导入numpy库,并查看numpy版本
import numpy as np
np.__version__
'1.13.0'
import matplotlib.pyplot as plt
cat = plt.imread('cat.jpg')
print(cat)
[[[231 186 131] [232 187 132] [233 188 133] ..., [100 54 54] [ 92 48 47] [ 85 43 44]] [[232 187 132] [232 187 132] [233 188 133] ..., [100 54 54] [ 92 48 47] [ 84 42 43]] [[232 187 132] [233 188 133] [233 188 133] ..., [ 99 53 53] [ 91 47 46] [ 83 41 42]] ..., [[199 119 82] [199 119 82] [200 120 83] ..., [189 99 65] [187 97 63] [187 97 63]] [[199 119 82] [199 119 82] [199 119 82] ..., [188 98 64] [186 96 62] [188 95 62]] [[199 119 82] [199 119 82] [199 119 82] ..., [188 98 64] [188 95 62] [188 95 62]]]
type(cat)
numpy.ndarray
cat.shape
(456, 730, 3)
plt.imshow(cat)
plt.show()
#请问电影是什么,nd.array 四维
#(x,456,760,3)
参数为列表: [1, 4, 2, 5, 3]
注意:
l = [3,1,4,5,9,6]
n = np.array(l)
display(n,l)
array([3, 1, 4, 5, 9, 6])
[3, 1, 4, 5, 9, 6]
display(n.shape,l.shape)
-------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-15-5eeacc6c47ae> in <module>() ----> 1 display(n.shape,l.shape) AttributeError: 'list' object has no attribute 'shape'
n2 = np.array([[3,4,7,1],[3,0,1,8],[2,4,6,8]])
display(n2.shape)
(3, 4)
n3 = np.array(['0',9.18,20])
n3
array(['0', '9.18', '20'], dtype='<U4')
n4 = np.array([1,2,3.14])
n4
array([ 1. , 2. , 3.14])
包含以下常见创建方法:
one = np.ones((40,80,3),dtype=int)
display(one.shape)
(40, 80, 3)
np.zeros((100,200,5))
array([[[ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], ..., [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.]], [[ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], ..., [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.]], [[ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], ..., [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.]], ..., [[ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], ..., [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.]], [[ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], ..., [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.]], [[ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], ..., [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.]]])
np.full((20,30),fill_value=8.88)
array([[ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88], [ 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88]])
对角线为1其他的位置为0
#矩阵,满秩矩阵
np.eye(5)
# x + y = 10
# x - y = 5
# 1 1
# 1 -1
# 1 1
# 0 -2
# 1 0
# 0 -2
# 1 0
# 0 1
# x + y = 10
# 2x + 2y = 20
# 1 1
# 2 2
# 1 1
# 0 0
array([[ 1., 0., 0., 0., 0.], [ 0., 1., 0., 0., 0.], [ 0., 0., 1., 0., 0.], [ 0., 0., 0., 1., 0.], [ 0., 0., 0., 0., 1.]])
# lin = linear 线性
# 00000000
# 11111111 = 127
np.linspace(start = 0,stop = 150,num = 50,endpoint=False,retstep=True,dtype=np.int8)
(array([ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, -127, -124, -121, -118, -115, -112, -109], dtype=int8), 3.0)
np.arange(0,100,step = 3)
array([ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99])
np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
#ndarray
np.random.randint(-100,100,size = (4,5))
array([[-87, -29, -85, 15, -80], [-94, -20, 8, 84, -94], [-89, 59, -71, 9, 77], [ 82, -13, 92, -50, 67]])
标准正太分布
#d0,d1……dn
#dimensional 维度
np.random.randn(10,10)
array([[ -5.46824594e-01, 1.07179174e+00, 1.77507447e+00, 2.25209098e-01, 5.19083202e-01, -6.76655557e-01, 1.99384931e+00, 1.16875392e+00, -5.53496016e-01, -9.95607941e-01], [ -1.34229240e+00, 1.82715427e+00, 1.68100791e-01, 1.04885582e-01, 2.71417935e+00, -2.58693080e-01, 1.04068515e-01, 8.10473766e-01, 1.90595706e-01, 5.59027533e-01], [ -1.31158145e+00, -2.65147714e+00, -1.06652645e-01, 3.66054578e-01, 1.00488575e+00, 6.28278594e-01, -5.87102941e-01, -5.19958644e-01, -6.07998002e-01, 4.47194822e-01], [ 6.33424165e-01, 1.24501227e+00, 6.77243149e-01, 1.13717064e+00, -1.11405630e+00, 4.92695535e-01, -4.50442972e-01, 4.80813688e-01, -3.93747118e-01, 3.67064763e-01], [ 7.10941655e-01, -7.38304618e-01, -4.78201185e-01, 1.12340783e+00, 2.34967908e+00, 1.97657956e-01, 1.86172500e-02, 2.59809012e-01, 1.76131029e+00, -7.42756403e-01], [ -8.66588876e-02, -1.07209838e+00, -3.64836658e-01, -8.40909028e-01, -7.37350991e-01, -8.90749448e-01, -1.41449767e+00, -1.81072400e+00, 1.81216340e+00, 4.79779577e-01], [ -1.56467346e-01, -3.26438621e-01, 5.77616121e-02, -5.71762728e-01, 6.63998462e-01, -3.85444509e-01, 3.66929808e-01, 6.49857210e-01, -2.75195142e-01, -5.01095259e-01], [ 6.01485754e-01, -2.21271029e-02, 2.52285405e-02, 1.80423496e-01, -5.63482448e-05, 1.42370303e-01, -1.00389352e+00, -1.45804209e-01, 8.44376609e-01, 1.23404325e+00], [ 1.51250923e+00, 1.41495165e+00, -6.30276103e-01, -4.76913259e-01, -1.58701741e+00, -9.16346290e-01, -1.44218761e-01, -4.84195208e-01, -1.73369711e+00, 1.13364493e-01], [ 1.27400732e+00, -1.46409799e+00, -1.22425105e+00, -1.03935711e-01, -1.22836257e+00, 2.20029526e-01, -1.63008922e-01, 8.41643451e-01, -1.69272378e-01, 1.41444618e+00]])
9)np.random.normal(loc=0.0, scale=1.0, size=None)
np.random.normal(175,100,56)
array([ 269.55201826, 187.33873198, 120.12980915, 35.94753307, 100.90507802, 188.10840055, 193.31965054, 36.05935621, 140.17431892, 262.08854751, 157.21405498, 266.08319372, 343.02054984, 192.9958422 , 443.18707824, 224.91608598, -54.74691554, 172.59002564, 204.49702642, 372.54441072, 126.86764549, 186.91726897, -3.66107589, 190.47178624, 142.05410227, 210.80513529, 293.25789963, 50.89529749, 313.27820574, -17.55536856, 78.67924885, 136.45928163, 191.91273968, 207.10742181, 39.29293149, 305.20744152, 346.83050746, 183.26777519, 83.58301573, -47.49004075, 213.37605839, 96.41939774, 201.9269295 , 110.29843417, 342.29758371, 162.90875179, 139.13639372, 226.59402494, 278.0888479 , 262.75948451, 49.66327788, 288.96514573, 146.53039311, 323.20823318, 123.20716854, 197.65838639])
生成0到1的随机数,左闭右开
np.random.random(size = 10)
array([ 0.38379228, 0.13716473, 0.37084239, 0.10899928, 0.45899816, 0.30014622, 0.2898527 , 0.87834826, 0.59921499, 0.9087303 ])
image = np.random.random(size = (456,730,3))
plt.imshow(image)
plt.show()
plt.imshow(cat)
plt.show()
display(cat.shape,image.shape)
(456, 730, 3)
(456, 730, 3)
4个必记参数: ndim:维度 shape:形状(各维度的长度) size:总长度
dtype:元素类型
cat.ndim
3
image.shape
(456, 730, 3)
image.size
998640
image.dtype
dtype('float64')
一维与列表完全一致 多维时同理
n1 = np.array([1,2,4,7,9])
n1[3]
7
n[0,1,1]
8
n = np.random.randint(0,100,size = (4,5,6,2,3))
n
array([[[[[55, 85, 59], [76, 37, 8]], [[94, 34, 7], [ 4, 26, 71]], [[59, 55, 8], [44, 73, 16]], [[18, 82, 66], [89, 61, 48]], [[90, 18, 49], [10, 49, 47]], [[24, 61, 57], [17, 14, 47]]], [[[96, 14, 71], [57, 62, 3]], [[33, 93, 9], [14, 72, 48]], [[95, 41, 50], [ 5, 17, 86]], [[ 3, 2, 39], [74, 89, 58]], [[70, 82, 95], [50, 74, 11]], [[36, 58, 60], [97, 40, 49]]], [[[72, 71, 76], [ 3, 11, 83]], [[42, 22, 76], [27, 14, 24]], [[85, 21, 63], [86, 54, 27]], [[10, 5, 74], [96, 75, 87]], [[65, 20, 68], [27, 28, 40]], [[37, 23, 86], [43, 76, 59]]], [[[48, 14, 32], [80, 48, 8]], [[39, 20, 43], [83, 22, 3]], [[79, 53, 68], [35, 64, 97]], [[79, 36, 44], [47, 11, 72]], [[37, 59, 51], [65, 40, 14]], [[86, 76, 44], [42, 71, 95]]], [[[ 8, 98, 49], [96, 72, 14]], [[93, 21, 31], [ 7, 14, 1]], [[29, 67, 79], [36, 9, 87]], [[99, 97, 96], [62, 52, 35]], [[66, 30, 80], [35, 79, 41]], [[82, 39, 27], [39, 41, 26]]]], [[[[46, 77, 21], [54, 68, 96]], [[46, 37, 96], [45, 69, 22]], [[59, 99, 27], [60, 88, 1]], [[98, 47, 26], [87, 55, 20]], [[45, 57, 10], [15, 95, 33]], [[16, 10, 88], [40, 47, 51]]], [[[99, 40, 4], [95, 36, 64]], [[ 7, 91, 52], [17, 98, 51]], [[18, 0, 96], [95, 77, 49]], [[71, 97, 51], [12, 5, 64]], [[27, 99, 83], [76, 69, 24]], [[80, 56, 73], [52, 95, 76]]], [[[37, 76, 43], [12, 97, 39]], [[19, 97, 95], [84, 7, 36]], [[58, 79, 86], [76, 6, 56]], [[42, 28, 58], [74, 35, 65]], [[88, 87, 16], [72, 96, 46]], [[73, 61, 30], [98, 49, 24]]], [[[74, 92, 30], [95, 41, 50]], [[24, 81, 46], [24, 23, 6]], [[67, 92, 77], [59, 18, 93]], [[65, 68, 38], [83, 50, 72]], [[86, 95, 68], [99, 29, 58]], [[54, 35, 72], [80, 4, 73]]], [[[69, 2, 21], [74, 0, 91]], [[17, 62, 56], [ 7, 49, 51]], [[35, 23, 87], [12, 60, 2]], [[18, 94, 10], [25, 64, 38]], [[55, 20, 37], [35, 1, 50]], [[75, 0, 93], [38, 86, 92]]]], [[[[30, 88, 19], [ 5, 73, 51]], [[17, 9, 48], [43, 1, 15]], [[82, 23, 99], [66, 30, 64]], [[89, 94, 9], [ 7, 72, 6]], [[93, 72, 20], [39, 67, 38]], [[95, 2, 47], [49, 10, 56]]], [[[ 7, 8, 96], [46, 62, 92]], [[70, 77, 79], [94, 43, 31]], [[68, 95, 58], [15, 78, 75]], [[31, 73, 94], [72, 66, 47]], [[54, 94, 44], [44, 0, 92]], [[92, 15, 17], [95, 64, 29]]], [[[18, 88, 13], [25, 1, 37]], [[45, 87, 96], [65, 91, 92]], [[11, 1, 63], [35, 78, 54]], [[90, 24, 29], [98, 70, 62]], [[93, 12, 45], [91, 64, 87]], [[68, 42, 39], [29, 12, 61]]], [[[11, 91, 13], [65, 13, 13]], [[12, 90, 76], [72, 7, 45]], [[59, 93, 32], [ 3, 65, 55]], [[35, 51, 90], [49, 11, 36]], [[42, 95, 81], [18, 37, 55]], [[74, 60, 9], [14, 93, 64]]], [[[45, 4, 69], [35, 29, 31]], [[91, 59, 11], [ 9, 15, 14]], [[39, 83, 34], [42, 31, 83]], [[23, 46, 47], [46, 35, 62]], [[22, 93, 80], [22, 41, 12]], [[68, 29, 16], [53, 0, 62]]]], [[[[27, 28, 82], [55, 95, 34]], [[94, 45, 41], [92, 3, 10]], [[50, 29, 40], [77, 80, 35]], [[72, 91, 88], [20, 15, 70]], [[10, 6, 31], [27, 63, 36]], [[89, 79, 83], [21, 26, 94]]], [[[72, 55, 13], [57, 96, 34]], [[62, 46, 53], [12, 39, 56]], [[62, 15, 46], [80, 68, 47]], [[77, 58, 15], [30, 40, 99]], [[59, 65, 23], [75, 89, 48]], [[95, 53, 64], [11, 81, 20]]], [[[88, 92, 24], [47, 84, 38]], [[92, 86, 72], [65, 54, 45]], [[34, 58, 49], [91, 69, 27]], [[75, 32, 42], [36, 40, 66]], [[36, 11, 41], [81, 3, 60]], [[91, 0, 66], [49, 73, 43]]], [[[40, 46, 26], [41, 11, 50]], [[20, 96, 7], [56, 51, 2]], [[76, 94, 46], [93, 41, 90]], [[67, 73, 27], [ 8, 42, 46]], [[50, 10, 92], [ 6, 89, 8]], [[68, 9, 6], [31, 97, 45]]], [[[76, 21, 70], [34, 63, 32]], [[14, 17, 11], [ 9, 46, 3]], [[82, 46, 23], [13, 20, 27]], [[39, 15, 37], [23, 31, 32]], [[72, 67, 83], [66, 23, 14]], [[84, 42, 5], [31, 55, 21]]]]])
根据索引修改数据
一维与列表完全一致 多维时同理
n = np.random.randint(0,100,size = 10)
n
array([46, 1, 53, 64, 73, 88, 74, 60, 99, 92])
n[3:6]
array([64, 73, 88])
n[-2:]
array([99, 92])
n
array([46, 1, 53, 64, 73, 88, 74, 60, 99, 92])
n[::-1]
array([92, 99, 60, 74, 88, 73, 64, 53, 1, 46])
n[::-2]
array([92, 60, 88, 64, 1])
两个::进行切片
使用reshape函数,注意参数是一个tuple!
cat.size
998640
n = np.random.randint(0,255,size = 998640)
n
array([123, 192, 72, ..., 128, 245, 181])
image2 = n.reshape((456,730,4))
-------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-76-9102b6480bfd> in <module>() ----> 1 image2 = n.reshape((456,730,4)) ValueError: cannot reshape array of size 998640 into shape (456,730,4)
image2
array([[[204, 170, 115], [235, 183, 19], [111, 136, 113], ..., [ 91, 166, 47], [ 62, 196, 199], [105, 203, 61]], [[ 82, 199, 56], [103, 31, 234], [ 74, 228, 172], ..., [133, 113, 54], [ 21, 33, 66], [138, 113, 154]], [[ 16, 150, 252], [241, 211, 97], [ 62, 16, 113], ..., [ 60, 198, 193], [217, 152, 236], [153, 226, 113]], ..., [[242, 198, 35], [ 27, 220, 30], [ 96, 194, 192], ..., [ 79, 91, 224], [181, 117, 2], [143, 9, 211]], [[ 62, 129, 0], [ 7, 205, 61], [140, 51, 9], ..., [243, 14, 92], [ 63, 100, 101], [118, 81, 124]], [[ 17, 88, 179], [145, 96, 166], [ 15, 154, 33], ..., [ 59, 173, 234], [184, 150, 243], [106, 247, 165]]])
image3 = image2.astype(float)
plt.imshow(image3)
plt.show()
级联需要注意的点:
n1 = np.random.randint(0,100,size = (4,2))
n2 = np.random.randint(-100,0,size = (4,6))
display(n1,n2)
array([[43, 63], [48, 58], [57, 58], [29, 63]])
array([[-14, -35, -38, -31, -35, -47], [ -1, -56, -55, -40, -91, -2], [-52, -81, -40, -35, -85, -5], [-10, -40, -16, -33, -46, -21]])
np.concatenate((n1,n2),axis = 1)
array([[ 43, 63, -14, -35, -38, -31, -35, -47], [ 48, 58, -1, -56, -55, -40, -91, -2], [ 57, 58, -52, -81, -40, -35, -85, -5], [ 29, 63, -10, -40, -16, -33, -46, -21]])
n1.ndim
2
n1.shape
(2, 3)
np.concatenate((n1,n2),axis = 1)
-------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-82-8b08dc61df7f> in <module>() ----> 1 np.concatenate((n1,n2),axis = 1) ValueError: all the input array dimensions except for the concatenation axis must match exactly
#cat image
image2 = np.concatenate((cat,image),axis = 0)
image2.shape
(912, 730, 3)
cat
array([[[231, 186, 131], [232, 187, 132], [233, 188, 133], ..., [100, 54, 54], [ 92, 48, 47], [ 85, 43, 44]], [[232, 187, 132], [232, 187, 132], [233, 188, 133], ..., [100, 54, 54], [ 92, 48, 47], [ 84, 42, 43]], [[232, 187, 132], [233, 188, 133], [233, 188, 133], ..., [ 99, 53, 53], [ 91, 47, 46], [ 83, 41, 42]], ..., [[199, 119, 82], [199, 119, 82], [200, 120, 83], ..., [189, 99, 65], [187, 97, 63], [187, 97, 63]], [[199, 119, 82], [199, 119, 82], [199, 119, 82], ..., [188, 98, 64], [186, 96, 62], [188, 95, 62]], [[199, 119, 82], [199, 119, 82], [199, 119, 82], ..., [188, 98, 64], [188, 95, 62], [188, 95, 62]]], dtype=uint8)
image3
array([[[ 204., 170., 115.], [ 235., 183., 19.], [ 111., 136., 113.], ..., [ 91., 166., 47.], [ 62., 196., 199.], [ 105., 203., 61.]], [[ 82., 199., 56.], [ 103., 31., 234.], [ 74., 228., 172.], ..., [ 133., 113., 54.], [ 21., 33., 66.], [ 138., 113., 154.]], [[ 16., 150., 252.], [ 241., 211., 97.], [ 62., 16., 113.], ..., [ 60., 198., 193.], [ 217., 152., 236.], [ 153., 226., 113.]], ..., [[ 242., 198., 35.], [ 27., 220., 30.], [ 96., 194., 192.], ..., [ 79., 91., 224.], [ 181., 117., 2.], [ 143., 9., 211.]], [[ 62., 129., 0.], [ 7., 205., 61.], [ 140., 51., 9.], ..., [ 243., 14., 92.], [ 63., 100., 101.], [ 118., 81., 124.]], [[ 17., 88., 179.], [ 145., 96., 166.], [ 15., 154., 33.], ..., [ 59., 173., 234.], [ 184., 150., 243.], [ 106., 247., 165.]]])
image4 = np.concatenate((cat,image3),axis = 0)
image4.shape
(912, 730, 3)
cat[:2]
array([[[231, 186, 131], [232, 187, 132], [233, 188, 133], ..., [100, 54, 54], [ 92, 48, 47], [ 85, 43, 44]], [[232, 187, 132], [232, 187, 132], [233, 188, 133], ..., [100, 54, 54], [ 92, 48, 47], [ 84, 42, 43]]], dtype=uint8)
image4[:2]
array([[[ 231., 186., 131.], [ 232., 187., 132.], [ 233., 188., 133.], ..., [ 100., 54., 54.], [ 92., 48., 47.], [ 85., 43., 44.]], [[ 232., 187., 132.], [ 232., 187., 132.], [ 233., 188., 133.], ..., [ 100., 54., 54.], [ 92., 48., 47.], [ 84., 42., 43.]]])
cat.dtype
dtype('uint8')
plt.imshow(image4.astype('uint8'))
plt.show()
水平级联与垂直级联,处理自己,进行维度的变更
n = np.random.randint(0,100,size = (4,5))
n
array([[28, 15, 65, 42, 20], [ 7, 22, 98, 86, 58], [14, 49, 31, 81, 80], [97, 67, 22, 73, 2]])
#h = horizontal 水平
np.hstack(n)
array([28, 15, 65, 42, 20, 7, 22, 98, 86, 58, 14, 49, 31, 81, 80, 97, 67, 22, 73, 2])
n = np.random.randint(0,10,size = 5)
n
array([8, 2, 7, 3, 3])
np.vstack(n)
array([[8], [2], [7], [3], [3]])
与级联类似,三个函数完成切分工作:
n = np.random.randint(0,100,size = (4,6))
n
array([[33, 46, 53, 7, 56, 43], [98, 40, 12, 55, 18, 64], [47, 53, 69, 50, 69, 7], [34, 91, 32, 52, 83, 38]])
np.vsplit(n,(1,2))
[array([[33, 46, 53, 7, 56, 43]]), array([[98, 40, 12, 55, 18, 64]]), array([[47, 53, 69, 50, 69, 7], [34, 91, 32, 52, 83, 38]])]
np.hsplit(n,(2,4))
[array([[33, 46], [98, 40], [47, 53], [34, 91]]), array([[53, 7], [12, 55], [69, 50], [32, 52]]), array([[56, 43], [18, 64], [69, 7], [83, 38]])]
cat.shape
(456, 730, 3)
456
730
s_result = np.split(cat,2,axis = 1)
len(s_result)
2
plt.imshow(s_result[0])
plt.show()
所有赋值运算不会为ndarray的任何元素创建副本。对赋值后的对象的操作也对原来的对象生效。
n = np.array([1,2,3])
n[2] = 10
n
array([ 1, 2, 10])
可使用copy()函数创建副本
n2 = n.copy()
n2[0] = 1024
n2
array([1024, 2, 10])
n
array([ 1, 2, 10])
同理
Function Name NaN-safe Version Description
np.sum np.nansum Compute sum of elements
np.prod np.nanprod Compute product of elements
np.mean np.nanmean Compute mean of elements
np.std np.nanstd Compute standard deviation
np.var np.nanvar Compute variance
np.min np.nanmin Find minimum value
np.max np.nanmax Find maximum value
np.argmin np.nanargmin Find index of minimum value
np.argmax np.nanargmax Find index of maximum value
np.median np.nanmedian Compute median of elements
np.percentile np.nanpercentile Compute rank-based statistics of elements
np.any N/A Evaluate whether any elements are true
np.all N/A Evaluate whether all elements are true
np.power 幂运算
cat.shape
(456, 730, 3)
cat2 = cat.reshape((-1,3))
cat2.shape
(332880, 3)
cat3 = cat.reshape((456*730,3))
cat3.shape
(332880, 3)
cat3.max(axis = 0)
array([255, 242, 219], dtype=uint8)
max_cat = cat.max(axis = (0,1))
max_cat
array([255, 242, 219], dtype=uint8)
max_cat.shape
(3,)
cat.min()
0
np.sum 和 np.nansum 的区别 nan not a number
使用pandas打开文件president_heights.csv 获取文件中的数据
【重要】ndarray广播机制的两条规则
例1: m = np.ones((2, 3)) a = np.arange(3) 求M+a
例2: a = np.arange(3).reshape((3, 1)) b = np.arange(3) 求a+b
习题 a = np.ones((4, 1)) b = np.arange(4) 求a+b
小测验: 使用以上所学numpy的知识,对一个ndarray对象进行选择排序。
def Sortn(x):
代码越短越好
np.partition(a,k)
有的时候我们不是对全部数据感兴趣,我们可能只对最小或最大的一部分感兴趣。