最常见的方法是给DataFrame构造函数的index参数传递两个或更多的数组
s = Series(data = np.random.randint(0,150,size = 6),
index =[['张三','张三','李四','李四','Michael','Michael'],['期中','期末','期中','期末','期中','期末']] )
s
张三 期中 40 期末 79 李四 期中 88 期末 109 Michael 期中 146 期末 51 dtype: int64
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
df = DataFrame(data = np.random.randint(0,150,size = (6,3)),
columns = ['Python','Java','PHP'],
index = [['张三','张三','李四','李四','Michael','Michael'],['期中','期末','期中','期末','期中','期末']])
#隐式创建
df
Python | Java | PHP | ||
---|---|---|---|---|
张三 | 期中 | 87 | 65 | 129 |
期末 | 147 | 31 | 120 | |
李四 | 期中 | 38 | 31 | 74 |
期末 | 38 | 86 | 99 | |
Michael | 期中 | 107 | 123 | 46 |
期末 | 21 | 149 | 72 |
df2 = DataFrame(data = np.random.randint(0,150,size = (6,4)),
columns = ["Spring",'Summer','Autumn','Winter'],
index = pd.MultiIndex.from_arrays([['张三','张三','李四','李四','Michael','Michael'],['期中','期末','期中','期末','期中','期末']]))
df2
Spring | Summer | Autumn | Winter | ||
---|---|---|---|---|---|
张三 | 期中 | 33 | 61 | 104 | 117 |
期末 | 45 | 20 | 94 | 61 | |
李四 | 期中 | 39 | 94 | 144 | 4 |
期末 | 38 | 67 | 113 | 111 | |
Michael | 期中 | 33 | 5 | 39 | 135 |
期末 | 117 | 87 | 5 | 118 |
df3 = DataFrame(data = np.random.randint(0,150,size = (6,4)),
columns = ["Spring",'Summer','Autumn','Winter'],
index = pd.MultiIndex.from_tuples([('张三','期中'),('张三','期末'),('李四','期中'),('李四','期末'),('Sara','期中'),('Sara','期末')]))
df3
Spring | Summer | Autumn | Winter | ||
---|---|---|---|---|---|
张三 | 期中 | 31 | 57 | 124 | 34 |
期末 | 134 | 20 | 60 | 55 | |
李四 | 期中 | 33 | 70 | 128 | 47 |
期末 | 9 | 55 | 101 | 117 | |
Sara | 期中 | 14 | 114 | 146 | 147 |
期末 | 108 | 114 | 73 | 86 |
使用product
最简单,推荐使用
df4 = DataFrame(data = np.random.randint(0,150,size = (12,4)),
columns = ["Spring",'Summer','Autumn','Winter'],
index = pd.MultiIndex.from_product([['张三','Sara','Lisa'],['middle','end'],list('AB')]))
df4
Spring | Summer | Autumn | Winter | |||
---|---|---|---|---|---|---|
张三 | middle | A | 61 | 58 | 64 | 105 |
B | 118 | 121 | 8 | 81 | ||
end | A | 135 | 147 | 141 | 107 | |
B | 97 | 29 | 31 | 56 | ||
Sara | middle | A | 111 | 90 | 9 | 128 |
B | 40 | 95 | 149 | 44 | ||
end | A | 9 | 8 | 97 | 0 | |
B | 70 | 16 | 60 | 10 | ||
Lisa | middle | A | 23 | 142 | 65 | 67 |
B | 75 | 113 | 122 | 0 | ||
end | A | 126 | 15 | 138 | 28 | |
B | 125 | 118 | 1 | 110 |
============================================
练习8:
============================================
除了行索引index,列索引columns也能用同样的方法创建多层索引
df5 = DataFrame(data = np.random.randint(0,150,size = (4,12)),
columns = pd.MultiIndex.from_product([['张三','Sara','Lisa'],['middle','end'],list('AB')]),
index = ["Spring",'Summer','Autumn','Winter'])
df5
张三 | Sara | Lisa | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
middle | end | middle | end | middle | end | |||||||
A | B | A | B | A | B | A | B | A | B | A | B | |
Spring | 131 | 7 | 14 | 21 | 119 | 72 | 92 | 139 | 132 | 63 | 142 | 56 |
Summer | 105 | 118 | 122 | 19 | 17 | 133 | 100 | 36 | 120 | 20 | 129 | 136 |
Autumn | 100 | 121 | 32 | 53 | 109 | 57 | 104 | 125 | 96 | 68 | 76 | 89 |
Winter | 73 | 16 | 54 | 42 | 74 | 48 | 129 | 25 | 56 | 39 | 28 | 113 |
【重要】对于Series来说,直接中括号[]与使用.loc()完全一样,因此,推荐使用中括号索引和切片。
s
张三 期中 40 期末 79 李四 期中 88 期末 109 Michael 期中 146 期末 51 dtype: int64
#多层索引进行切片时,有些汉字,或者英文,不识别,运行异常,并不是代码的问题,自身的bug
s.index = pd.MultiIndex.from_product([['张三','李四','静静'],['期中','期末']])
s
张三 期中 40 期末 79 李四 期中 88 期末 109 静静 期中 146 期末 51 dtype: int64
s['张三':'李四']
张三 期中 40 期末 79 李四 期中 88 期末 109 dtype: int64
(1) 索引
s['张三']
期中 40 期末 79 dtype: int64
s['张三','期中']
40
#多层索引,有层的概念
s.loc['期中']
--------------------------------------------------------------------------- KeyError Traceback (most recent call last) /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py in _has_valid_type(self, key, axis) 1433 if not ax.contains(key): -> 1434 error() 1435 except TypeError as e: /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py in error() 1428 raise KeyError("the label [%s] is not in the [%s]" % -> 1429 (key, self.obj._get_axis_name(axis))) 1430 KeyError: 'the label [期中] is not in the [index]' During handling of the above exception, another exception occurred: KeyError Traceback (most recent call last) <ipython-input-14-52a5135a3116> in <module>() ----> 1 s.loc['期中'] /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py in __getitem__(self, key) 1326 else: 1327 key = com._apply_if_callable(key, self.obj) -> 1328 return self._getitem_axis(key, axis=0) 1329 1330 def _is_scalar_access(self, key): /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py in _getitem_axis(self, key, axis) 1549 1550 # fall thru to straight lookup -> 1551 self._has_valid_type(key, axis) 1552 return self._get_label(key, axis=axis) 1553 /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py in _has_valid_type(self, key, axis) 1440 raise 1441 except: -> 1442 error() 1443 1444 return True /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py in error() 1427 "key") 1428 raise KeyError("the label [%s] is not in the [%s]" % -> 1429 (key, self.obj._get_axis_name(axis))) 1430 1431 try: KeyError: 'the label [期中] is not in the [index]'
s.loc['李四','期末']
109
(2) 切片
s.iloc[0:3]
张三 期中 40 期末 79 李四 期中 88 dtype: int64
s['张三':'Michael']
--------------------------------------------------------------------------- UnsortedIndexError Traceback (most recent call last) <ipython-input-20-bc2dcaf84d2d> in <module>() ----> 1 s['张三':'Michael'] /usr/local/lib/python3.5/dist-packages/pandas/core/series.py in __getitem__(self, key) 640 key = check_bool_indexer(self.index, key) 641 --> 642 return self._get_with(key) 643 644 def _get_with(self, key): /usr/local/lib/python3.5/dist-packages/pandas/core/series.py in _get_with(self, key) 645 # other: fancy integer or otherwise 646 if isinstance(key, slice): --> 647 indexer = self.index._convert_slice_indexer(key, kind='getitem') 648 return self._get_values(indexer) 649 elif isinstance(key, ABCDataFrame): /usr/local/lib/python3.5/dist-packages/pandas/core/indexes/base.py in _convert_slice_indexer(self, key, kind) 1405 else: 1406 try: -> 1407 indexer = self.slice_indexer(start, stop, step, kind=kind) 1408 except Exception: 1409 if is_index_slice: /usr/local/lib/python3.5/dist-packages/pandas/core/indexes/base.py in slice_indexer(self, start, end, step, kind) 3348 """ 3349 start_slice, end_slice = self.slice_locs(start, end, step=step, -> 3350 kind=kind) 3351 3352 # return a slice /usr/local/lib/python3.5/dist-packages/pandas/core/indexes/multi.py in slice_locs(self, start, end, step, kind) 1908 # This function adds nothing to its parent implementation (the magic 1909 # happens in get_slice_bound method), but it adds meaningful doc. -> 1910 return super(MultiIndex, self).slice_locs(start, end, step, kind=kind) 1911 1912 def _partial_tup_index(self, tup, side='left'): /usr/local/lib/python3.5/dist-packages/pandas/core/indexes/base.py in slice_locs(self, start, end, step, kind) 3536 start_slice = None 3537 if start is not None: -> 3538 start_slice = self.get_slice_bound(start, 'left', kind) 3539 if start_slice is None: 3540 start_slice = 0 /usr/local/lib/python3.5/dist-packages/pandas/core/indexes/multi.py in get_slice_bound(self, label, side, kind) 1879 if not isinstance(label, tuple): 1880 label = label, -> 1881 return self._partial_tup_index(label, side=side) 1882 1883 def slice_locs(self, start=None, end=None, step=None, kind=None): /usr/local/lib/python3.5/dist-packages/pandas/core/indexes/multi.py in _partial_tup_index(self, tup, side) 1915 'Key length (%d) was greater than MultiIndex' 1916 ' lexsort depth (%d)' % -> 1917 (len(tup), self.lexsort_depth)) 1918 1919 n = len(tup) UnsortedIndexError: 'Key length (1) was greater than MultiIndex lexsort depth (0)'
s.loc['张三':'Michael']
--------------------------------------------------------------------------- UnsortedIndexError Traceback (most recent call last) <ipython-input-21-c37724b918c9> in <module>() ----> 1 s.loc['张三':'Michael'] /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py in __getitem__(self, key) 1326 else: 1327 key = com._apply_if_callable(key, self.obj) -> 1328 return self._getitem_axis(key, axis=0) 1329 1330 def _is_scalar_access(self, key): /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py in _getitem_axis(self, key, axis) 1504 if isinstance(key, slice): 1505 self._has_valid_type(key, axis) -> 1506 return self._get_slice_axis(key, axis=axis) 1507 elif is_bool_indexer(key): 1508 return self._getbool_axis(key, axis=axis) /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py in _get_slice_axis(self, slice_obj, axis) 1354 labels = obj._get_axis(axis) 1355 indexer = labels.slice_indexer(slice_obj.start, slice_obj.stop, -> 1356 slice_obj.step, kind=self.name) 1357 1358 if isinstance(indexer, slice): /usr/local/lib/python3.5/dist-packages/pandas/core/indexes/base.py in slice_indexer(self, start, end, step, kind) 3348 """ 3349 start_slice, end_slice = self.slice_locs(start, end, step=step, -> 3350 kind=kind) 3351 3352 # return a slice /usr/local/lib/python3.5/dist-packages/pandas/core/indexes/multi.py in slice_locs(self, start, end, step, kind) 1908 # This function adds nothing to its parent implementation (the magic 1909 # happens in get_slice_bound method), but it adds meaningful doc. -> 1910 return super(MultiIndex, self).slice_locs(start, end, step, kind=kind) 1911 1912 def _partial_tup_index(self, tup, side='left'): /usr/local/lib/python3.5/dist-packages/pandas/core/indexes/base.py in slice_locs(self, start, end, step, kind) 3536 start_slice = None 3537 if start is not None: -> 3538 start_slice = self.get_slice_bound(start, 'left', kind) 3539 if start_slice is None: 3540 start_slice = 0 /usr/local/lib/python3.5/dist-packages/pandas/core/indexes/multi.py in get_slice_bound(self, label, side, kind) 1879 if not isinstance(label, tuple): 1880 label = label, -> 1881 return self._partial_tup_index(label, side=side) 1882 1883 def slice_locs(self, start=None, end=None, step=None, kind=None): /usr/local/lib/python3.5/dist-packages/pandas/core/indexes/multi.py in _partial_tup_index(self, tup, side) 1915 'Key length (%d) was greater than MultiIndex' 1916 ' lexsort depth (%d)' % -> 1917 (len(tup), self.lexsort_depth)) 1918 1919 n = len(tup) UnsortedIndexError: 'Key length (1) was greater than MultiIndex lexsort depth (0)'
s2 = Series(data = np.random.randint(0,150,size = 6),index = pd.MultiIndex.from_product([list('ABC'),['e','f']]))
s2
A e 46 f 93 B e 76 f 77 C e 61 f 125 dtype: int64
s2['A':'C']
A e 46 f 93 B e 76 f 77 C e 61 f 125 dtype: int64
s2.loc['A':'B']
A e 46 f 93 B e 76 f 77 dtype: int64
(1) 可以直接使用列名称来进行列索引
df3
Spring | Summer | Autumn | Winter | ||
---|---|---|---|---|---|
张三 | 期中 | 31 | 57 | 124 | 34 |
期末 | 134 | 20 | 60 | 55 | |
李四 | 期中 | 33 | 70 | 128 | 47 |
期末 | 9 | 55 | 101 | 117 | |
Sara | 期中 | 14 | 114 | 146 | 147 |
期末 | 108 | 114 | 73 | 86 |
df3['Spring']['张三','期中']
31
#DataFrame多层索引和之前索引类似
#df [] 代表着列索引
df3['Spring','李四']
--------------------------------------------------------------------------- KeyError Traceback (most recent call last) /usr/local/lib/python3.5/dist-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance) 2441 try: -> 2442 return self._engine.get_loc(key) 2443 except KeyError: pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5280)() pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20523)() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20477)() KeyError: ('Spring', '李四') During handling of the above exception, another exception occurred: KeyError Traceback (most recent call last) <ipython-input-42-fa2185c7b00c> in <module>() ----> 1 df3['Spring','李四'] /usr/local/lib/python3.5/dist-packages/pandas/core/frame.py in __getitem__(self, key) 1962 return self._getitem_multilevel(key) 1963 else: -> 1964 return self._getitem_column(key) 1965 1966 def _getitem_column(self, key): /usr/local/lib/python3.5/dist-packages/pandas/core/frame.py in _getitem_column(self, key) 1969 # get column 1970 if self.columns.is_unique: -> 1971 return self._get_item_cache(key) 1972 1973 # duplicate columns & possible reduce dimensionality /usr/local/lib/python3.5/dist-packages/pandas/core/generic.py in _get_item_cache(self, item) 1643 res = cache.get(item) 1644 if res is None: -> 1645 values = self._data.get(item) 1646 res = self._box_item_values(item, values) 1647 cache[item] = res /usr/local/lib/python3.5/dist-packages/pandas/core/internals.py in get(self, item, fastpath) 3588 3589 if not isnull(item): -> 3590 loc = self.items.get_loc(item) 3591 else: 3592 indexer = np.arange(len(self.items))[isnull(self.items)] /usr/local/lib/python3.5/dist-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance) 2442 return self._engine.get_loc(key) 2443 except KeyError: -> 2444 return self._engine.get_loc(self._maybe_cast_indexer(key)) 2445 2446 indexer = self.get_indexer([key], method=method, tolerance=tolerance) pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5280)() pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20523)() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20477)() KeyError: ('Spring', '李四')
df3.index = pd.MultiIndex.from_product([list('ABC'),list('ab')])
df3
Spring | Summer | Autumn | Winter | ||
---|---|---|---|---|---|
A | a | 31 | 57 | 124 | 34 |
b | 134 | 20 | 60 | 55 | |
B | a | 33 | 70 | 128 | 47 |
b | 9 | 55 | 101 | 117 | |
C | a | 14 | 114 | 146 | 147 |
b | 108 | 114 | 73 | 86 |
#使用切片
df3['A':'B']
Spring | Summer | Autumn | Winter | ||
---|---|---|---|---|---|
A | a | 31 | 57 | 124 | 34 |
b | 134 | 20 | 60 | 55 | |
B | a | 33 | 70 | 128 | 47 |
b | 9 | 55 | 101 | 117 |
(2) 使用行索引需要用loc()等函数
【极其重要】推荐使用loc()函数
注意在对行索引的时候,若一级行索引还有多个,对二级行索引会遇到问题!也就是说,无法直接对二级索引进行索引,必须让二级索引变成一级索引后才能对其进行索引!
df3.loc['A']
Spring | Summer | Autumn | Winter | |
---|---|---|---|---|
a | 31 | 57 | 124 | 34 |
b | 134 | 20 | 60 | 55 |
df3.loc['B','a']
Spring 33 Summer 70 Autumn 128 Winter 47 Name: (B, a), dtype: int64
df3.loc['a']
--------------------------------------------------------------------------- KeyError Traceback (most recent call last) /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py in _has_valid_type(self, key, axis) 1433 if not ax.contains(key): -> 1434 error() 1435 except TypeError as e: /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py in error() 1428 raise KeyError("the label [%s] is not in the [%s]" % -> 1429 (key, self.obj._get_axis_name(axis))) 1430 KeyError: 'the label [a] is not in the [index]' During handling of the above exception, another exception occurred: KeyError Traceback (most recent call last) <ipython-input-51-178fc9e30662> in <module>() ----> 1 df3.loc['a'] /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py in __getitem__(self, key) 1326 else: 1327 key = com._apply_if_callable(key, self.obj) -> 1328 return self._getitem_axis(key, axis=0) 1329 1330 def _is_scalar_access(self, key): /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py in _getitem_axis(self, key, axis) 1549 1550 # fall thru to straight lookup -> 1551 self._has_valid_type(key, axis) 1552 return self._get_label(key, axis=axis) 1553 /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py in _has_valid_type(self, key, axis) 1440 raise 1441 except: -> 1442 error() 1443 1444 return True /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py in error() 1427 "key") 1428 raise KeyError("the label [%s] is not in the [%s]" % -> 1429 (key, self.obj._get_axis_name(axis))) 1430 1431 try: KeyError: 'the label [a] is not in the [index]'
df3.loc[['A','B']]
Spring | Summer | Autumn | Winter | ||
---|---|---|---|---|---|
A | a | 31 | 57 | 124 | 34 |
b | 134 | 20 | 60 | 55 | |
B | a | 33 | 70 | 128 | 47 |
b | 9 | 55 | 101 | 117 |
df3.loc['A':'B']
Spring | Summer | Autumn | Winter | ||
---|---|---|---|---|---|
A | a | 31 | 57 | 124 | 34 |
b | 134 | 20 | 60 | 55 | |
B | a | 33 | 70 | 128 | 47 |
b | 9 | 55 | 101 | 117 |
df3.iloc[0:3]
Spring | Summer | Autumn | Winter | ||
---|---|---|---|---|---|
A | a | 31 | 57 | 124 | 34 |
b | 134 | 20 | 60 | 55 | |
B | a | 33 | 70 | 128 | 47 |
============================================
练习9:
分析比较Series和DataFrame各种索引的方式,熟练掌握.loc()方法
假设张三再一次在期中考试的时候因为特殊原因放弃英语考试,如何实现?
============================================
stack()
unstack()
小技巧】使用stack()的时候,level等于哪一个,哪一个就消失,出现在行里。
df5
张三 | Sara | Lisa | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
middle | end | middle | end | middle | end | |||||||
A | B | A | B | A | B | A | B | A | B | A | B | |
Spring | 131 | 7 | 14 | 21 | 119 | 72 | 92 | 139 | 132 | 63 | 142 | 56 |
Summer | 105 | 118 | 122 | 19 | 17 | 133 | 100 | 36 | 120 | 20 | 129 | 136 |
Autumn | 100 | 121 | 32 | 53 | 109 | 57 | 104 | 125 | 96 | 68 | 76 | 89 |
Winter | 73 | 16 | 54 | 42 | 74 | 48 | 129 | 25 | 56 | 39 | 28 | 113 |
df5.stack(level = 0)
end | middle | ||||
---|---|---|---|---|---|
A | B | A | B | ||
Spring | Lisa | 142 | 56 | 132 | 63 |
Sara | 92 | 139 | 119 | 72 | |
张三 | 14 | 21 | 131 | 7 | |
Summer | Lisa | 129 | 136 | 120 | 20 |
Sara | 100 | 36 | 17 | 133 | |
张三 | 122 | 19 | 105 | 118 | |
Autumn | Lisa | 76 | 89 | 96 | 68 |
Sara | 104 | 125 | 109 | 57 | |
张三 | 32 | 53 | 100 | 121 | |
Winter | Lisa | 28 | 113 | 56 | 39 |
Sara | 129 | 25 | 74 | 48 | |
张三 | 54 | 42 | 73 | 16 |
df4.unstack(level=1)
Spring | Summer | Autumn | Winter | ||||||
---|---|---|---|---|---|---|---|---|---|
end | middle | end | middle | end | middle | end | middle | ||
Lisa | A | 126 | 23 | 15 | 142 | 138 | 65 | 28 | 67 |
B | 125 | 75 | 118 | 113 | 1 | 122 | 110 | 0 | |
Sara | A | 9 | 111 | 8 | 90 | 97 | 9 | 0 | 128 |
B | 70 | 40 | 16 | 95 | 60 | 149 | 10 | 44 | |
张三 | A | 135 | 61 | 147 | 58 | 141 | 64 | 107 | 105 |
B | 97 | 118 | 29 | 121 | 31 | 8 | 56 | 81 |
【小技巧】使用unstack()的时候,level等于哪一个,哪一个就消失,出现在列里。
============================================
练习10:
使用unstack()将ddd变为两行,分别为期中期末
使用unstack()将ddd变为四行,分别为四个科目
============================================
【注意】
需要指定axis
【小技巧】和unstack()相反,聚合的时候,axis等于哪一个,哪一个就会进行计算。
所谓的聚合操作:平均数,方差,最大值,最小值……
df3
Spring | Summer | Autumn | Winter | ||
---|---|---|---|---|---|
A | a | 31 | 57 | 124 | 34 |
b | 134 | 20 | 60 | 55 | |
B | a | 33 | 70 | 128 | 47 |
b | 9 | 55 | 101 | 117 | |
C | a | 14 | 114 | 146 | 147 |
b | 108 | 114 | 73 | 86 |
df3.mean(axis = 'columns')
A a 61.50 b 67.25 B a 69.50 b 70.50 C a 105.25 b 95.25 dtype: float64
df3
Spring | Summer | Autumn | Winter | ||
---|---|---|---|---|---|
A | a | 31 | 57 | 124 | 34 |
b | 134 | 20 | 60 | 55 | |
B | a | 33 | 70 | 128 | 47 |
b | 9 | 55 | 101 | 117 | |
C | a | 14 | 114 | 146 | 147 |
b | 108 | 114 | 73 | 86 |
#数据离散的程度,
df3.std()
Spring 52.738664 Summer 36.740532 Autumn 33.571814 Winter 44.086279 dtype: float64
============================================
练习11:
计算各个科目期中期末平均成绩
计算各科目张三李四的最高分
============================================