In this Rust example, the key variable represents the shared secret key. In a
real-world scenario, this key would be securely managed and shared between
authorized endpoints.

The verify_hmac function takes a key, a message, and the received HMAC as
parameters. It calculates the HMAC using the ring crate and compares it in
constant time to mitigate timing attacks. The subsequent statements simulate
the reception of a message, decoding the received HMAC from a hex string.

By employing Rust’s ring crate, we ensure a secure and efficient implemen-
tation of HMAC for message authentication, addressing concerns related to
data tampering and source legitimacy. This example simplifies the process for
clarity, focusing solely on HMAC functionality without incorporating network
communication aspects.

:dep ring = {version = "0.17.7"}
:dep hex = {version = "0.4.3"}

use 7eng::hmac;

use ring::rTand:: {SecureRandom, SystemRandom};
use ring::error::Unspecified;

use 7ring::constant_time;

use hex;

const KEY_SIZE: usize = ring::digest::SHA256_QOUTPUT_LEN;
const MESSAGE: &str = "Attach at 12:30";

fn generate_key(rng: &SystemRandom) -> Result<hmac::Key, Unspecified> {
let mut key_value = [0u8; KEY_SIZE];
rng.£ill (&mut key_value)?;
Ok (hmac: :Key: : new(hmac: : HMAC_SHA256, &key_value))

}

fn generate_hmac(key: &hmac::Key, message: &[u8]) -> hmac::Tag {
hmac::sign(key, message)

}

fn verify_hmac(key: &hmac::Key, message: &[u8], received_tag: &[u8]) -> Result<(), Unspecif
let calculated_tag = generate_hmac(key, message) ;
constant_time::verify_slices_are_equal(calculated_tag.as_ref(), received_tag)

12

let rng = SystemRandom::new() ;

// Sender side
let key = generate_key(&rng) .expect("Failed to generate key'");
let tag = generate_hmac(&key, MESSAGE.as_bytes());

// Simulate transmission (In a real implementation, this would be sent over the network)

// Receiver side
let received_tag_hex = "69d2c7b6fbbfcaeb72a3172£4662601d1f16acfb46339639ac8c10c8da64631d";
let received_tag = hez::decode(received_tag_hex) .expect("Failed to decode received tag");

match verify_hmac(&key, MESSAGE.as_bytes(), &received_tag) {
0k(()) => printin! ("[INFO] Message is authentic"),
Err(_) => printin! ("[INFO] Message may be tampered"),

}

[INFO] Message may be tampered

O

1.4 Symmetric Encryption

In the realm of Rust development, we embark on a journey into the world of
encryption, focusing our attention on the foundational concept of symmetric-
key encryption. This cryptographic approach employs a single secret key for
both the encryption and decryption processes. Rust, with its robust ecosystem,
facilitates the implementation of symmetric cryptography by supporting a variety
of common algorithms within its default or extended packages.

Let’s delve into a practical example within the Rust paradigm. Picture a scenario
where a breach has occurred in an organization, granting access to an e-commerce
web server and its backend database housing encrypted financial transactions.
The encryption algorithm in play is the Advanced Encryption Standard (AES),
specifically operating in Cipher Block Chaining (CBC) mode. The following Rust
code snippet illustrates two functions responsible for encrypting and decrypting
credit card information encrypted using AES in CBC mode.

use aes::cipher::{block_padding::Pkcs7, BlockDecryptMut, BlockEncryptMut, KeyIvInit};
use cbc:: {Encryptor, Decryptor};
use hex_literal::hex;

type Aes128CbcEnc = Encryptor<aes::Aesl128>;

13

https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Symmetric-key_algorithm

type Aes128CbcDec = Decryptor<aes::Aesl128>;

fn encrypt_cbc(key: &[u8], iv: &[u8], plaintext: &[u8]) -> Vec<u8> {
let mut buf = Vec::from(plaintext);
let cipher = Aes128CbcEnc::new(key.into(), iv.into());
cipher. encrypt_padded_vec_mut: : <Pkcs7>(&mut buf)

}

fn decrypt_cbc(key: &[u8], iv: &[u8], ciphertext: &[u8]) -> Vec<u8> {
let mut buf = Vec::from(ciphertext);
let cipher = Aes128CbcDec: :new(key.into(), iv.into());
cipher.decrypt_padded_vec_mut: : <Pkcs7>(&mut buf) .unwrap()

let key = [0x42; 16];
let iv = [0x24; 16];
let plaintext = *b"Hello, World!";

// Encrypt
let ciphertext = encrypt_cbc(&key, &iv, &plaintext);
println! ("Encrypted Text: {:?}\n", String::from_utf8_lossy(&ciphertext));

// Decrypt

let decrypted_text = decrypt_cbc(&key, &iv, &ciphertext);
println! ("Decrypted Text: {:7}", String::from_utf8_lossy(&decrypted_text));

Encrypt Process

14

Input: Plaintext

Pkcs7 Padding

Output: Ciphertext

v
o +
| |
| Print |
| Encrypted |
| Text |
o +

|

v

Decrypt Process

Input: Ciphertext

15

Pkcs7 Padding

Output: Decrypted Text

o +
v
Fomm +
| |
| Print |
| Decrypted |
| Text |
Fomm +

This code snippet features two functions: encrypt_cbc for encryption and
decrypt for decryption. The code validates the integrity of the ciphertext and
proceeds with the decryption process, considering the nuances of CBC mode
and ensuring proper padding removal.

In Rust, as in any language, such cryptographic implementations demand at-
tention to detail. The decrypt_padded_vec_mut function assumes certain con-
ditions that warrant explicit validation in a real-world scenario. The decrypt
function, the heart of the operation, orchestrates the decryption process, ensuring
adherence to AES specifications in CBC mode.

Understanding symmetric-key encryption proves invaluable in penetration testing
scenarios, where knowledge of algorithms and modes can enhance success. Rust,
with its syntax and constructs, empowers developers to navigate the intricacies
of encryption securely. Symmetric-key encryption, while efficient, poses key
management challenges, a characteristic where we must exercise attention in key
distribution and security protocols. Asymmetric cryptography, a topic yet to be
explored in this context, stands as a potential solution to the key distribution
difficulty, offering enhanced security measures against unauthorized access.

:dep aes = {version="0.8.3"}

16

:dep cbc = {version="0.1.2", features=["alloc"]}

use aes::cipher::{block_padding::Pkcs7, BlockDecryptMut, BlockEncryptMut, KeyIvInit};
use cbc:: {Encryptor, Decryptor};
use hezx_literal::hex;

type Aes128CbcEnc = Encryptor<aes::Aesl128>;
type Aes128CbcDec = Decryptor<aes:: Aesl128>;

fn encrypt_cbc(key: &[u8], iv: &[u8], plaintext: &[u8]) -> Vec<u8> {
let mut buf = Vec::from(plaintext);
let cipher = Aes128CbcEnc::new(key.into(), iv.into());
cipher. encrypt_padded_vec_mut: : <Pkcs7>(&mut buf)

}

fn decrypt_cbc(key: &[u8], iv: &[u8], ciphertext: &[u8]) -> Vec<u8> {
let mut buf = Vec::from(ciphertext) ;
let cipher = Aesi128CbcDec: :new(key.into(), iv.into());
cipher.decrypt_padded_vec_mut:: <Pkcs7>(&mut buf) .unwrap()

}

let key = [0x42; 16];
let iv = [0x24; 16];
let plaintext = *b"Hello, World!";

// Encrypt
let ciphertext = encrypt_cbc(&key, &iv, &plaintext);
println! ("Encrypted Text: {:7}\n", String::from_utf8_lossy(&ciphertext));

// Decrypt
let decrypted_text = decrypt_cbc(&key, &iv, &ciphertext);
println! ("Decrypted Text: {:7}", String::from_utf8_lossy(&decrypted_text));

Encrypted Text: "?7A7\u{1f}7_7)7?R\u{5}P777"

Decrypted Text: "Hello, World!"

1.5 Asymmetric Encryption

In the world of Rust programming, we delve into the world of asymmetric cryptog-
raphy; A domain that offers solutions to the challenges posed by symmetric-key
encryption. Unlike its counterpart, asymmetric cryptography employs two inter-
connected yet distinct keys: one accessible to the public, the other safeguarded
privately. The essence lies in the fact that data encrypted with the private
key is decipherable solely by the public key, and vice versa. This nature of the
private key ensures the confidentiality of data encrypted with the public key.

17

Additionally, the private key can authenticate a user by enabling them to sign
messages, decryptable only by the public key.

Now, one might consider the necessity of symmetric-key cryptography given
the guarantees provided by public-key encryption. The answer lies in speed;
public-key cryptography tends to be slower than its symmetric counterpart. To
strike a balance, organizations often adopt a hybrid approach, utilizing asym-
metric cryptography for initial communication negotiations and subsequently
establishing an encrypted channel for the exchange of a smaller symmetric key,
known as a session key.

Let’s delve into typical use cases of public-key cryptography in Rust, beginning
with encryption and signature validation. In the provided Rust code snippet,
we observe the implementation of asymmetric encryption and the validation
of digital signatures. The main function encompasses key pair generation,
encryption, decryption, and signature processes. It’s essential to note that
while this example is comprehensive, it simplifies the complexities inherent in a
practical implementation, which would typically include key exchange between
remote nodes.

use rsa:: {PkcslvlSEncrypt , RsaPrivateKey, RsaPublicKey};
use 7rsa::pkcsivib::{SigningKey, VerifyingKey};

use 7rsa::signature:: {Signer, Verifier};

use rand::thread_rng;

use rsa::sha2::{Digest, Sha256};

fn generate_key_pair() -> (RsaPrivateKey, RsaPublicKey) {
let mut rng = thread_rng();
let bits = 2048;
let private_key = RsaPrivateKey::new(&mut rng, bits).expect("Failed to generate private
let public_key = RsaPublicKey::from(&private_key) ;
(private_key, public_key)
}

fn encrypt_decrypt_message(public_key: &RsaPublicKey, private_key: &RsaPrivateKey, message:
// Encrypt with OAEP padding
let enc_data = public_key
.encrypt (&mut thread_rng(), PkcslvliBEncrypt, message)
.expect ("Encryption failed");
println! ("Ciphertext: {:7}\n", String::from_utf8_lossy(&enc_data));

// Decrypt with OAEP padding
let dec_data = private_key
.decrypt (Pkcs1vi5Encrypt, &enc_data)
.expect ("Decryption failed");
println! ("Plaintext: {:7X\n", String::from_utf8_lossy(&dec_data));

18

fn sign_verify_message(private_key: &RsaPrivateKey, public_key: &RsaPublicKey, message: & [ut
// Hash the message using SHA-256
let hash = Sha256::digest(message);

// Sign the hash with PKCS#1 v1.5 padding

let signing key = SigningKey::<Sha256>::new(private_key.clone());
let signature = signing_key.sign(&hash) ;

println! ("Signature: {:7} \n", signature);

// Verify

let verifying key = signing key.verifying key(Q);

verifying key.verify(&hash, &signature).expect('"failed to verify");
println! ("Signature verified");

}

let (private_key, public_key) = generate_key_pair();
let message = b"A super duper secret message!";

encrypt_decrypt_message (&public_key, &private_key, message);
sign_verify_message(&private_key, &public_key, message);

(private_key,
public_key)

I I
I |
| e + |
I | RNG | I
| +——t———t |
I | I
| v |
| e + |
| |RSAKey | |
| [Gen. | |
| +———t——+ |
I I I
| v |
| o= + |
| |RSAKey | |
| |[Pub. | |
I P + I
I I |
| v |
I I
I I

19

____________________________________ +

encrypt_decrypt_message |

I

o + |

| Encrypt with RSA | [

| (Public Key, OAEP) | I

= —————————— = —————————— + |

| I

v |

B ettt + |

| Print Ciphertext | |

| e + | !
I | UTF8 | I

I Ho—— o + I I

Fom e + |

I [

v |

R + |
| Decrypt with RSA |
| (Private Key, OAEP) |

B ettt + |

I I

v |

P eceemeeemes + |

| Print Plaintext | |

| +-mmme- + | |

| | UTF8 | | I

| tprmme + | |

o + |

____________________________________ +

v

o +
| Hash the Message |
[(SHA-256) |
o pomm +

|

v
o +
| Print Hash |
| Fo——m—- + |

20

I | UTF8 | |

| Sign Hash with RSA |
| (Private Key, |
| PKCS\#1 v1.5) I

I I
I Hom—mme + I
I | UTFSHEX | I
I tommm + I
e e e L T

I

A%
e e L e e e e +

| Verify Signature |
| (Public Key, |
| PKCS\#1 v1.5) |

e +
|
v
e +
| Print "Signature |
| Verified" |
e +
o +

This Rust program illustrates two fundamental functions in public-key cryptog-
raphy - encryption/decryption and message signing. The program begins by
generating a key pair, followed by operations such as encrypting a message with
the public key, decrypting it with the private key, and verifying the message
signature using the public key. This example serves as an introduction to the
essential concepts of asymmetric cryptography within the Rust programming
language.

:dep rsa = {version="0.9.6", features=["sha2"]}

:dep rand = {version="0.8.5"}

21

use rsa::{PkcslvlibEncrypt, RsaPrivateKey, RsaPublicKeyl;
use 7rsa::pkcsivib5::{SigningKey, VerifyingKey};

use Tsa::signature::{Signer, Verifier, Keypair};

use rand::thread_rng;

use 7sa::sha2::{Digest, Sha256};

fn generate_key_pair() -> (RsaPrivateKey, RsaPublicKey) {
let mut rng = thread_rng();
let bits = 2048;
let private_key = RsaPrivateKey::new(&mut rng, bits).expect("Failed to generate private
let public_key = RsaPublicKey::from(&private_key) ;
(private_key, public_key)
}

fn encrypt_decrypt_message(public_key: &RsaPublicKey, private_key: &RsaPrivateKey, message:
// Encrypt with OAEP padding
let enc_data = public_key
.encrypt (&mut thread_rng(), PkcslviBEncrypt, message)
.expect ("Encryption failed");
println! ("Ciphertext: {:?}\n", String::from_utf8_lossy(&enc_data));

// Decrypt with OAEP padding
let dec_data = private_key
.decrypt (Pkcs1lvibEncrypt, &enc_data)
.expect ("Decryption failed");
println! ("Plaintext: {:7}\n", String::from_utf8_lossy(&dec_data));
}

fn sign_verify_message(private_key: &RsaPrivateKey, public_key: &RsaPublicKey, message: &[u
// Hash the message using SHA-256
let hash = Sha256::digest (message) ;

// Sign the hash with PKCS#1 vl1.5 padding
let signing key = SigningKey::<Sha256>::new(private_key.clone());
let signature = signing key.sign(&hash);

println! ("Signature: {:7} \n", signature);

// Verify

let verifying_key = signing key.verifying key();

verifying key.verify(&hash, &signature).expect('"failed to verify");
println! ("Signature verified");

}

let (private_key, public_key) = generate_key_pair();
let message = b"A super duper secret message!";

22

encrypt_decrypt_message (&public_key, &private_key, message);
sign_verify_message(&private_key, &public_key, message) ;

Ciphertext: "7777=e?)?\u{1f\u{156}y?Qj77-7777_-77V77i?\u{3}Q79g\u{16}7777R?\u{13} 7]1\u{6}o?
Plaintext: "A super duper secret message!"

Signature: Signature("08237351B51C72F47641724FAB834BA9FAESBEC23C62D2A69AE1BAFAEE4EBO38D44EDS

Signature verified

23

	Chapter 3: Rust's Cryptographic Strengths and Vulnerabilities
	Introduction
	1. Cryptography in Rust
	1.1 Encryption and Decryption
	1.2 Hashing
	1.3 Message Authentication
	1.4 Symmetric Encryption
	1.5 Asymmetric Encryption

