over $\mathbf{x} \in \mathbb{R}^n$. This says the points $(\mathbf{A}_i \mathbf{x} + \mathbf{b}_i, \mathbf{c}_i^T \mathbf{x} + d_i)$ live in the second order cone (ice cream cone, Lorentz cone, quadratic cone) \begin{eqnarray*} \mathbf{Q}^{n+1} = \{(\mathbf{x}, t): \|\mathbf{x}\|_2 \le t\} \end{eqnarray*} in $\mathbb{R}^{n+1}$.
QP is a special case of SOCP. Why?
When $\mathbf{c}_i = \mathbf{0}$ for $i=1,\ldots,m$, SOCP is equivalent to a quadratically constrained quadratic program (QCQP)
where $\mathbf{P}_i \in \mathbf{S}_+^n$, $i=0,1,\ldots,m$. Why?
A point $\mathbf{x} \in \mathbb{R}^{n+1}$ belongs to the second order cone $\mathbf{Q}^{n+1}$ if and only if \begin{eqnarray*} \begin{pmatrix} \mathbf{I}_{n-2} & 0 & 0 \\ 0 & - 1/\sqrt 2 & 1 / \sqrt 2 \\ 0 & 1/\sqrt 2 & 1 / \sqrt 2 \end{pmatrix} \mathbf{x} \end{eqnarray*} belongs to the rotated quadratic cone $\mathbf{Q}_r^{n+1}$.
Gurobi allows users to input second order cone constraint and quadratic constraints directly.
Mosek allows users to input second order cone constraint, quadratic constraints, and rotated quadratic cone constraint directly.
Following sets are (rotated) quadratic cone representable sets:
(Absolute values) $|x| \le t \Leftrightarrow (x, t) \in \mathbf{Q}^2$.
Euclidean norms) $\|\mathbf{x}\|_2 \le t \Leftrightarrow (\mathbf{x}, t) \in \mathbf{Q}^{n+1}$.
(Sume of squares) $\|\mathbf{x}\|_2^2 \le t \Leftrightarrow (\mathbf{x}, t, 1/2) \in \mathbf{Q}_r^{n+2}$.
(Ellipsoid) For $\mathbf{P} \in \mathbf{S}_+^n$ and if $\mathbf{P} = \mathbf{F}^T \mathbf{F}$, where $\mathbf{F} \in \mathbf{R}^{n \times k}$, then
\begin{eqnarray*} & & (1/2) \mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{c}^T \mathbf{x} + r \le 0 \\ &\Leftrightarrow& \mathbf{x}^T \mathbf{P} \mathbf{x} \le 2t, t + \mathbf{c}^T \mathbf{x} + r = 0 \\ &\Leftrightarrow& (\mathbf{F} \mathbf{x}, t, 1) \in \mathbf{Q}_r^{k+2}, t + \mathbf{c}^T \mathbf{x} + r = 0. \end{eqnarray*} Similarly, \begin{eqnarray*} \|\mathbf{F} (\mathbf{x} - \mathbf{c})\|_2 \le t \Leftrightarrow (\mathbf{y}, t) \in \mathbf{Q}^{n+1}, \mathbf{y} = \mathbf{F}(\mathbf{x} - \mathbf{c}). \end{eqnarray*} This fact shows that QP and QCQP are instances of SOCP.
(Second order cones) $\|\mathbf{A} \mathbf{x} + \mathbf{b}\|_2 \le \mathbf{c}^T \mathbf{x} + d \Leftrightarrow (\mathbf{A} \mathbf{x} + \mathbf{b}, \mathbf{c}^T \mathbf{x} + d) \in \mathbf{Q}^{m+1}$.
(Simple polynomial sets)
\begin{eqnarray*} \{(t, x): |t| \le \sqrt x, x \ge 0\} &=& \{ (t,x): (t, x, 1/2) \in \mathbf{Q}_r^3\} \\ \{(t, x): t \ge x^{-1}, x \ge 0\} &=& \{ (t,x): (\sqrt 2, x, t) \in \mathbf{Q}_r^3\} \\ \{(t, x): t \ge x^{3/2}, x \ge 0\} &=& \{ (t,x): (x, s, t), (s, x, 1/8) \in \mathbf{Q}_r^3\} \\ \{(t, x): t \ge x^{5/3}, x \ge 0\} &=& \{ (t,x): (x, s, t), (s, 1/8, z), (z, s, x) \in \mathbf{Q}_r^3\} \\ \{(t, x): t \ge x^{(2k-1)/k}, x \ge 0\}&,& k \ge 2, \text{can be represented similarly} \\ \{(t, x): t \ge x^{-2}, x \ge 0\} &=& \{ (t,x): (s, t, 1/2), (\sqrt 2, x, s) \in \mathbf{Q}_r^3\} \\ \{(t, x, y): t \ge |x|^3/y^2, y \ge 0\} &=& \{ (t,x,y): (x, z) \in \mathbf{Q}^2, (z, y/ 2, s), (s, t/2, z) \in \mathbf{Q}_r^3\} \end{eqnarray*}
\begin{eqnarray*} \mathbf{K}_{\text{gm}}^n = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1}: (x_1 x_2 \cdots x_n)^{1/n} \ge t, \mathbf{x} \succeq \mathbf{0}\} \end{eqnarray*} can be represented by rotated quadratic cones. For example, \begin{eqnarray*} \mathbf{K}_{\text{gm}}^2 &=& \{(x_1, x_2, t): \sqrt{x_1 x_2} \ge t, x_1, x_2 \ge 0\} \\ &=& \{(x_1, x_2, t): (\sqrt 2 t, x_1, x_2) \in \mathbf{Q}_r^3\}. \end{eqnarray*}
\begin{eqnarray*} & & \left( n^{-1} \sum_{i=1}^n x_i^{-1} \right)^{-1} \ge t, \mathbf{x} \succeq \mathbf{0} \\ &\Leftrightarrow& n^{-1} \sum_{i=1}^n x_i^{-1} \le y, \mathbf{x} \succeq \mathbf{0} \\ &\Leftrightarrow& x_i z_i \ge 1, \sum_{i=1}^n z_i = ny, \mathbf{x} \succeq \mathbf{0} \\ &\Leftrightarrow& 2 x_i z_i \ge 2, \sum_{i=1}^n z_i = ny, \mathbf{x} \succeq \mathbf{0}, \mathbf{z} \succeq \mathbf{0} \\ &\Leftrightarrow& (\sqrt 2, x_i, z_i) \in \mathbf{Q}_r^3, \mathbf{0}^T \mathbf{z} = ny, \mathbf{x} \succeq \mathbf{0}, \mathbf{z} \succeq \mathbf{0}. \end{eqnarray*}
\begin{eqnarray*} \mathbf{K}^{p/q} = \{(x, t): x^{p/q} \le t, x \ge 0\} = \{(x,t): (t\mathbf{1}_q, \mathbf{1}_{p-q}, x) \in \mathbf{K}_{\text{gm}}^p\}. \end{eqnarray*}
\begin{eqnarray*} \mathbf{K}^{-p/q} = \{(x, t): x^{-p/q} \le t, x \ge 0\} = \{(x,t): (x\mathbf{1}_p, t\mathbf{1}_{q}, 1) \in \mathbf{K}_{\text{gm}}^{p+q}\}. \end{eqnarray*}
\begin{eqnarray*} \mathbf{K}_{\alpha}^{n+1} = \left\{ (\mathbf{x},y) \in \mathbb{R}_+^n \times \mathbb{R}: |y| \le \prod_{j=1}^n x_j^{p_j/q_j} \right\}, \end{eqnarray*} where $p_j, q_j$ are integers satisfying $0 < p_j \le q_j$ and $\sum_{j=1}^n p_j/q_j = 1$. Let $\beta = \text{lcm}(q_1,\ldots, q_n)$ and \begin{eqnarray*} s_j = \beta \sum_{k=1}^j \frac{p_k}{q_k}, \quad j=1,\ldots,n-1. \end{eqnarray*} Then it can be represented as \begin{eqnarray*} & & |y| \le (z_1 z_2 \cdots z_\beta)^{1/q} \\ & & z_1 = \cdots = z_{s_1} = x_1, \quad z_{s_1+1} = \cdots = z_{s_2} = x_2, \quad z_{s_{n-1}+1} = \cdots = z_\beta = x_n. \end{eqnarray*}
References for above examples: Papers Lobo, Vandergerghe, Boyd, Lebret (1998), Alizadeh and Goldfarb (2003), and book by Ben-Tal and Nemirovski (2001). Now our catalogue of SOCP terms includes all above terms.
Most of these function are implemented as the built-in function in the convex optimization modeling language cvx (for Matlab) or Convex.jl (for Julia).
where $\beta_g$ is the subvector of regression coefficients for group $g$, and $w_g$ are fixed group weights. This is equivalent to the SOCP \begin{eqnarray*} &\text{minimize}& \frac 12 \beta^T \mathbf{X}^T \left(\mathbf{I} - \frac{\mathbf{1} \mathbf{1}^T}{n} \right) \mathbf{X} \beta + \\ & & \quad \mathbf{y}^T \left(\mathbf{I} - \frac{\mathbf{1} \mathbf{1}^T}{n} \right) \mathbf{X} \beta + \lambda \sum_{g=1}^G w_g t_g \\ &\text{subject to}& \|\beta_g\|_2 \le t_g, \quad g = 1,\ldots, G, \end{eqnarray*} in variables $\beta$ and $t_1,\ldots,t_G$.
achieves sparsity at both group and individual coefficient level and can be solved by SOCP as well.
by SOCP. This variant generates the same solution path as lasso (why?) but simplifies the choice of $\lambda$.
can be formulated as a SOCP. Why? For instance, $\ell_{3/2}$ regression combines advantage of both robust $\ell_1$ regression and least squares.